Lines Matching refs:iu

239     Index findSmallSubdiagEntry(Index iu);
240 void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
241 void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
242 …void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHo…
243 …void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseh…
300 Index iu = m_matT.cols() - 1; in computeFromHessenberg() local
308 while (iu >= 0) in computeFromHessenberg()
310 Index il = findSmallSubdiagEntry(iu); in computeFromHessenberg()
313 if (il == iu) // One root found in computeFromHessenberg()
315 m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift; in computeFromHessenberg()
316 if (iu > 0) in computeFromHessenberg()
317 m_matT.coeffRef(iu, iu-1) = Scalar(0); in computeFromHessenberg()
318 iu--; in computeFromHessenberg()
321 else if (il == iu-1) // Two roots found in computeFromHessenberg()
323 splitOffTwoRows(iu, computeU, exshift); in computeFromHessenberg()
324 iu -= 2; in computeFromHessenberg()
331 computeShift(iu, iter, exshift, shiftInfo); in computeFromHessenberg()
336 initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector); in computeFromHessenberg()
337 performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace); in computeFromHessenberg()
367 inline Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu) in findSmallSubdiagEntry() argument
370 Index res = iu; in findSmallSubdiagEntry()
383 inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift) in splitOffTwoRows() argument
391 Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu)); in splitOffTwoRows()
392 …Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); // q = tr^2 / 4 - det = discr/4 in splitOffTwoRows()
393 m_matT.coeffRef(iu,iu) += exshift; in splitOffTwoRows()
394 m_matT.coeffRef(iu-1,iu-1) += exshift; in splitOffTwoRows()
401 rot.makeGivens(p + z, m_matT.coeff(iu, iu-1)); in splitOffTwoRows()
403 rot.makeGivens(p - z, m_matT.coeff(iu, iu-1)); in splitOffTwoRows()
405 m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint()); in splitOffTwoRows()
406 m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot); in splitOffTwoRows()
407 m_matT.coeffRef(iu, iu-1) = Scalar(0); in splitOffTwoRows()
409 m_matU.applyOnTheRight(iu-1, iu, rot); in splitOffTwoRows()
412 if (iu > 1) in splitOffTwoRows()
413 m_matT.coeffRef(iu-1, iu-2) = Scalar(0); in splitOffTwoRows()
418 inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& sh… in computeShift() argument
422 shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu); in computeShift()
423 shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1); in computeShift()
424 shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); in computeShift()
430 for (Index i = 0; i <= iu; ++i) in computeShift()
432 Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2)); in computeShift()
451 for (Index i = 0; i <= iu; ++i) in computeShift()
460 inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo,… in initFrancisQRStep() argument
465 for (im = iu-2; im >= il; --im) in initFrancisQRStep()
485 inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU… in performFrancisQRStep() argument
488 eigen_assert(im <= iu-2); in performFrancisQRStep()
492 for (Index k = im; k <= iu-2; ++k) in performFrancisQRStep()
515 m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace); in performFrancisQRStep()
521 Matrix<Scalar, 2, 1> v = m_matT.template block<2,1>(iu-1, iu-2); in performFrancisQRStep()
528 m_matT.coeffRef(iu-1, iu-2) = beta; in performFrancisQRStep()
529 m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace); in performFrancisQRStep()
530 m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace); in performFrancisQRStep()
532 m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace); in performFrancisQRStep()
536 for (Index i = im+2; i <= iu; ++i) in performFrancisQRStep()