/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % AAA TTTTT TTTTT RRRR IIIII BBBB U U TTTTT EEEEE % % A A T T R R I B B U U T E % % AAAAA T T RRRR I BBBB U U T EEE % % A A T T R R I B B U U T E % % A A T T R R IIIII BBBB UUU T EEEEE % % % % % % MagickCore Get / Set Image Attributes % % % % Software Design % % Cristy % % October 2002 % % % % % % Copyright 1999-2019 ImageMagick Studio LLC, a non-profit organization % % dedicated to making software imaging solutions freely available. % % % % You may not use this file except in compliance with the License. You may % % obtain a copy of the License at % % % % https://imagemagick.org/script/license.php % % % % Unless required by applicable law or agreed to in writing, software % % distributed under the License is distributed on an "AS IS" BASIS, % % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % % See the License for the specific language governing permissions and % % limitations under the License. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % */ /* Include declarations. */ #include "MagickCore/studio.h" #include "MagickCore/artifact.h" #include "MagickCore/attribute.h" #include "MagickCore/blob.h" #include "MagickCore/blob-private.h" #include "MagickCore/cache.h" #include "MagickCore/cache-private.h" #include "MagickCore/cache-view.h" #include "MagickCore/channel.h" #include "MagickCore/client.h" #include "MagickCore/color.h" #include "MagickCore/color-private.h" #include "MagickCore/colormap.h" #include "MagickCore/colormap-private.h" #include "MagickCore/colorspace.h" #include "MagickCore/colorspace-private.h" #include "MagickCore/composite.h" #include "MagickCore/composite-private.h" #include "MagickCore/constitute.h" #include "MagickCore/draw.h" #include "MagickCore/draw-private.h" #include "MagickCore/effect.h" #include "MagickCore/enhance.h" #include "MagickCore/exception.h" #include "MagickCore/exception-private.h" #include "MagickCore/geometry.h" #include "MagickCore/histogram.h" #include "MagickCore/identify.h" #include "MagickCore/image.h" #include "MagickCore/image-private.h" #include "MagickCore/list.h" #include "MagickCore/log.h" #include "MagickCore/memory_.h" #include "MagickCore/magick.h" #include "MagickCore/monitor.h" #include "MagickCore/monitor-private.h" #include "MagickCore/option.h" #include "MagickCore/paint.h" #include "MagickCore/pixel.h" #include "MagickCore/pixel-accessor.h" #include "MagickCore/property.h" #include "MagickCore/quantize.h" #include "MagickCore/quantum-private.h" #include "MagickCore/random_.h" #include "MagickCore/resource_.h" #include "MagickCore/semaphore.h" #include "MagickCore/segment.h" #include "MagickCore/splay-tree.h" #include "MagickCore/string_.h" #include "MagickCore/string-private.h" #include "MagickCore/thread-private.h" #include "MagickCore/threshold.h" #include "MagickCore/transform.h" #include "MagickCore/utility.h" /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + G e t I m a g e B o u n d i n g B o x % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % GetImageBoundingBox() returns the bounding box of an image canvas. % % The format of the GetImageBoundingBox method is: % % RectangleInfo GetImageBoundingBox(const Image *image, % ExceptionInfo *exception) % % A description of each parameter follows: % % o bounds: Method GetImageBoundingBox returns the bounding box of an % image canvas. % % o image: the image. % % o exception: return any errors or warnings in this structure. % */ typedef struct _EdgeInfo { double left, right, top, bottom; } EdgeInfo; static double GetEdgeBackgroundFactor(const Image *image, const CacheView *image_view,const GravityType gravity,const size_t width, const size_t height,const ssize_t x_offset,const ssize_t y_offset, ExceptionInfo *exception) { CacheView *edge_view; double factor; Image *edge_image; PixelInfo background, pixel; RectangleInfo edge_geometry; register const Quantum *p; ssize_t y; /* Determine the percent of image background for this edge. */ switch (gravity) { case