/******************************************************************************* * Copyright 2016-2018 Intel Corporation * All Rights Reserved. * * If this software was obtained under the Intel Simplified Software License, * the following terms apply: * * The source code, information and material ("Material") contained herein is * owned by Intel Corporation or its suppliers or licensors, and title to such * Material remains with Intel Corporation or its suppliers or licensors. The * Material contains proprietary information of Intel or its suppliers and * licensors. The Material is protected by worldwide copyright laws and treaty * provisions. No part of the Material may be used, copied, reproduced, * modified, published, uploaded, posted, transmitted, distributed or disclosed * in any way without Intel's prior express written permission. No license under * any patent, copyright or other intellectual property rights in the Material * is granted to or conferred upon you, either expressly, by implication, * inducement, estoppel or otherwise. Any license under such intellectual * property rights must be express and approved by Intel in writing. * * Unless otherwise agreed by Intel in writing, you may not remove or alter this * notice or any other notice embedded in Materials by Intel or Intel's * suppliers or licensors in any way. * * * If this software was obtained under the Apache License, Version 2.0 (the * "License"), the following terms apply: * * You may not use this file except in compliance with the License. You may * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ /* // Intel(R) Integrated Performance Primitives. Cryptography Primitives. // GF(p^d) methods, if binomial generator // */ #include "owncp.h" #include "pcpgfpxmethod_binom_mulc.h" #include "pcpgfpxmethod_com.h" //tbcd: temporary excluded: #include /* // Multiplication in GF(p^2), if field polynomial: g(x) = x^2 + beta => binominal */ static BNU_CHUNK_T* cpGFpxMul_p2_binom(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, gsEngine* pGFEx) { gsEngine* pGroundGFE = GFP_PARENT(pGFEx); int groundElemLen = GFP_FELEN(pGroundGFE); mod_mul mulF = GFP_METHOD(pGroundGFE)->mul; mod_add addF = GFP_METHOD(pGroundGFE)->add; mod_sub subF = GFP_METHOD(pGroundGFE)->sub; const BNU_CHUNK_T* pA0 = pA; const BNU_CHUNK_T* pA1 = pA+groundElemLen; const BNU_CHUNK_T* pB0 = pB; const BNU_CHUNK_T* pB1 = pB+groundElemLen; BNU_CHUNK_T* pR0 = pR; BNU_CHUNK_T* pR1 = pR+groundElemLen; BNU_CHUNK_T* t0 = cpGFpGetPool(4, pGroundGFE); BNU_CHUNK_T* t1 = t0+groundElemLen; BNU_CHUNK_T* t2 = t1+groundElemLen; BNU_CHUNK_T* t3 = t2+groundElemLen; //tbcd: temporary excluded: assert(NULL!