/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_DEX2OAT_LINKER_IMAGE_TEST_H_ #define ART_DEX2OAT_LINKER_IMAGE_TEST_H_ #include "image.h" #include #include #include #include #include "android-base/stringprintf.h" #include "android-base/strings.h" #include "art_method-inl.h" #include "base/file_utils.h" #include "base/hash_set.h" #include "base/stl_util.h" #include "base/unix_file/fd_file.h" #include "base/utils.h" #include "class_linker-inl.h" #include "common_compiler_driver_test.h" #include "compiler_callbacks.h" #include "debug/method_debug_info.h" #include "dex/quick_compiler_callbacks.h" #include "dex/signature-inl.h" #include "driver/compiler_driver.h" #include "driver/compiler_options.h" #include "gc/space/image_space.h" #include "image_writer.h" #include "linker/elf_writer.h" #include "linker/elf_writer_quick.h" #include "linker/multi_oat_relative_patcher.h" #include "lock_word.h" #include "mirror/object-inl.h" #include "oat_writer.h" #include "scoped_thread_state_change-inl.h" #include "signal_catcher.h" #include "stream/buffered_output_stream.h" #include "stream/file_output_stream.h" namespace art { namespace linker { static const uintptr_t kRequestedImageBase = ART_BASE_ADDRESS; struct CompilationHelper { std::vector dex_file_locations; std::vector image_locations; std::vector> extra_dex_files; std::vector image_files; std::vector oat_files; std::vector vdex_files; std::string image_dir; std::vector GetImageObjectSectionSizes(); ~CompilationHelper(); }; class ImageTest : public CommonCompilerDriverTest { protected: void SetUp() override { ReserveImageSpace(); CommonCompilerTest::SetUp(); } void TestWriteRead(ImageHeader::StorageMode storage_mode, uint32_t max_image_block_size); void Compile(ImageHeader::StorageMode storage_mode, uint32_t max_image_block_size, /*out*/ CompilationHelper& out_helper, const std::string& extra_dex = "", const std::initializer_list& image_classes = {}, const std::initializer_list& image_classes_failing_aot_clinit = {}); void SetUpRuntimeOptions(RuntimeOptions* options) override { CommonCompilerTest::SetUpRuntimeOptions(options); QuickCompilerCallbacks* new_callbacks = new QuickCompilerCallbacks(CompilerCallbacks::CallbackMode::kCompileBootImage); new_callbacks->SetVerificationResults(verification_results_.get()); callbacks_.reset(new_callbacks); options->push_back(std::make_pair("compilercallbacks", callbacks_.get())); } std::unique_ptr> GetImageClasses() override { return std::make_unique>(image_classes_); } ArtMethod* FindCopiedMethod(ArtMethod* origin, ObjPtr klass) REQUIRES_SHARED(Locks::mutator_lock_) { PointerSize pointer_size = class_linker_->GetImagePointerSize(); for (ArtMethod& m : klass->GetCopiedMethods(pointer_size)) { if (strcmp(origin->GetName(), m.GetName()) == 0 && origin->GetSignature() == m.GetSignature()) { return &m; } } return nullptr; } private: void DoCompile(ImageHeader::StorageMode storage_mode, /*out*/ CompilationHelper& out_helper); HashSet image_classes_; }; inline CompilationHelper::~CompilationHelper() { for (ScratchFile& image_file : image_files) { image_file.Unlink(); } for (ScratchFile& oat_file : oat_files) { oat_file.Unlink(); } for (ScratchFile& vdex_file : vdex_files) { vdex_file.Unlink(); } const int rmdir_result = rmdir(image_dir.c_str()); CHECK_EQ(0, rmdir_result); } inline std::vector CompilationHelper::GetImageObjectSectionSizes() { std::vector ret; for (ScratchFile& image_file : image_files) { std::unique_ptr