NorthWestGravity: case NorthGravity: default: { p=GetCacheViewVirtualPixels(image_view,0,0,1,1,exception); break; } case NorthEastGravity: case EastGravity: { p=GetCacheViewVirtualPixels(image_view,(ssize_t) image->columns-1,0,1,1, exception); break; } case SouthEastGravity: case SouthGravity: { p=GetCacheViewVirtualPixels(image_view,(ssize_t) image->columns-1, (ssize_t) image->rows-1,1,1,exception); break; } case SouthWestGravity: case WestGravity: { p=GetCacheViewVirtualPixels(image_view,0,(ssize_t) image->rows-1,1,1, exception); break; } } GetPixelInfoPixel(image,p,&background); edge_geometry.width=width; edge_geometry.height=height; edge_geometry.x=x_offset; edge_geometry.y=y_offset; GravityAdjustGeometry(image->columns,image->rows,gravity,&edge_geometry); edge_image=CropImage(image,&edge_geometry,exception); if (edge_image == (Image *) NULL) return(0.0); factor=0.0; edge_view=AcquireVirtualCacheView(edge_image,exception); for (y=0; y < (ssize_t) edge_image->rows; y++) { register ssize_t x; p=GetCacheViewVirtualPixels(edge_view,0,y,edge_image->columns,1,exception); if (p == (const Quantum *) NULL) break; for (x=0; x < (ssize_t) edge_image->columns; x++) { GetPixelInfoPixel(edge_image,p,&pixel); if (IsFuzzyEquivalencePixelInfo(&pixel,&background) == MagickFalse) factor++; p+=GetPixelChannels(edge_image); } } factor/=((double) edge_image->columns*edge_image->rows); edge_view=DestroyCacheView(edge_view); edge_image=DestroyImage(edge_image); return(factor); } static inline double GetMinEdgeBackgroundFactor(const EdgeInfo *edge) { double factor; factor=MagickMin(MagickMin(MagickMin(edge->left,edge->right),edge->top), edge->bottom); return(factor); } MagickExport RectangleInfo GetImageBoundingBox(const Image *image, ExceptionInfo *exception) { CacheView *edge_view; const char *artifact; double background_factor, percent_background; EdgeInfo edge, vertex; Image *edge_image; RectangleInfo bounds; /* Get the image bounding box. */ assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); SetGeometry(image,&bounds); edge_image=CloneImage(image,0,0,MagickTrue,exception); if (edge_image == (Image *) NULL) return(bounds); (void) ParseAbsoluteGeometry("0x0+0+0",&edge_image->page); memset(&vertex,0,sizeof(vertex)); edge_view=AcquireVirtualCacheView(edge_image,exception); edge.left=GetEdgeBackgroundFactor(edge_image,edge_view,WestGravity, 1,0,0,0,exception); edge.right=GetEdgeBackgroundFactor(edge_image,edge_view,EastGravity, 1,0,0,0,exception); edge.top=GetEdgeBackgroundFactor(edge_image,edge_view,NorthGravity, 0,1,0,0,exception); edge.bottom=GetEdgeBackgroundFactor(edge_image,edge_view,SouthGravity, 0,1,0,0,exception); percent_background=1.0; artifact=GetImageArtifact(edge_image,"trim:percent-background"); if (artifact != (const char *) NULL) percent_background=StringToDouble(artifact,(char **) NULL)/100.0; percent_background=MagickMin(MagickMax(1.0-percent_background,MagickEpsilon), 1.0); background_factor=GetMinEdgeBackgroundFactor(&edge); for ( ; background_factor < percent_background; background_factor=GetMinEdgeBackgroundFactor(&edge)) { if ((bounds.width == 0) || (bounds.height == 0)) break; if (fabs(edge.left-background_factor) < MagickEpsilon) { /* Trim left edge. */ vertex.left++; bounds.width--; edge.left=GetEdgeBackgroundFactor(edge_image,edge_view, NorthWestGravity,1,bounds.height,(ssize_t) vertex.left,(ssize_t) vertex.top,exception); edge.top=GetEdgeBackgroundFactor(edge_image,edge_view, NorthWestGravity,bounds.width,1,(ssize_t) vertex.left,(ssize_t) vertex.top,exception); edge.bottom=GetEdgeBackgroundFactor(edge_image,edge_view, SouthWestGravity,bounds.width,1,(ssize_t) vertex.left,(ssize_t) vertex.bottom,exception); continue; } if (fabs(edge.right-background_factor) < MagickEpsilon) { /* Trim right edge. */ vertex.right++; bounds.width--; edge.right=GetEdgeBackgroundFactor(edge_image,edge_view, NorthEastGravity,1,bounds.height,(ssize_t) vertex.right,(ssize_t) vertex.top,exception); edge.top=GetEdgeBackgroundFactor(edge_image,edge_view, NorthWestGravity,bounds.width,1,(ssize_t) vertex.left,(ssize_t) vertex.top,exception); edge.bottom=GetEdgeBackgroundFactor(edge_image,edge_view, SouthWestGravity,bounds.width,1,(ssize_t) vertex.left,(ssize_t) vertex.bottom,exception); continue; } if (fabs(edge.top-background_factor) < MagickEpsilon) { /* Trim top edge. */ vertex.top++; bounds.height--; edge.left=GetEdgeBackgroundFactor(edge_image,edge_view, NorthWestGravity,1,bounds.height,(ssize_t) vertex.left,(ssize_t) vertex.top,exception); edge.right=GetEdgeBackgroundFactor(edge_image,edge_view, NorthEastGravity,1,bounds.height,(ssize_t) vertex.right,(ssize_t) vertex.top,exception); edge.top=GetEdgeBackgroundFactor(edge_image,edge_view, NorthWestGravity,bounds.width,1,(ssize_t) vertex.left,(ssize_t) vertex.top,exception); continue; } if (fabs(edge.bottom-background_factor) < MagickEpsilon) { /* Trim bottom edge. */ vertex.bottom++; bounds.height--; edge.left=GetEdgeBackgroundFactor(edge_image,edge_view, NorthWestGravity,1,bounds.height,(ssize_t) vertex.left,(ssize_t) vertex.top,exception); edge.right=GetEdgeBackgroundFactor(edge_image,edge_view, NorthEastGravity,1,bounds.height,(ssize_t) vertex.right,(ssize_t) vertex.top,exception); edge.bottom=GetEdgeBackgroundFactor(edge_image,edge_view, SouthWestGravity,bounds.width,1,(ssize_t) vertex.left,(ssize_t) vertex.bottom,exception); continue; } } edge_view=DestroyCacheView(edge_view); edge_image=DestroyImage(edge_image); bounds.x=(ssize_t) vertex.left; bounds.y=(ssize_t) vertex.top; if ((bounds.width == 0) || (bounds.height == 0)) (void) ThrowMagickException(exception,GetMagickModule(),OptionWarning, "GeometryDoesNotContainImage","`%s'",image->filename); return(bounds); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % G e t I m a g e D e p t h % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % GetImageDepth() returns the depth of a particular image channel. % % The format of the GetImageDepth method is: % % size_t GetImageDepth(const Image *image,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o exception: return any errors or warnings in this structure. % */ MagickExport size_t GetImageDepth(const Image *image,ExceptionInfo *exception) { CacheView *image_view; MagickBooleanType status; register ssize_t i; size_t *current_depth, depth, number_threads; ssize_t y; /* Compute image depth. */ assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); number_threads=(size_t) GetMagickResourceLimit(ThreadResource); current_depth=(size_t *) AcquireQuantumMemory(number_threads, sizeof(*current_depth)); if (current_depth == (size_t *) NULL) ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed"); status=MagickTrue; for (i=0; i < (ssize_t) number_threads; i++) current_depth[i]=1; if ((image->storage_class == PseudoClass) && (image->alpha_trait == UndefinedPixelTrait)) { for (i=0; i < (ssize_t) image->colors; i++) { const int id = GetOpenMPThreadId(); while (current_depth[id] < MAGICKCORE_QUANTUM_DEPTH) { MagickBooleanType atDepth; QuantumAny range; atDepth=MagickTrue; range=GetQuantumRange(current_depth[id]); if ((GetPixelRedTraits(image) & UpdatePixelTrait) != 0) if (IsPixelAtDepth(ClampToQuantum(image->colormap[i].red),range) == MagickFalse) atDepth=MagickFalse; if ((atDepth != MagickFalse) && (GetPixelGreenTraits(image) & UpdatePixelTrait) != 0) if (IsPixelAtDepth(ClampToQuantum(image->colormap[i].green),range) == MagickFalse) atDepth=MagickFalse; if ((atDepth != MagickFalse) && (GetPixelBlueTraits(image) & UpdatePixelTrait) != 0) if (IsPixelAtDepth(ClampToQuantum(image->colormap[i].blue),range) == MagickFalse) atDepth=MagickFalse; if ((atDepth != MagickFalse)) break; current_depth[id]++; } } depth=current_depth[0]; for (i=1; i < (ssize_t) number_threads; i++) if (depth < current_depth[i]) depth=current_depth[i]; current_depth=(size_t *) RelinquishMagickMemory(current_depth); return(depth); } image_view=AcquireVirtualCacheView(image,exception); #if !defined(MAGICKCORE_HDRI_SUPPORT) if ((1UL*QuantumRange) <= MaxMap) { size_t *depth_map; /* Scale pixels to desired (optimized with depth map). */ depth_map=(size_t *) AcquireQuantumMemory(MaxMap+1,sizeof(*depth_map)); if (depth_map == (size_t *) NULL) ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed"); for (i=0; i <= (ssize_t) MaxMap; i++) { unsigned int depth; for (depth=1; depth < MAGICKCORE_QUANTUM_DEPTH; depth++) { Quantum pixel; QuantumAny range; range=GetQuantumRange(depth); pixel=(Quantum) i; if (pixel == ScaleAnyToQuantum(ScaleQuantumToAny(pixel,range),range)) break; } depth_map[i]=depth; } #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(status) \ magick_number_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { const int id = GetOpenMPThreadId(); register const Quantum *magick_restrict p; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) continue; for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t i; for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel = GetPixelChannelChannel(image,i); PixelTrait traits = GetPixelChannelTraits(image,channel); if ((traits & UpdatePixelTrait) == 0) continue; if (depth_map[ScaleQuantumToMap(p[i])] > current_depth[id]) current_depth[id]=depth_map[ScaleQuantumToMap(p[i])]; } p+=GetPixelChannels(image); } if (current_depth[id] == MAGICKCORE_QUANTUM_DEPTH) status=MagickFalse; } image_view=DestroyCacheView(image_view); depth=current_depth[0]; for (i=1; i < (ssize_t) number_threads; i++) if (depth < current_depth[i]) depth=current_depth[i]; depth_map=(size_t *) RelinquishMagickMemory(depth_map); current_depth=(size_t *) RelinquishMagickMemory(current_depth); return(depth); } #endif /* Compute pixel depth. */ #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(status) \ magick_number_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { const int id = GetOpenMPThreadId(); register const Quantum *magick_restrict p; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) continue; for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t i; for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel; PixelTrait traits; channel=GetPixelChannelChannel(image,i); traits=GetPixelChannelTraits(image,channel); if ((traits & UpdatePixelTrait) == 0) continue; while (current_depth[id] < MAGICKCORE_QUANTUM_DEPTH) { QuantumAny range; range=GetQuantumRange(current_depth[id]); if (p[i] == ScaleAnyToQuantum(ScaleQuantumToAny(p[i],range),range)) break; current_depth[id]++; } } p+=GetPixelChannels(image); } if (current_depth[id] == MAGICKCORE_QUANTUM_DEPTH) status=MagickFalse; } image_view=DestroyCacheView(image_view); depth=current_depth[0]; for (i=1; i < (ssize_t) number_threads; i++) if (depth < current_depth[i]) depth=current_depth[i]; current_depth=(size_t *) RelinquishMagickMemory(current_depth); return(depth); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % G e t I m a g e Q u a n t u m D e p t h % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % GetImageQuantumDepth() returns the depth of the image rounded to a legal % quantum depth: 8, 16, or 32. % % The format of the GetImageQuantumDepth method is: % % size_t GetImageQuantumDepth(const Image *image, % const MagickBooleanType constrain) % % A description of each parameter follows: % % o image: the image. % % o constrain: A value other than MagickFalse, constrains the depth to % a maximum of MAGICKCORE_QUANTUM_DEPTH. % */ MagickExport size_t GetImageQuantumDepth(const Image *image, const MagickBooleanType constrain) { size_t depth; depth=image->depth; if (depth <= 8) depth=8; else if (depth <= 16) depth=16; else if (depth <= 32) depth=32; else if (depth <= 64) depth=64; if (constrain != MagickFalse) depth=(size_t) MagickMin((double) depth,(double) MAGICKCORE_QUANTUM_DEPTH); return(depth); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % G e t I m a g e T y p e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % GetImageType() returns the type of image: % % Bilevel Grayscale GrayscaleMatte % Palette PaletteMatte TrueColor % TrueColorMatte ColorSeparation ColorSeparationMatte % % The