=t0); #if defined GS_DBG BNU_CHUNK_T* arg0 = cpGFpGetPool(1, pGroundGFE); BNU_CHUNK_T* arg1 = cpGFpGetPool(1, pGroundGFE); #endif #if defined GS_DBG cpGFpxGet(arg0, groundElemLen, pA0, pGroundGFE); cpGFpxGet(arg1, groundElemLen, pB0, pGroundGFE); #endif mulF(t0, pA0, pB0, pGroundGFE); /* t0 = a[0]*b[0] */ #if defined GS_DBG cpGFpxGet(arg0, groundElemLen, pA1, pGroundGFE); cpGFpxGet(arg1, groundElemLen, pB1, pGroundGFE); #endif mulF(t1, pA1, pB1, pGroundGFE); /* t1 = a[1]*b[1] */ addF(t2, pA0, pA1, pGroundGFE); /* t2 = a[0]+a[1] */ addF(t3, pB0, pB1, pGroundGFE); /* t3 = b[0]+b[1] */ #if defined GS_DBG cpGFpxGet(arg0, groundElemLen, t2, pGroundGFE); cpGFpxGet(arg1, groundElemLen, t3, pGroundGFE); #endif mulF(pR1, t2, t3, pGroundGFE); /* r[1] = (a[0]+a[1]) * (b[0]+b[1]) */ subF(pR1, pR1, t0, pGroundGFE); /* r[1] -= a[0]*b[0]) + a[1]*b[1] */ subF(pR1, pR1, t1, pGroundGFE); cpGFpxMul_G0(t1, t1, pGFEx); subF(pR0, t0, t1, pGroundGFE); #if defined GS_DBG cpGFpReleasePool(2, pGroundGFE); #endif cpGFpReleasePool(4, pGroundGFE); return pR; } /* // Squaring in GF(p^2), if field polynomial: g(x) = x^2 + beta => binominal */ static BNU_CHUNK_T* cpGFpxSqr_p2_binom(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFEx) { gsEngine* pGroundGFE = GFP_PARENT(pGFEx); int groundElemLen = GFP_FELEN(pGroundGFE); mod_mul mulF = GFP_METHOD(pGroundGFE)->mul; mod_sqr sqrF = GFP_METHOD(pGroundGFE)->sqr; mod_add addF = GFP_METHOD(pGroundGFE)->add; mod_sub subF = GFP_METHOD(pGroundGFE)->sub; const BNU_CHUNK_T* pA0 = pA; const BNU_CHUNK_T* pA1 = pA+groundElemLen; BNU_CHUNK_T* pR0 = pR; BNU_CHUNK_T* pR1 = pR+groundElemLen; BNU_CHUNK_T* t0 = cpGFpGetPool(3, pGroundGFE); BNU_CHUNK_T* t1 = t0+groundElemLen; BNU_CHUNK_T* u0 = t1+groundElemLen; //tbcd: temporary excluded: assert(NULL!=t0); #if defined GS_DBG BNU_CHUNK_T* arg0 = cpGFpGetPool(1, pGroundGFE); BNU_CHUNK_T* arg1 = cpGFpGetPool(1, pGroundGFE); #endif #if defined GS_DBG cpGFpxGet(arg0, groundElemLen, pA0, pGroundGFE); cpGFpxGet(arg1, groundElemLen, pA1, pGroundGFE); #endif mulF(u0, pA0, pA1, pGroundGFE); /* u0 = a[0]*a[1] */ sqrF(t0, pA0, pGroundGFE); /* t0 = a[0]*a[0] */ sqrF(t1, pA1, pGroundGFE); /* t1 = a[1]*a[1] */ cpGFpxMul_G0(t1, t1, pGFEx); subF(pR0, t0, t1, pGroundGFE); addF(pR1, u0, u0, pGroundGFE); /* r[1] = 2*a[0]*a[1] */ #if defined GS_DBG cpGFpReleasePool(2, pGroundGFE); #endif cpGFpReleasePool(3, pGroundGFE); return pR; } /* // return specific polynomi alarith methods // polynomial - deg 2 binomial */ static gsModMethod* gsPolyArith_binom2(void) { static gsModMethod m = { cpGFpxEncode_com, cpGFpxDecode_com, cpGFpxMul_p2_binom, cpGFpxSqr_p2_binom, NULL, cpGFpxAdd_com, cpGFpxSub_com, cpGFpxNeg_com, cpGFpxDiv2_com, cpGFpxMul2_com, cpGFpxMul3_com, //cpGFpxInv }; return &m; } /*F* // Name: ippsGFpxMethod_binom2 // // Purpose: Returns a reference to the implementation of arithmetic operations over GF(pd). // // Returns: pointer to a structure containing // an implementation of arithmetic operations over GF(pd) // g(x) = x^2 - a0, a0 from GF(p) // // *F*/ IPPFUN( const IppsGFpMethod*, ippsGFpxMethod_binom2, (void) ) { static IppsGFpMethod method = { cpID_Binom, 2, NULL, NULL }; method.arith = gsPolyArith_binom2(); return &method; }