/******************************************************************************* * Copyright 2016-2018 Intel Corporation * All Rights Reserved. * * If this software was obtained under the Intel Simplified Software License, * the following terms apply: * * The source code, information and material ("Material") contained herein is * owned by Intel Corporation or its suppliers or licensors, and title to such * Material remains with Intel Corporation or its suppliers or licensors. The * Material contains proprietary information of Intel or its suppliers and * licensors. The Material is protected by worldwide copyright laws and treaty * provisions. No part of the Material may be used, copied, reproduced, * modified, published, uploaded, posted, transmitted, distributed or disclosed * in any way without Intel's prior express written permission. No license under * any patent, copyright or other intellectual property rights in the Material * is granted to or conferred upon you, either expressly, by implication, * inducement, estoppel or otherwise. Any license under such intellectual * property rights must be express and approved by Intel in writing. * * Unless otherwise agreed by Intel in writing, you may not remove or alter this * notice or any other notice embedded in Materials by Intel or Intel's * suppliers or licensors in any way. * * * If this software was obtained under the Apache License, Version 2.0 (the * "License"), the following terms apply: * * You may not use this file except in compliance with the License. You may * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ /* // Intel(R) Integrated Performance Primitives. Cryptography Primitives. // GF(p^d) methods, if binomial generator // */ #include "owncp.h" #include "pcpgfpxstuff.h" #include "pcpgfpxmethod_com.h" #include "pcpgfpxmethod_binom_epid2.h" //tbcd: temporary excluded: #include /* // Intel(R) Enhanced Privacy ID (Intel(R) EPID) 2.0 specific. // // Intel(R) EPID 2.0 uses the following finite field hierarchy: // // 1) prime field GF(p), // p = 0xFFFFFFFFFFFCF0CD46E5F25EEE71A49F0CDC65FB12980A82D3292DDBAED33013 // // 2) 2-degree extension of GF(p): GF(p^2) == GF(p)[x]/g(x), g(x) = x^2 -beta, // beta =-1 mod p, so "beta" represents as {1} // // 3) 3-degree extension of GF(p^2) ~ GF(p^6): GF((p^2)^3) == GF(p)[v]/g(v), g(v) = v^3 -xi, // xi belongs GF(p^2), xi=x+2, so "xi" represents as {2,1} ---- "2" is low- and "1" is high-order coefficients // // 4) 2-degree extension of GF((p^2)^3) ~ GF(p^12): GF(((p^2)^3)^2) == GF(p)[w]/g(w), g(w) = w^2 -vi, // psi belongs GF((p^2)^3), vi=0*v^2 +1*v +0, so "vi" represents as {0,1,0}---- "0", '1" and "0" are low-, middle- and high-order coefficients // // See representations in t_gfpparam.cpp // */ /* // Multiplication case: mul(a, vi) over GF((p^2)^3), // where: // a, belongs to GF((p^2)^3) // xi