format of the GetImageType method is: % % ImageType GetImageType(const Image *image) % % A description of each parameter follows: % % o image: the image. % */ MagickExport ImageType GetImageType(const Image *image) { assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->colorspace == CMYKColorspace) { if (image->alpha_trait == UndefinedPixelTrait) return(ColorSeparationType); return(ColorSeparationAlphaType); } if (IsImageMonochrome(image) != MagickFalse) return(BilevelType); if (IsImageGray(image) != MagickFalse) { if (image->alpha_trait != UndefinedPixelTrait) return(GrayscaleAlphaType); return(GrayscaleType); } if (IsPaletteImage(image) != MagickFalse) { if (image->alpha_trait != UndefinedPixelTrait) return(PaletteAlphaType); return(PaletteType); } if (image->alpha_trait != UndefinedPixelTrait) return(TrueColorAlphaType); return(TrueColorType); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % I d e n t i f y I m a g e G r a y % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % IdentifyImageGray() returns grayscale if all the pixels in the image have % the same red, green, and blue intensities, and bi-level is the intensity is % either 0 or QuantumRange. Otherwise undefined is returned. % % The format of the IdentifyImageGray method is: % % ImageType IdentifyImageGray(const Image *image,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o exception: return any errors or warnings in this structure. % */ MagickExport ImageType IdentifyImageGray(const Image *image, ExceptionInfo *exception) { CacheView *image_view; ImageType type; register const Quantum *p; register ssize_t x; ssize_t y; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); if ((image->type == BilevelType) || (image->type == GrayscaleType) || (image->type == GrayscaleAlphaType)) return(image->type); if (IssRGBCompatibleColorspace(image->colorspace) == MagickFalse) return(UndefinedType); type=BilevelType; image_view=AcquireVirtualCacheView(image,exception); for (y=0; y < (ssize_t) image->rows; y++) { p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { if (IsPixelGray(image,p) == MagickFalse) { type=UndefinedType; break; } if ((type == BilevelType) && (IsPixelMonochrome(image,p) == MagickFalse)) type=GrayscaleType; p+=GetPixelChannels(image); } if (type == UndefinedType) break; } image_view=DestroyCacheView(image_view); if ((type == GrayscaleType) && (image->alpha_trait != UndefinedPixelTrait)) type=GrayscaleAlphaType; return(type); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % I d e n t i f y I m a g e M o n o c h r o m e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % IdentifyImageMonochrome() returns MagickTrue if all the pixels in the image % have the same red, green, and blue intensities and the intensity is either % 0 or QuantumRange. % % The format of the IdentifyImageMonochrome method is: % % MagickBooleanType IdentifyImageMonochrome(const Image *image, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType IdentifyImageMonochrome(const Image *image, ExceptionInfo *exception) { CacheView *image_view; MagickBooleanType bilevel; register ssize_t x; register const Quantum *p; ssize_t y; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); if (image->type == BilevelType) return(MagickTrue); if (IssRGBCompatibleColorspace(image->colorspace) == MagickFalse) return(MagickFalse); bilevel=MagickTrue; image_view=AcquireVirtualCacheView(image,exception); for (y=0; y < (ssize_t) image->rows; y++) { p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { if (IsPixelMonochrome(image,p) == MagickFalse) { bilevel=MagickFalse; break; } p+=GetPixelChannels(image); } if (bilevel == MagickFalse) break; } image_view=DestroyCacheView(image_view); return(bilevel); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % I d e n t i f y I m a g e T y p e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % IdentifyImageType() returns the potential type of image: % % Bilevel Grayscale GrayscaleMatte % Palette PaletteMatte TrueColor % TrueColorMatte