file(OS::OpenFileForReading(image_file.GetFilename().c_str())); CHECK(file.get() != nullptr); ImageHeader image_header; CHECK_EQ(file->ReadFully(&image_header, sizeof(image_header)), true); CHECK(image_header.IsValid()); ret.push_back(image_header.GetObjectsSection().Size()); } return ret; } inline void ImageTest::DoCompile(ImageHeader::StorageMode storage_mode, /*out*/ CompilationHelper& out_helper) { CompilerDriver* driver = compiler_driver_.get(); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); std::vector class_path = class_linker->GetBootClassPath(); for (const std::unique_ptr& dex_file : out_helper.extra_dex_files) { { ScopedObjectAccess soa(Thread::Current()); // Inject in boot class path so that the compiler driver can see it. class_linker->AppendToBootClassPath(soa.Self(), *dex_file.get()); } class_path.push_back(dex_file.get()); } // Enable write for dex2dex. for (const DexFile* dex_file : class_path) { out_helper.dex_file_locations.push_back(dex_file->GetLocation()); if (dex_file->IsReadOnly()) { dex_file->EnableWrite(); } } { // Create a generic tmp file, to be the base of the .art and .oat temporary files. ScratchFile location; std::vector image_locations = gc::space::ImageSpace::ExpandMultiImageLocations(out_helper.dex_file_locations, location.GetFilename() + ".art"); for (size_t i = 0u; i != class_path.size(); ++i) { out_helper.image_locations.push_back(ScratchFile(image_locations[i])); } } std::vector image_filenames; for (ScratchFile& file : out_helper.image_locations) { std::string image_filename(GetSystemImageFilename(file.GetFilename().c_str(), kRuntimeISA)); image_filenames.push_back(image_filename); size_t pos = image_filename.rfind('/'); CHECK_NE(pos, std::string::npos) << image_filename; if (out_helper.image_dir.empty()) { out_helper.image_dir = image_filename.substr(0, pos); int mkdir_result = mkdir(out_helper.image_dir.c_str(), 0700); CHECK_EQ(0, mkdir_result) << out_helper.image_dir; } out_helper.image_files.push_back(ScratchFile(OS::CreateEmptyFile(image_filename.c_str()))); } std::vector oat_filenames; std::vector vdex_filenames; for (const std::string& image_filename : image_filenames) { std::string oat_filename = ReplaceFileExtension(image_filename, "oat"); out_helper.oat_files.push_back(ScratchFile(OS::CreateEmptyFile(oat_filename.c_str()))); oat_filenames.push_back(oat_filename); std::string vdex_filename = ReplaceFileExtension(image_filename, "vdex"); out_helper.vdex_files.push_back(ScratchFile(OS::CreateEmptyFile(vdex_filename.c_str()))); vdex_filenames.push_back(vdex_filename); } std::unordered_map dex_file_to_oat_index_map; size_t image_idx = 0; for (const DexFile* dex_file : class_path) { dex_file_to_oat_index_map.emplace(dex_file, image_idx); ++image_idx; } // TODO: compile_pic should be a test argument. std::unique_ptr writer(new ImageWriter(*compiler_options_, kRequestedImageBase, storage_mode, oat_filenames, dex_file_to_oat_index_map, /*class_loader=*/ nullptr, /*dirty_image_objects=*/ nullptr)); { { jobject class_loader = nullptr; TimingLogger timings("ImageTest::WriteRead", false, false); CompileAll(class_loader, class_path, &timings); TimingLogger::ScopedTiming t("WriteElf", &timings); SafeMap key_value_store; key_value_store.Put(OatHeader::kBootClassPathKey, android::base::Join(out_helper.dex_file_locations, ':')); std::vector> elf_writers; std::vector> oat_writers; for (ScratchFile& oat_file : out_helper.oat_files) { elf_writers.emplace_back(CreateElfWriterQuick(*compiler_options_, oat_file.GetFile())); elf_writers.back()->Start(); oat_writers.emplace_back(new