belongs to GF((p^2)^3), vi={0,1,0} // // The case is important in GF(((p^2)^3)^2) arithmetic for Intel(R) EPID 2.0. // */ __INLINE BNU_CHUNK_T* cpFq6Mul_vi(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFEx) { gsEngine* pGroundGFE = GFP_PARENT(pGFEx); int termLen = GFP_FELEN(pGroundGFE); const BNU_CHUNK_T* pA0 = pA; const BNU_CHUNK_T* pA1 = pA+termLen; const BNU_CHUNK_T* pA2 = pA+termLen*2; BNU_CHUNK_T* pR0 = pR; BNU_CHUNK_T* pR1 = pR+termLen; BNU_CHUNK_T* pR2 = pR+termLen*2; BNU_CHUNK_T* t = cpGFpGetPool(1, pGroundGFE); //tbcd: temporary excluded: assert(NULL!=t); cpFq2Mul_xi(t, pA2, pGroundGFE); cpGFpElementCopy(pR2, pA1, termLen); cpGFpElementCopy(pR1, pA0, termLen); cpGFpElementCopy(pR0, t, termLen); cpGFpReleasePool(1, pGroundGFE); return pR; } /* // Intel(R) EPID 2.0 specific // ~~~~~~~~~~~~~~~ // // Multiplication over GF(p^2) // - field polynomial: g(x) = x^2 - beta => binominal with specific value of "beta" // - beta = p-1 // // Multiplication over GF(((p^2)^3)^2) ~ GF(p^12) // - field polynomial: g(w) = w^2 - vi => binominal with specific value of "vi" // - vi = 0*v^2 + 1*v + 0 - i.e vi={0,1,0} belongs to GF((p^2)^3) */ static BNU_CHUNK_T* cpGFpxMul_p2_binom_epid2(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, gsEngine* pGFEx) { gsEngine* pGroundGFE = GFP_PARENT(pGFEx); mod_mul mulF = GFP_METHOD(pGroundGFE)->mul; mod_add addF = GFP_METHOD(pGroundGFE)->add; mod_sub subF = GFP_METHOD(pGroundGFE)->sub; int groundElemLen = GFP_FELEN(pGroundGFE); const BNU_CHUNK_T* pA0 = pA; const BNU_CHUNK_T* pA1 = pA+groundElemLen; const BNU_CHUNK_T* pB0 = pB; const BNU_CHUNK_T* pB1 = pB+groundElemLen; BNU_CHUNK_T* pR0 = pR; BNU_CHUNK_T* pR1 = pR+groundElemLen; BNU_CHUNK_T* t0 = cpGFpGetPool(4, pGroundGFE); BNU_CHUNK_T* t1 = t0+groundElemLen; BNU_CHUNK_T* t2 = t1+groundElemLen; BNU_CHUNK_T* t3 = t2+groundElemLen; //tbcd: temporary excluded: assert(NULL!=t0); mulF(t0, pA0, pB0, pGroundGFE); /* t0 = a[0]*b[0] */ mulF(t1, pA1, pB1, pGroundGFE); /* t1 = a[1]*b[1] */ addF(t2, pA0, pA1, pGroundGFE); /* t2 = a[0]+a[1] */ addF(t3, pB0, pB1, pGroundGFE); /* t3 = b[0]+b[1] */ mulF(pR1, t2, t3, pGroundGFE); /* r[1] = (a[0]+a[1]) * (b[0]+b[1]) */ subF(pR1, pR1, t0, pGroundGFE); /* r[1] -= a[0]*b[0]) + a[1]*b[1] */ subF(pR1, pR1, t1, pGroundGFE); /* Intel(R) EPID 2.0 specific */ { int basicExtDegree = cpGFpBasicDegreeExtension(pGFEx); /* deal with GF(p^2) */ if(basicExtDegree==2) { subF(pR0, t0, t1, pGroundGFE); } /* deal with GF(p^6^2) */ else if(basicExtDegree==12) { cpFq6Mul_vi(t1, t1, pGroundGFE); addF(pR0, t0, t1, pGroundGFE); } /* deal with GF(p^x^2) - it's not Intel(R) EPID 2.0 case, just a case */ else { cpGFpxMul_G0(t1, t1, pGFEx); subF(pR0, t0, t1, pGroundGFE); } } cpGFpReleasePool(4, pGroundGFE); return pR; } /* // Intel(R) EPID 2.0 specific // ~~~~~~~~~~~~~~~ // // Squaring over GF(p^2) // - field