class Metric(object): """Abstract base class for metrics.""" def __init__(self, description, units=None, higher_is_better=False): """ Initializes a Metric. @param description: Description of the metric, e.g., used as label on a dashboard chart @param units: Units of the metric, e.g. percent, seconds, MB. @param higher_is_better: Whether a higher value is considered better or not. """ self._description = description self._units = units self._higher_is_better = higher_is_better self._samples = [] @property def description(self): """Description of the metric.""" return self._description @property def units(self): """Units of the metric.""" return self._units @property def higher_is_better(self): """Whether a higher value is considered better or not.""" return self._higher_is_better @property def values(self): """Measured values of the metric.""" if len(self._samples) == 0: return self._samples return self._aggregate(self._samples) @values.setter def values(self, samples): self._samples = samples def _aggregate(self, samples): """ Subclasses can override this to aggregate the metric into a single sample. """ return samples def pre_collect(self): """ Hook called before metrics are being collected. """ pass def _store_sample(self, sample): self._samples.append(sample) def collect_metric(self): """ Collects one sample. Implementations should call self._store_sample() once if it's not an aggregate, i.e., it overrides self._aggregate(). """ pass @classmethod def from_metric(cls, other): """ Instantiate from an existing metric instance. """ metric = cls( description=other.description, units=other.units, higher_is_better=other.higher_is_better) metric.values = other.values return metric class PeakMetric(Metric): """ Metric that collects the peak of another metric. """ @property def description(self): return 'peak_' + super(PeakMetric, self).description def _aggregate(self, samples): return max(samples) class SumMetric(Metric): """ Metric that sums another metric. """ @property def description(self): return 'sum_' + super(SumMetric, self).description def _aggregate(self, samples): return sum(samples) class MemUsageMetric(Metric): """ Metric that collects memory usage in percent. Memory usage is collected in percent. Buffers and cached are calculated as free memory. """ def __init__(self, system_facade): super(MemUsageMetric, self).__init__('memory_usage', units='percent') self.system_facade = system_facade def collect_metric(self): total_memory = self.system_facade.get_mem_total() free_memory = self.system_facade.get_mem_free_plus_buffers_and_cached() used_memory = total_memory - free_memory usage_percent = (used_memory * 100) / total_memory self._store_sample(usage_percent) class CpuUsageMetric(Metric): """ Metric that collects cpu usage in percent. """ def __init__(self, system_facade): super(CpuUsageMetric, self).__init__('cpu_usage', units='percent') self.last_usage = None self.system_facade = system_facade def pre_collect(self): self.last_usage = self.system_facade.get_cpu_usage() def collect_metric(self): """ Collects CPU usage in percent. """ current_usage = self.system_facade.get_cpu_usage() # Compute the percent of active time since the last update to # current_usage. usage_percent = 100 * self.system_facade.compute_active_cpu_time( self.last_usage, current_usage) self._store_sample(usage_percent) self.last_usage = current_usage class AllocatedFileHandlesMetric(Metric): """ Metric that collects the number of allocated file handles. """ def __init__(self, system_facade): super(AllocatedFileHandlesMetric, self).__init__( 'allocated_file_handles', units='handles') self.system_facade = system_facade def collect_metric(self): self._store_sample(self.system_facade.get_num_allocated_file_handles()) class StorageWrittenMetric(Metric): """ Metric that collects amount of data written to persistent storage. """ def __init__(self, system_facade): super(StorageWrittenMetric, self).__init__( 'storage_written', units='kB') self.last_written_kb = None self.system_facade = system_facade def pre_collect(self): statistics = self.system_facade.get_storage_statistics() self.last_written_kb = statistics['written_kb'] def collect_metric(self): """ Collects total amount of data written to persistent storage in kB. """ statistics = self.system_facade.get_storage_statistics() written_kb = statistics['written_kb'] written_period = written_kb - self.last_written_kb self._store_sample(written_period) self.last_written_kb = written_kb class TemperatureMetric(Metric): """ Metric that collects the max of the temperatures measured on all sensors. """ def __init__(self, system_facade): super(TemperatureMetric, self).__init__('temperature', units='Celsius') self.system_facade = system_facade def collect_metric(self): self._store_sample(self.system_facade.get_current_temperature_max()) def create_default_metric_set(system_facade): """ Creates the default set of metrics. @param system_facade the system facade to initialize the metrics with. @return a list with Metric instances. """ cpu = CpuUsageMetric(system_facade) mem = MemUsageMetric(system_facade) file_handles = AllocatedFileHandlesMetric(system_facade) storage_written = StorageWrittenMetric(system_facade) temperature = TemperatureMetric(system_facade) peak_cpu = PeakMetric.from_metric(cpu) peak_mem = PeakMetric.from_metric(mem) peak_temperature = PeakMetric.from_metric(temperature) sum_storage_written = SumMetric.from_metric(storage_written) return [cpu, mem, file_handles, storage_written, temperature, peak_cpu, peak_mem, peak_temperature, sum_storage_written] class SystemMetricsCollector(object): """ Collects system metrics. """ def __init__(self, system_facade, metrics = None): """ Initialize with facade and metric classes. @param system_facade The system facade to use for querying the system, e.g. system_facade_native.SystemFacadeNative for client tests. @param metrics List of metric instances. If None, the default set will be created. """ self.metrics = (create_default_metric_set(system_facade) if metrics is None else metrics) def pre_collect(self): """ Calls pre hook of metrics. """ for metric in self.metrics: metric.pre_collect() def collect_snapshot(self): """ Collects one snapshot of metrics. """ for metric in self.metrics: metric.collect_metric() def write_metrics(self, writer_function): """ Writes the collected metrics using the specified writer function. @param writer_function: A function with the following signature: f(description, value, units, higher_is_better) """ for metric in self.metrics: writer_function( description=metric.description, value=metric.values, units=metric.units, higher_is_better=metric.higher_is_better)