OatWriter(*compiler_options_, &timings, /*profile_compilation_info*/nullptr, CompactDexLevel::kCompactDexLevelNone)); } std::vector rodata; std::vector opened_dex_files_maps; std::vector> opened_dex_files; // Now that we have finalized key_value_store_, start writing the oat file. for (size_t i = 0, size = oat_writers.size(); i != size; ++i) { const DexFile* dex_file = class_path[i]; rodata.push_back(elf_writers[i]->StartRoData()); ArrayRef raw_dex_file( reinterpret_cast(&dex_file->GetHeader()), dex_file->GetHeader().file_size_); oat_writers[i]->AddRawDexFileSource(raw_dex_file, dex_file->GetLocation().c_str(), dex_file->GetLocationChecksum()); std::vector cur_opened_dex_files_maps; std::vector> cur_opened_dex_files; bool dex_files_ok = oat_writers[i]->WriteAndOpenDexFiles( out_helper.vdex_files[i].GetFile(), rodata.back(), (i == 0u) ? &key_value_store : nullptr, /* verify */ false, // Dex files may be dex-to-dex-ed, don't verify. /* update_input_vdex */ false, /* copy_dex_files */ CopyOption::kOnlyIfCompressed, &cur_opened_dex_files_maps, &cur_opened_dex_files); ASSERT_TRUE(dex_files_ok); if (!cur_opened_dex_files_maps.empty()) { for (MemMap& cur_map : cur_opened_dex_files_maps) { opened_dex_files_maps.push_back(std::move(cur_map)); } for (std::unique_ptr& cur_dex_file : cur_opened_dex_files) { // dex_file_oat_index_map_.emplace(dex_file.get(), i); opened_dex_files.push_back(std::move(cur_dex_file)); } } else { ASSERT_TRUE(cur_opened_dex_files.empty()); } } bool image_space_ok = writer->PrepareImageAddressSpace(&timings); ASSERT_TRUE(image_space_ok); DCHECK_EQ(out_helper.vdex_files.size(), out_helper.oat_files.size()); for (size_t i = 0, size = out_helper.oat_files.size(); i != size; ++i) { MultiOatRelativePatcher patcher(compiler_options_->GetInstructionSet(), compiler_options_->GetInstructionSetFeatures(), driver->GetCompiledMethodStorage()); OatWriter* const oat_writer = oat_writers[i].get(); ElfWriter* const elf_writer = elf_writers[i].get(); std::vector cur_dex_files(1u, class_path[i]); oat_writer->Initialize(driver, writer.get(), cur_dex_files); std::unique_ptr vdex_out = std::make_unique( std::make_unique(out_helper.vdex_files[i].GetFile())); oat_writer->WriteVerifierDeps(vdex_out.get(), nullptr); oat_writer->WriteQuickeningInfo(vdex_out.get()); oat_writer->WriteChecksumsAndVdexHeader(vdex_out.get()); oat_writer->PrepareLayout(&patcher); elf_writer->PrepareDynamicSection(oat_writer->GetOatHeader().GetExecutableOffset(), oat_writer->GetCodeSize(), oat_writer->GetDataBimgRelRoSize(), oat_writer->GetBssSize(), oat_writer->GetBssMethodsOffset(), oat_writer->GetBssRootsOffset(), oat_writer->GetVdexSize()); writer->UpdateOatFileLayout(i, elf_writer->GetLoadedSize(), oat_writer->GetOatDataOffset(), oat_writer->GetOatSize()); bool rodata_ok = oat_writer->WriteRodata(rodata[i]); ASSERT_TRUE(rodata_ok); elf_writer->EndRoData(rodata[i]); OutputStream* text = elf_writer->StartText(); bool text_ok = oat_writer->WriteCode(text); ASSERT_TRUE(text_ok); elf_writer->EndText(text); if (oat_writer->GetDataBimgRelRoSize() != 0u) { OutputStream* data_bimg_rel_ro = elf_writer->StartDataBimgRelRo(); bool data_bimg_rel_ro_ok = oat_writer->WriteDataBimgRelRo(data_bimg_rel_ro); ASSERT_TRUE(data_bimg_rel_ro_ok); elf_writer->EndDataBimgRelRo(data_bimg_rel_ro); } bool header_ok = oat_writer->WriteHeader(elf_writer->GetStream()); ASSERT_TRUE(header_ok); writer->UpdateOatFileHeader(i, oat_writer->GetOatHeader()); elf_writer->WriteDynamicSection(); elf_writer->WriteDebugInfo(oat_writer->GetDebugInfo()); bool