ColorSeparation ColorSeparationMatte % % To ensure the image type matches its potential, use SetImageType(): % % (void) SetImageType(image,IdentifyImageType(image,exception),exception); % % The format of the IdentifyImageType method is: % % ImageType IdentifyImageType(const Image *image,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o exception: return any errors or warnings in this structure. % */ MagickExport ImageType IdentifyImageType(const Image *image, ExceptionInfo *exception) { assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); if (image->colorspace == CMYKColorspace) { if (image->alpha_trait == UndefinedPixelTrait) return(ColorSeparationType); return(ColorSeparationAlphaType); } if (IdentifyImageMonochrome(image,exception) != MagickFalse) return(BilevelType); if (IdentifyImageGray(image,exception) != UndefinedType) { if (image->alpha_trait != UndefinedPixelTrait) return(GrayscaleAlphaType); return(GrayscaleType); } if (IdentifyPaletteImage(image,exception) != MagickFalse) { if (image->alpha_trait != UndefinedPixelTrait) return(PaletteAlphaType); return(PaletteType); } if (image->alpha_trait != UndefinedPixelTrait) return(TrueColorAlphaType); return(TrueColorType); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % I s I m a g e G r a y % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % IsImageGray() returns MagickTrue if the type of the image is grayscale or % bi-level. % % The format of the IsImageGray method is: % % MagickBooleanType IsImageGray(const Image *image) % % A description of each parameter follows: % % o image: the image. % */ MagickExport MagickBooleanType IsImageGray(const Image *image) { assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if ((image->type == BilevelType) || (image->type == GrayscaleType) || (image->type == GrayscaleAlphaType)) return(MagickTrue); return(MagickFalse); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % I s I m a g e M o n o c h r o m e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % IsImageMonochrome() returns MagickTrue if type of the image is bi-level. % % The format of the IsImageMonochrome method is: % % MagickBooleanType IsImageMonochrome(const Image *image) % % A description of each parameter follows: % % o image: the image. % */ MagickExport MagickBooleanType IsImageMonochrome(const Image *image) { assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->type == BilevelType) return(MagickTrue); return(MagickFalse); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % I s I m a g e O p a q u e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % IsImageOpaque() returns MagickTrue if none of the pixels in the image have % an alpha value other than OpaqueAlpha (QuantumRange). % % Will return true immediatally is alpha channel is not available. % % The format of the IsImageOpaque method is: % % MagickBooleanType IsImageOpaque(const Image *image, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType IsImageOpaque(const Image *image, ExceptionInfo *exception) { CacheView *image_view; register const Quantum *p; register ssize_t x; ssize_t y; /* Determine if image is opaque. */ assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); if (image->alpha_trait == UndefinedPixelTrait) return(MagickTrue); image_view=AcquireVirtualCacheView(image,exception); for (y=0; y < (ssize_t) image->rows; y++) { p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { if (GetPixelAlpha(image,p) != OpaqueAlpha) break; p+=GetPixelChannels(image); } if (x < (ssize_t) image->columns) break; } image_view=DestroyCacheView(image_view); return(y < (ssize_t) image->rows ? MagickFalse : MagickTrue); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S e t I m a g e D e p t h % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % SetImageDepth() sets the depth of the image. % % The format of the SetImageDepth method is: % % MagickBooleanType SetImageDepth(Image *image,const size_t depth, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o channel: the channel. % % o depth: the image depth. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType SetImageDepth(Image *image, const size_t depth,ExceptionInfo *exception) { CacheView *image_view; MagickBooleanType status; QuantumAny range; ssize_t y; assert(image != (Image *) NULL); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"..."); assert(image->signature == MagickCoreSignature); if (depth >= MAGICKCORE_QUANTUM_DEPTH) { image->depth=depth; return(MagickTrue); } range=GetQuantumRange(depth); if (image->storage_class == PseudoClass) { register ssize_t i; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(status) \ magick_number_threads(image,image,image->colors,1) #endif for (i=0; i < (ssize_t) image->colors; i++) { if ((GetPixelRedTraits(image) & UpdatePixelTrait) != 0) image->colormap[i].red=(double) ScaleAnyToQuantum(ScaleQuantumToAny( ClampPixel(image->colormap[i].red),range),range); if ((GetPixelGreenTraits(image) & UpdatePixelTrait) != 0) image->colormap[i].green=(double) ScaleAnyToQuantum(ScaleQuantumToAny( ClampPixel(image->colormap[i].green),range),range); if ((GetPixelBlueTraits(image) & UpdatePixelTrait) != 0) image->colormap[i].blue=(double) ScaleAnyToQuantum(ScaleQuantumToAny( ClampPixel(image->colormap[i].blue),range),range); if ((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0) image->colormap[i].alpha=(double) ScaleAnyToQuantum(ScaleQuantumToAny( ClampPixel(image->colormap[i].alpha),range),range); } } status=MagickTrue; image_view=AcquireAuthenticCacheView(image,exception); #if !defined(MAGICKCORE_HDRI_SUPPORT) if ((1UL*QuantumRange) <= MaxMap) { Quantum *depth_map; register ssize_t i; /* Scale pixels to desired (optimized with depth map). */ depth_map=(Quantum *) AcquireQuantumMemory(MaxMap+1,sizeof(*depth_map)); if (depth_map == (Quantum *) NULL) ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed"); for (i=0; i <= (ssize_t) MaxMap; i++) depth_map[i]=ScaleAnyToQuantum(ScaleQuantumToAny((Quantum) i,range), range); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(status) \ magick_number_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register ssize_t x; register Quantum *magick_restrict q; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t i; for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel; PixelTrait traits; channel=GetPixelChannelChannel(image,i); traits=GetPixelChannelTraits(image,channel); if ((traits & UpdatePixelTrait) == 0) continue; q[i]=depth_map[ScaleQuantumToMap(q[i])]; } q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) { status=MagickFalse; continue; } } image_view=DestroyCacheView(image_view); depth_map=(Quantum *) RelinquishMagickMemory(depth_map); if (status != MagickFalse) image->depth=depth; return(status); } #endif /* Scale pixels to desired depth. */ #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(status) \ magick_number_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register ssize_t x; register Quantum *magick_restrict q; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t i; for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel; PixelTrait traits; channel=GetPixelChannelChannel(image,i); traits=GetPixelChannelTraits(image,channel); if ((traits & UpdatePixelTrait) == 0) continue; q[i]=ScaleAnyToQuantum(ScaleQuantumToAny(ClampPixel((MagickRealType) q[i]),range),range); } q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) { status=MagickFalse; continue; } } image_view=DestroyCacheView(image_view); if (status != MagickFalse) image->depth=depth; return(status); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S e t I m a g e T y p e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % SetImageType() sets the type of image. Choose from these types: % % Bilevel Grayscale GrayscaleMatte % Palette PaletteMatte TrueColor % TrueColorMatte ColorSeparation ColorSeparationMatte % OptimizeType % % The format of the SetImageType method is: % % MagickBooleanType SetImageType(Image *image,const ImageType type, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o type: Image type. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType SetImageType(Image *image,const ImageType type, ExceptionInfo *exception) { const char *artifact; ImageInfo *image_info; MagickBooleanType status; QuantizeInfo *quantize_info; assert(image != (Image *) NULL); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"..."); assert(image->signature == MagickCoreSignature); status=MagickTrue; image_info=AcquireImageInfo(); image_info->dither=image->dither; artifact=GetImageArtifact(image,"dither"); if (artifact != (const char *) NULL) (void) SetImageOption(image_info,"dither",artifact); switch (type) { case BilevelType: { status=TransformImageColorspace(image,GRAYColorspace,exception); (void) NormalizeImage(image,exception); quantize_info=AcquireQuantizeInfo(image_info); quantize_info->number_colors=2; quantize_info->colorspace=GRAYColorspace; status=QuantizeImage(quantize_info,image,exception); quantize_info=DestroyQuantizeInfo(quantize_info); image->alpha_trait=UndefinedPixelTrait; break; } case GrayscaleType: { status=TransformImageColorspace(image,GRAYColorspace,exception); image->alpha_trait=UndefinedPixelTrait; break; } case GrayscaleAlphaType: { status=TransformImageColorspace(image,GRAYColorspace,exception); if (image->alpha_trait == UndefinedPixelTrait) (void) SetImageAlphaChannel(image,OpaqueAlphaChannel,exception); break; } case PaletteType: { status=TransformImageColorspace(image,sRGBColorspace,exception); if ((image->storage_class == DirectClass) || (image->colors > 256)) { quantize_info=AcquireQuantizeInfo(image_info); quantize_info->number_colors=256; status=QuantizeImage(quantize_info,image,exception); quantize_info=DestroyQuantizeInfo(quantize_info); } image->alpha_trait=UndefinedPixelTrait; break; } case PaletteBilevelAlphaType: { ChannelType channel_mask; status=TransformImageColorspace(image,sRGBColorspace,exception); if (image->alpha_trait == UndefinedPixelTrait) (void) SetImageAlphaChannel(image,OpaqueAlphaChannel,exception); channel_mask=SetImageChannelMask(image,AlphaChannel); (void) BilevelImage(image,(double) QuantumRange/2.0,exception); (void) SetImageChannelMask(image,channel_mask); quantize_info=AcquireQuantizeInfo(image_info); status=QuantizeImage(quantize_info,image,exception); quantize_info=DestroyQuantizeInfo(quantize_info); break; } case PaletteAlphaType: { status=TransformImageColorspace(image,sRGBColorspace,exception); if (image->alpha_trait == UndefinedPixelTrait) (void) SetImageAlphaChannel(image,OpaqueAlphaChannel,exception); quantize_info=AcquireQuantizeInfo(image_info); quantize_info->colorspace=TransparentColorspace; status=QuantizeImage(quantize_info,image,exception); quantize_info=DestroyQuantizeInfo(quantize_info); break; } case TrueColorType: { status=TransformImageColorspace(image,sRGBColorspace,exception); if (image->storage_class != DirectClass) status=SetImageStorageClass(image,DirectClass,exception); image->alpha_trait=UndefinedPixelTrait; break; } case TrueColorAlphaType: { status=TransformImageColorspace(image,sRGBColorspace,exception); if (image->storage_class != DirectClass) status=SetImageStorageClass(image,DirectClass,exception); if (image->alpha_trait == UndefinedPixelTrait) (void) SetImageAlphaChannel(image,OpaqueAlphaChannel,exception); break; } case ColorSeparationType: { status=TransformImageColorspace(image,CMYKColorspace,exception); if (image->storage_class != DirectClass) status=SetImageStorageClass(image,DirectClass,exception); image->alpha_trait=UndefinedPixelTrait; break; } case ColorSeparationAlphaType: { status=TransformImageColorspace(image,CMYKColorspace,exception); if (image->storage_class != DirectClass) status=SetImageStorageClass(image,DirectClass,exception); if (image->alpha_trait == UndefinedPixelTrait) status=SetImageAlphaChannel(image,OpaqueAlphaChannel,exception); break; } case OptimizeType: case UndefinedType: break; } image_info=DestroyImageInfo(image_info); if (status == MagickFalse) return(status); image->type=type; return(MagickTrue); }