Lines Matching refs:fPts

20     if (fPts[endIndex].fX == fPts[ctrlIndex].fX) {  in align()
21 dstPt->fX = fPts[endIndex].fX; in align()
23 if (fPts[endIndex].fY == fPts[ctrlIndex].fY) { in align()
24 dstPt->fY = fPts[endIndex].fY; in align()
79 return ((fPts[1] - fPts[0]).length() in calcPrecision()
80 + (fPts[2] - fPts[1]).length() in calcPrecision()
81 + (fPts[3] - fPts[2]).length()) / gPrecisionUnit; in calcPrecision()
105 dst.pts[0] = fPts[0]; in chopAt()
106 dst.pts[1].fX = (fPts[0].fX + fPts[1].fX) / 2; in chopAt()
107 dst.pts[1].fY = (fPts[0].fY + fPts[1].fY) / 2; in chopAt()
108 dst.pts[2].fX = (fPts[0].fX + 2 * fPts[1].fX + fPts[2].fX) / 4; in chopAt()
109 dst.pts[2].fY = (fPts[0].fY + 2 * fPts[1].fY + fPts[2].fY) / 4; in chopAt()
110 dst.pts[3].fX = (fPts[0].fX + 3 * (fPts[1].fX + fPts[2].fX) + fPts[3].fX) / 8; in chopAt()
111 dst.pts[3].fY = (fPts[0].fY + 3 * (fPts[1].fY + fPts[2].fY) + fPts[3].fY) / 8; in chopAt()
112 dst.pts[4].fX = (fPts[1].fX + 2 * fPts[2].fX + fPts[3].fX) / 4; in chopAt()
113 dst.pts[4].fY = (fPts[1].fY + 2 * fPts[2].fY + fPts[3].fY) / 4; in chopAt()
114 dst.pts[5].fX = (fPts[2].fX + fPts[3].fX) / 2; in chopAt()
115 dst.pts[5].fY = (fPts[2].fY + fPts[3].fY) / 2; in chopAt()
116 dst.pts[6] = fPts[3]; in chopAt()
119 interp_cubic_coords(&fPts[0].fX, &dst.pts[0].fX, t); in chopAt()
120 interp_cubic_coords(&fPts[0].fY, &dst.pts[0].fY, t); in chopAt()
135 return (between(fPts[0].fX, fPts[1].fX, fPts[3].fX) in endsAreExtremaInXOrY()
136 && between(fPts[0].fX, fPts[2].fX, fPts[3].fX)) in endsAreExtremaInXOrY()
137 || (between(fPts[0].fY, fPts[1].fY, fPts[3].fY) in endsAreExtremaInXOrY()
138 && between(fPts[0].fY, fPts[2].fY, fPts[3].fY)); in endsAreExtremaInXOrY()
155 endPt[0] = &fPts[end1]; in hullIntersects()
159 endPt[1] = &fPts[end2]; in hullIntersects()
166 double sign = (fPts[oddMan].fY - origY) * adj - (fPts[oddMan].fX - origX) * opp; in hullIntersects()
168 double sign2 = (fPts[oddMan2].fY - origY) * adj - (fPts[oddMan2].fX - origX) * opp; in hullIntersects()
198 return hullIntersects(c2.fPts, c2.kPointCount, isLinear); in hullIntersects()
202 return hullIntersects(quad.fPts, quad.kPointCount, isLinear); in hullIntersects()
207 return hullIntersects(conic.fPts, isLinear); in hullIntersects()
211 if (fPts[0].approximatelyDEqual(fPts[3])) { in isLinear()
218 double tiniest = SkTMin(SkTMin(SkTMin(SkTMin(SkTMin(SkTMin(SkTMin(fPts[0].fX, fPts[0].fY), in isLinear()
219 fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY), fPts[3].fX), fPts[3].fY); in isLinear()
220 double largest = SkTMax(SkTMax(SkTMax(SkTMax(SkTMax(SkTMax(SkTMax(fPts[0].fX, fPts[0].fY), in isLinear()
221 fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY), fPts[3].fX), fPts[3].fY); in isLinear()
303 SkDVector dPt = { derivative_at_t(&cubic.fPts[0].fX, testT), in ComplexBreak()
304 derivative_at_t(&cubic.fPts[0].fY, testT) }; in ComplexBreak()
324 return precisely_between(fPts[0].fX, fPts[1].fX, fPts[3].fX) in monotonicInX()
325 && precisely_between(fPts[0].fX, fPts[2].fX, fPts[3].fX); in monotonicInX()
329 return precisely_between(fPts[0].fY, fPts[1].fY, fPts[3].fY) in monotonicInY()
330 && precisely_between(fPts[0].fY, fPts[2].fY, fPts[3].fY); in monotonicInY()
335 o1Pts[0] = &fPts[offset]; in otherPts()
336 o1Pts[1] = &fPts[++offset]; in otherPts()
337 o1Pts[2] = &fPts[++offset]; in otherPts()
497 SkDVector result = { derivative_at_t(&fPts[0].fX, t), derivative_at_t(&fPts[0].fY, t) }; in dxdyAtT()
500 result = fPts[2] - fPts[0]; in dxdyAtT()
502 result = fPts[3] - fPts[1]; in dxdyAtT()
508 result = fPts[3] - fPts[0]; in dxdyAtT()
516 double Ax = fPts[1].fX - fPts[0].fX; in findInflections()
517 double Ay = fPts[1].fY - fPts[0].fY; in findInflections()
518 double Bx = fPts[2].fX - 2 * fPts[1].fX + fPts[0].fX; in findInflections()
519 double By = fPts[2].fY - 2 * fPts[1].fY + fPts[0].fY; in findInflections()
520 double Cx = fPts[3].fX + 3 * (fPts[1].fX - fPts[2].fX) - fPts[0].fX; in findInflections()
521 double Cy = fPts[3].fY + 3 * (fPts[1].fY - fPts[2].fY) - fPts[0].fY; in findInflections()
569 formulate_F1DotF2(&fPts[0].fX, coeffX); in findMaxCurvature()
570 formulate_F1DotF2(&fPts[0].fY, coeffY); in findMaxCurvature()
579 return fPts[0]; in ptAtT()
582 return fPts[3]; in ptAtT()
591 SkDPoint result = {a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX + d * fPts[3].fX, in ptAtT()
592 a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY + d * fPts[3].fY}; in ptAtT()
662 double ax = dst[0].fX = interp_cubic_coords(&fPts[0].fX, t1); in subDivide()
663 double ay = dst[0].fY = interp_cubic_coords(&fPts[0].fY, t1); in subDivide()
664 double ex = interp_cubic_coords(&fPts[0].fX, (t1*2+t2)/3); in subDivide()
665 double ey = interp_cubic_coords(&fPts[0].fY, (t1*2+t2)/3); in subDivide()
666 double fx = interp_cubic_coords(&fPts[0].fX, (t1+t2*2)/3); in subDivide()
667 double fy = interp_cubic_coords(&fPts[0].fY, (t1+t2*2)/3); in subDivide()
668 double dx = dst[3].fX = interp_cubic_coords(&fPts[0].fX, t2); in subDivide()
669 double dy = dst[3].fY = interp_cubic_coords(&fPts[0].fY, t2); in subDivide()
710 const double* dCubic = &fPts[0].fX; in toFloatPoints()
724 int roots = SkDCubic::FindExtrema(&fPts[0].fY, extremeTs); in top()