/* * s_sincosf.c - single precision sine and cosine functions * * Copyright (c) 2009-2018, Arm Limited. * SPDX-License-Identifier: MIT */ /* * Source: my own head, and Remez-generated polynomial approximations. */ #include #include #include #include "rredf.h" #include "math_private.h" #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ #ifndef COSINE #define FUNCNAME sinf #define SOFTFP_FUNCNAME __softfp_sinf #define DO_SIN (!(q & 1)) #define NEGATE_SIN ((q & 2)) #define NEGATE_COS ((q & 2)) #define TRIVIAL_RESULT(x) FLOAT_CHECKDENORM(x) #define ERR_INF MATHERR_SINF_INF #else #define FUNCNAME cosf #define SOFTFP_FUNCNAME __softfp_cosf #define DO_SIN (q & 1) #define NEGATE_SIN (!(q & 2)) #define NEGATE_COS ((q & 2)) #define TRIVIAL_RESULT(x) 1.0f #define ERR_INF MATHERR_COSF_INF #endif float FUNCNAME(float x) { int q; /* * Range-reduce x to the range [-pi/4,pi/4]. */ { /* * I enclose the call to __mathlib_rredf in braces so that * the address-taken-ness of qq does not propagate * throughout the rest of the function, for what that might * be worth. */ int qq; x = __mathlib_rredf(x, &qq); q = qq; } if (__builtin_expect(q < 0, 0)) { /* this signals tiny, inf, or NaN */ unsigned k = fai(x) << 1; if (k < 0xFF000000) /* tiny */ return TRIVIAL_RESULT(x); else if (k == 0xFF000000) /* inf */ return ERR_INF(x); else /* NaN */ return FLOAT_INFNAN(x); } /* * Depending on the quadrant we were in, we may have to compute * a sine-like function (f(0)=0) or a cosine-like one (f(0)=1), * and we may have to negate it. */ if (DO_SIN) { float x2 = x*x; /* * Coefficients generated by the command ./auxiliary/remez.jl --variable=x2 --suffix=f -- '0' 'atan(BigFloat(1))^2' 2 0 'x==0 ? -1/BigFloat(6) : (x->(sin(x)-x)/x^3)(sqrt(x))' 'sqrt(x^3)' */ x += x * (x2 * ( -1.666665066929417292436220415142244613956015227491999719404711781344783392564922e-01f+x2*(8.331978663157089651408875887703995477889496917296385733254577121461421466427772e-03f+x2*(-1.949563623766929906511886482584265500187314705496861877317774185883215997931494e-04f)) )); if (NEGATE_SIN) x = -x; return x; } else { float x2 = x*x; /* * Coefficients generated by the command ./auxiliary/remez.jl --variable=x2 --suffix=f -- '0' 'atan(BigFloat(1))^2' 2 0 'x==0 ? -1/BigFloat(6) : (x->(cos(x)-1)/x^2)(sqrt(x))' 'x' */ x = 1.0f + x2*( -4.999989478137016757327030935768632852012781143541026304540837816323349768666875e-01f+x2*(4.165629457842617238353362092016541041535652603456375154392942188742496860024377e-02f+x2*(-1.35978231111049428748566568960423202948250988565693107969571193763372093404347e-03f)) ); if (NEGATE_COS) x = -x; return x; } } #ifdef __cplusplus } /* end of extern "C" */ #endif /* __cplusplus */ /* end of sincosf.c */