success = elf_writer->End(); ASSERT_TRUE(success); } } bool success_image = writer->Write(kInvalidFd, image_filenames, oat_filenames); ASSERT_TRUE(success_image); for (size_t i = 0, size = oat_filenames.size(); i != size; ++i) { const char* oat_filename = oat_filenames[i].c_str(); std::unique_ptr oat_file(OS::OpenFileReadWrite(oat_filename)); ASSERT_TRUE(oat_file != nullptr); bool success_fixup = ElfWriter::Fixup(oat_file.get(), writer->GetOatDataBegin(i)); ASSERT_TRUE(success_fixup); ASSERT_EQ(oat_file->FlushCloseOrErase(), 0) << "Could not flush and close oat file " << oat_filename; } } } inline void ImageTest::Compile( ImageHeader::StorageMode storage_mode, uint32_t max_image_block_size, CompilationHelper& helper, const std::string& extra_dex, const std::initializer_list& image_classes, const std::initializer_list& image_classes_failing_aot_clinit) { for (const std::string& image_class : image_classes_failing_aot_clinit) { ASSERT_TRUE(ContainsElement(image_classes, image_class)); } for (const std::string& image_class : image_classes) { image_classes_.insert(image_class); } number_of_threads_ = kIsTargetBuild ? 2U : 16U; CreateCompilerDriver(); // Set inline filter values. compiler_options_->SetInlineMaxCodeUnits(CompilerOptions::kDefaultInlineMaxCodeUnits); compiler_options_->SetMaxImageBlockSize(max_image_block_size); image_classes_.clear(); if (!extra_dex.empty()) { helper.extra_dex_files = OpenTestDexFiles(extra_dex.c_str()); } DoCompile(storage_mode, helper); if (image_classes.begin() != image_classes.end()) { // Make sure the class got initialized. ScopedObjectAccess soa(Thread::Current()); ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); for (const std::string& image_class : image_classes) { ObjPtr klass = class_linker->FindSystemClass(Thread::Current(), image_class.c_str()); EXPECT_TRUE(klass != nullptr); EXPECT_TRUE(klass->IsResolved()); if (ContainsElement(image_classes_failing_aot_clinit, image_class)) { EXPECT_FALSE(klass->IsInitialized()); } else { EXPECT_TRUE(klass->IsInitialized()); } } } } inline void ImageTest::TestWriteRead(ImageHeader::StorageMode storage_mode, uint32_t max_image_block_size) { CompilationHelper helper; Compile(storage_mode, max_image_block_size, /*out*/ helper); std::vector image_file_sizes; for (ScratchFile& image_file : helper.image_files) { std::unique_ptr file(OS::OpenFileForReading(image_file.GetFilename().c_str())); ASSERT_TRUE(file.get() != nullptr); ImageHeader image_header; ASSERT_EQ(file->ReadFully(&image_header, sizeof(image_header)), true); ASSERT_TRUE(image_header.IsValid()); const auto& bitmap_section = image_header.GetImageBitmapSection(); ASSERT_GE(bitmap_section.Offset(), sizeof(image_header)); ASSERT_NE(0U, bitmap_section.Size()); gc::Heap* heap = Runtime::Current()->GetHeap(); ASSERT_TRUE(heap->HaveContinuousSpaces()); gc::space::ContinuousSpace* space = heap->GetNonMovingSpace(); ASSERT_FALSE(space->IsImageSpace()); ASSERT_TRUE(space != nullptr); ASSERT_TRUE(space->IsMallocSpace()); image_file_sizes.push_back(file->GetLength()); } // Need to delete the compiler since it has worker threads which are attached to runtime. compiler_driver_.reset(); // Tear down old runtime before making a new one, clearing out misc state. // Remove the reservation of the memory for use to load the image. // Need to do this before we reset the runtime. UnreserveImageSpace(); helper.extra_dex_files.clear(); runtime_.reset(); java_lang_dex_file_ = nullptr; MemMap::Init(); RuntimeOptions options; options.emplace_back(GetClassPathOption("-Xbootclasspath:", GetLibCoreDexFileNames()), nullptr); options.emplace_back( GetClassPathOption("-Xbootclasspath-locations:", GetLibCoreDexLocations()), nullptr); std::string image("-Ximage:"); image.append(helper.image_locations[0].GetFilename()); options.push_back(std::make_pair(image.c_str(), static_cast(nullptr))); // By default the compiler this creates will not include patch information. options.push_back(std::make_pair("-Xnorelocate", nullptr)); if (!Runtime::Create(options, false)) { LOG(FATAL) << "Failed to create runtime"; return; } runtime_.reset(Runtime::Current()); // Runtime::Create acquired the mutator_lock_ that is normally given away when we Runtime::Start, // give it away now and then switch to a more managable ScopedObjectAccess. Thread::Current()->TransitionFromRunnableToSuspended(kNative); ScopedObjectAccess soa(Thread::Current()); ASSERT_TRUE(runtime_.get() != nullptr); class_linker_ = runtime_->GetClassLinker(); gc::Heap* heap = Runtime::Current()->GetHeap(); ASSERT_TRUE(heap->HasBootImageSpace()); ASSERT_TRUE(heap->GetNonMovingSpace()->IsMallocSpace()); // We loaded the runtime with an explicit image, so it must exist. ASSERT_EQ(heap->GetBootImageSpaces().size(), image_file_sizes.size()); const HashSet& image_classes = compiler_options_->GetImageClasses(); for (size_t i = 0; i < helper.dex_file_locations.size(); ++i) { std::unique_ptr dex( LoadExpectSingleDexFile(helper.dex_file_locations[i].c_str())); ASSERT_TRUE(dex != nullptr); uint64_t image_file_size = image_file_sizes[i]; gc::space::ImageSpace* image_space = heap->GetBootImageSpaces()[i]; ASSERT_TRUE(image_space != nullptr); if (storage_mode == ImageHeader::kStorageModeUncompressed) { // Uncompressed, image should be smaller than file. ASSERT_LE(image_space->GetImageHeader().GetImageSize(), image_file_size); } else if (image_file_size > 16 * KB) { // Compressed, file should be smaller than image. Not really valid for small images. ASSERT_LE(image_file_size, image_space->GetImageHeader().GetImageSize()); // TODO: Actually validate the blocks, this is hard since the blocks are not copied over for // compressed images. Add kPageSize since image_size is rounded up to this. ASSERT_GT(image_space->GetImageHeader().GetBlockCount() * max_image_block_size, image_space->GetImageHeader().GetImageSize() - kPageSize); } image_space->VerifyImageAllocations(); uint8_t* image_begin = image_space->Begin(); uint8_t* image_end = image_space->End(); if (i == 0) { // This check is only valid for image 0. CHECK_EQ(kRequestedImageBase, reinterpret_cast(image_begin)); } for (size_t j = 0; j < dex->NumClassDefs(); ++j) { const dex::ClassDef& class_def = dex->GetClassDef(j); const char* descriptor = dex->GetClassDescriptor(class_def); ObjPtr klass = class_linker_->FindSystemClass(soa.Self(), descriptor); EXPECT_TRUE(klass != nullptr) << descriptor; uint8_t* raw_klass = reinterpret_cast(klass.Ptr()); if (image_classes.find(std::string_view(descriptor)) == image_classes.end()) { EXPECT_TRUE(raw_klass >= image_end || raw_klass < image_begin) << descriptor; } else { // Image classes should be located inside the image. EXPECT_LT(image_begin, raw_klass) << descriptor; EXPECT_LT(raw_klass, image_end) << descriptor; } EXPECT_TRUE(Monitor::IsValidLockWord(klass->GetLockWord(false))); } } } } // namespace linker } // namespace art #endif // ART_DEX2OAT_LINKER_IMAGE_TEST_H_