polynomial: g(x) = x^2 - beta => binominal with specific value of "beta" // - beta = p-1 // // Squaring in GF(((p^2)^3)^2) ~ GF(p^12) // - field polynomial: g(w) = w^2 - vi => binominal with specific value of "vi" // - vi = 0*v^2 + 1*v + 0 - i.e vi={0,1,0} belongs to GF((p^2)^3) */ static BNU_CHUNK_T* cpGFpxSqr_p2_binom_epid2(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFEx) { gsEngine* pGroundGFE = GFP_PARENT(pGFEx); mod_mul mulF = GFP_METHOD(pGroundGFE)->mul; mod_sqr sqrF = GFP_METHOD(pGroundGFE)->sqr; mod_add addF = GFP_METHOD(pGroundGFE)->add; mod_sub subF = GFP_METHOD(pGroundGFE)->sub; int groundElemLen = GFP_FELEN(pGroundGFE); const BNU_CHUNK_T* pA0 = pA; const BNU_CHUNK_T* pA1 = pA+groundElemLen; BNU_CHUNK_T* pR0 = pR; BNU_CHUNK_T* pR1 = pR+groundElemLen; BNU_CHUNK_T* t0 = cpGFpGetPool(3, pGroundGFE); BNU_CHUNK_T* t1 = t0+groundElemLen; BNU_CHUNK_T* u0 = t1+groundElemLen; //tbcd: temporary excluded: assert(NULL!=t0); mulF(u0, pA0, pA1, pGroundGFE); /* u0 = a[0]*a[1] */ /* Intel(R) EPID 2.0 specific */ { int basicExtDegree = cpGFpBasicDegreeExtension(pGFEx); /* deal with GF(p^2) */ if(basicExtDegree==2) { addF(t0, pA0, pA1, pGroundGFE); subF(t1, pA0, pA1, pGroundGFE); mulF(pR0, t0, t1, pGroundGFE); addF(pR1, u0, u0, pGroundGFE); /* r[1] = 2*a[0]*a[1] */ } /* deal with GF(p^6^2) */ else if(basicExtDegree==12) { subF(t0, pA0, pA1, pGroundGFE); cpFq6Mul_vi(t1, pA1, pGroundGFE); subF(t1, pA0, t1, pGroundGFE); mulF(t0, t0, t1, pGroundGFE); addF(t0, t0, u0, pGroundGFE); cpFq6Mul_vi(t1, u0, pGroundGFE); addF(pR0, t0, t1, pGroundGFE); addF(pR1, u0, u0, pGroundGFE); } /* just a case */ else { sqrF(t0, pA0, pGroundGFE); /* t0 = a[0]*a[0] */ sqrF(t1, pA1, pGroundGFE); /* t1 = a[1]*a[1] */ cpGFpxMul_G0(t1, t1, pGFEx); subF(pR0, t0, t1, pGroundGFE); addF(pR1, u0, u0, pGroundGFE); /* r[1] = 2*a[0]*a[1] */ } } cpGFpReleasePool(3, pGroundGFE); return pR; } /* // return specific polynomi alarith methods // polynomial - deg 2 binomial (Intel(R) EPID 2.0) */ static gsModMethod* gsPolyArith_binom2_epid2(void) { static gsModMethod m = { cpGFpxEncode_com, cpGFpxDecode_com, cpGFpxMul_p2_binom_epid2, cpGFpxSqr_p2_binom_epid2, NULL, cpGFpxAdd_com, cpGFpxSub_com, cpGFpxNeg_com, cpGFpxDiv2_com, cpGFpxMul2_com, cpGFpxMul3_com, //cpGFpxInv }; return &m; } /*F* // Name: ippsGFpxMethod_binom2_epid2 // // Purpose: Returns a reference to the implementation of arithmetic operations over GF(pd). // // Returns: pointer to a structure containing // an implementation of arithmetic operations over GF(pd) // g(x) = x^2 - a0, a0 from GF(q), a0 = 1 // g(w) = w^2 - V0, v0 from GF((q^2)^3), V0 = 0*s^2 + v + 0 // // *F*/ IPPFUN( const IppsGFpMethod*, ippsGFpxMethod_binom2_epid2, (void) ) { static IppsGFpMethod method = { cpID_Binom2_epid20, 2, NULL, NULL }; method.arith = gsPolyArith_binom2_epid2(); return &method; }