/* * s_tanf.c - single precision tangent function * * Copyright (c) 2009-2018, Arm Limited. * SPDX-License-Identifier: MIT */ /* * Source: my own head, and Remez-generated polynomial approximations. */ #include #include "math_private.h" #include #include #include "rredf.h" #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ float tanf(float x) { int q; /* * Range-reduce x to the range [-pi/4,pi/4]. */ { /* * I enclose the call to __mathlib_rredf in braces so that * the address-taken-ness of qq does not propagate * throughout the rest of the function, for what that might * be worth. */ int qq; x = __mathlib_rredf(x, &qq); q = qq; } if (__builtin_expect(q < 0, 0)) { /* this signals tiny, inf, or NaN */ unsigned k = fai(x) << 1; if (k < 0xFF000000) /* tiny */ return FLOAT_CHECKDENORM(x); else if (k == 0xFF000000) /* inf */ return MATHERR_TANF_INF(x); else /* NaN */ return FLOAT_INFNAN(x); } /* * We use a direct polynomial approximation for tan(x) on * [-pi/4,pi/4], and then take the negative reciprocal of the * result if we're in an interval surrounding an odd rather than * even multiple of pi/2. * * Coefficients generated by the command ./auxiliary/remez.jl --variable=x2 --suffix=f -- '0' '(pi/BigFloat(4))^2' 5 0 'x==0 ? 1/BigFloat(3) : (tan(sqrt(x))-sqrt(x))/sqrt(x^3)' 'sqrt(x^3)' */ { float x2 = x*x; x += x * (x2 * ( 3.333294809182307633621540045249152105330074691488121206914336806061620616979305e-01f+x2*(1.334274588580033216191949445078951865160600494428914956688702429547258497367525e-01f+x2*(5.315177279765676178198868818834880279286012428084733419724267810723468887753723e-02f+x2*(2.520300881849204519070372772571624013984546591252791443673871814078418474596388e-02f+x2*(2.051177187082974766686645514206648277055233230110624602600687812103764075834307e-03f+x2*(9.943421494628597182458186353995299429948224864648292162238582752158235742046109e-03f))))) )); if (q & 1) x = -1.0f/x; return x; } } #ifdef __cplusplus } /* end of extern "C" */ #endif /* __cplusplus */ /* end of s_tanf.c */