/** * mount.c * * Copyright (c) 2013 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include "fsck.h" #include "xattr.h" #include #ifdef HAVE_LINUX_POSIX_ACL_H #include #endif #ifdef HAVE_SYS_ACL_H #include #endif #ifndef ACL_UNDEFINED_TAG #define ACL_UNDEFINED_TAG (0x00) #define ACL_USER_OBJ (0x01) #define ACL_USER (0x02) #define ACL_GROUP_OBJ (0x04) #define ACL_GROUP (0x08) #define ACL_MASK (0x10) #define ACL_OTHER (0x20) #endif u32 get_free_segments(struct f2fs_sb_info *sbi) { u32 i, free_segs = 0; for (i = 0; i < TOTAL_SEGS(sbi); i++) { struct seg_entry *se = get_seg_entry(sbi, i); if (se->valid_blocks == 0x0 && !IS_CUR_SEGNO(sbi, i)) free_segs++; } return free_segs; } void update_free_segments(struct f2fs_sb_info *sbi) { char *progress = "-*|*-"; static int i = 0; if (c.dbg_lv) return; MSG(0, "\r [ %c ] Free segments: 0x%x", progress[i % 5], get_free_segments(sbi)); fflush(stdout); i++; } #if defined(HAVE_LINUX_POSIX_ACL_H) || defined(HAVE_SYS_ACL_H) void print_acl(char *value, int size) { struct f2fs_acl_header *hdr = (struct f2fs_acl_header *)value; struct f2fs_acl_entry *entry = (struct f2fs_acl_entry *)(hdr + 1); const char *end = value + size; int i, count; if (hdr->a_version != cpu_to_le32(F2FS_ACL_VERSION)) { MSG(0, "Invalid ACL version [0x%x : 0x%x]\n", le32_to_cpu(hdr->a_version), F2FS_ACL_VERSION); return; } count = f2fs_acl_count(size); if (count <= 0) { MSG(0, "Invalid ACL value size %d\n", size); return; } for (i = 0; i < count; i++) { if ((char *)entry > end) { MSG(0, "Invalid ACL entries count %d\n", count); return; } switch (le16_to_cpu(entry->e_tag)) { case ACL_USER_OBJ: case ACL_GROUP_OBJ: case ACL_MASK: case ACL_OTHER: MSG(0, "tag:0x%x perm:0x%x\n", le16_to_cpu(entry->e_tag), le16_to_cpu(entry->e_perm)); entry = (struct f2fs_acl_entry *)((char *)entry + sizeof(struct f2fs_acl_entry_short)); break; case ACL_USER: MSG(0, "tag:0x%x perm:0x%x uid:%u\n", le16_to_cpu(entry->e_tag), le16_to_cpu(entry->e_perm), le32_to_cpu(entry->e_id)); entry = (struct f2fs_acl_entry *)((char *)entry + sizeof(struct f2fs_acl_entry)); break; case ACL_GROUP: MSG(0, "tag:0x%x perm:0x%x gid:%u\n", le16_to_cpu(entry->e_tag), le16_to_cpu(entry->e_perm), le32_to_cpu(entry->e_id)); entry = (struct f2fs_acl_entry *)((char *)entry + sizeof(struct f2fs_acl_entry)); break; default: MSG(0, "Unknown ACL tag 0x%x\n", le16_to_cpu(entry->e_tag)); return; } } } #else #define print_acl(value, size) do { \ int i; \ for (i = 0; i < size; i++) \ MSG(0, "%02X", value[i]); \ MSG(0, "\n"); \ } while (0) #endif void print_xattr_entry(struct f2fs_xattr_entry *ent) { char *value = (char *)(ent->e_name + le16_to_cpu(ent->e_name_len)); struct fscrypt_context *ctx; int i; MSG(0, "\nxattr: e_name_index:%d e_name:", ent->e_name_index); for (i = 0; i < le16_to_cpu(ent->e_name_len); i++) MSG(0, "%c", ent->e_name[i]); MSG(0, " e_name_len:%d e_value_size:%d e_value:\n", ent->e_name_len, le16_to_cpu(ent->e_value_size)); switch (ent->e_name_index) { case F2FS_XATTR_INDEX_POSIX_ACL_ACCESS: case F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT: print_acl(value, le16_to_cpu(ent->e_value_size)); break; case F2FS_XATTR_INDEX_USER: case F2FS_XATTR_INDEX_SECURITY: case F2FS_XATTR_INDEX_TRUSTED: case F2FS_XATTR_INDEX_LUSTRE: for (i = 0; i < le16_to_cpu(ent->e_value_size); i++) MSG(0, "%02X", value[i]); MSG(0, "\n"); break; case F2FS_XATTR_INDEX_ENCRYPTION: ctx = (struct fscrypt_context *)value; MSG(0, "format: %d\n", ctx->format); MSG(0, "contents_encryption_mode: 0x%x\n", ctx->contents_encryption_mode); MSG(0, "filenames_encryption_mode: 0x%x\n", ctx->filenames_encryption_mode); MSG(0, "flags: 0x%x\n", ctx->flags); MSG(0, "master_key_descriptor: "); for (i = 0; i < FS_KEY_DESCRIPTOR_SIZE; i++) MSG(0, "%02X", ctx->master_key_descriptor[i]); MSG(0, "\nnonce: "); for (i = 0; i < FS_KEY_DERIVATION_NONCE_SIZE; i++) MSG(0, "%02X", ctx->nonce[i]); MSG(0, "\n"); break; default: break; } } void print_inode_info(struct f2fs_sb_info *sbi, struct f2fs_node *node, int name) { struct f2fs_inode *inode = &node->i; void *xattr_addr; struct f2fs_xattr_entry *ent; unsigned char en[F2FS_NAME_LEN + 1]; unsigned int i = 0; u32 namelen = le32_to_cpu(inode->i_namelen); int enc_name = file_enc_name(inode); int ofs = __get_extra_isize(inode); namelen = convert_encrypted_name(inode->i_name, namelen, en, enc_name); en[namelen] = '\0'; if (name && namelen) { inode->i_name[namelen] = '\0'; MSG(0, " - File name : %s%s\n", en, enc_name ? " " : ""); setlocale(LC_ALL, ""); MSG(0, " - File size : %'llu (bytes)\n", le64_to_cpu(inode->i_size)); return; } DISP_u32(inode, i_mode); DISP_u32(inode, i_advise); DISP_u32(inode, i_uid); DISP_u32(inode, i_gid); DISP_u32(inode, i_links); DISP_u64(inode, i_size); DISP_u64(inode, i_blocks); DISP_u64(inode, i_atime); DISP_u32(inode, i_atime_nsec); DISP_u64(inode, i_ctime); DISP_u32(inode, i_ctime_nsec); DISP_u64(inode, i_mtime); DISP_u32(inode, i_mtime_nsec); DISP_u32(inode, i_generation); DISP_u32(inode, i_current_depth); DISP_u32(inode, i_xattr_nid); DISP_u32(inode, i_flags); DISP_u32(inode, i_inline); DISP_u32(inode, i_pino); DISP_u32(inode, i_dir_level); if (namelen) { DISP_u32(inode, i_namelen); printf("%-30s\t\t[%s]\n", "i_name", en); } printf("i_ext: fofs:%x blkaddr:%x len:%x\n", le32_to_cpu(inode->i_ext.fofs), le32_to_cpu(inode->i_ext.blk_addr), le32_to_cpu(inode->i_ext.len)); if (c.feature & cpu_to_le32(F2FS_FEATURE_EXTRA_ATTR)) { DISP_u16(inode, i_extra_isize); if (c.feature & cpu_to_le32(F2FS_FEATURE_FLEXIBLE_INLINE_XATTR)) DISP_u16(inode, i_inline_xattr_size); if (c.feature & cpu_to_le32(F2FS_FEATURE_PRJQUOTA)) DISP_u32(inode, i_projid); if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM)) DISP_u32(inode, i_inode_checksum); if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CRTIME)) { DISP_u64(inode, i_crtime); DISP_u32(inode, i_crtime_nsec); } } DISP_u32(inode, i_addr[ofs]); /* Pointers to data blocks */ DISP_u32(inode, i_addr[ofs + 1]); /* Pointers to data blocks */ DISP_u32(inode, i_addr[ofs + 2]); /* Pointers to data blocks */ DISP_u32(inode, i_addr[ofs + 3]); /* Pointers to data blocks */ for (i = ofs + 3; i < ADDRS_PER_INODE(inode); i++) { if (inode->i_addr[i] == 0x0) break; printf("i_addr[0x%x] points data block\t\t[0x%4x]\n", i, le32_to_cpu(inode->i_addr[i])); } DISP_u32(inode, i_nid[0]); /* direct */ DISP_u32(inode, i_nid[1]); /* direct */ DISP_u32(inode, i_nid[2]); /* indirect */ DISP_u32(inode, i_nid[3]); /* indirect */ DISP_u32(inode, i_nid[4]); /* double indirect */ xattr_addr = read_all_xattrs(sbi, node); list_for_each_xattr(ent, xattr_addr) { print_xattr_entry(ent); } free(xattr_addr); printf("\n"); } void print_node_info(struct f2fs_sb_info *sbi, struct f2fs_node *node_block, int verbose) { nid_t ino = le32_to_cpu(node_block->footer.ino); nid_t nid = le32_to_cpu(node_block->footer.nid); /* Is this inode? */ if (ino == nid) { DBG(verbose, "Node ID [0x%x:%u] is inode\n", nid, nid); print_inode_info(sbi, node_block, verbose); } else { int i; u32 *dump_blk = (u32 *)node_block; DBG(verbose, "Node ID [0x%x:%u] is direct node or indirect node.\n", nid, nid); for (i = 0; i <= 10; i++) MSG(verbose, "[%d]\t\t\t[0x%8x : %d]\n", i, dump_blk[i], dump_blk[i]); } } static void DISP_label(u_int16_t *name) { char buffer[MAX_VOLUME_NAME]; utf16_to_utf8(buffer, name, MAX_VOLUME_NAME, MAX_VOLUME_NAME); printf("%-30s" "\t\t[%s]\n", "volum_name", buffer); } void print_raw_sb_info(struct f2fs_super_block *sb) { if (!c.dbg_lv) return; printf("\n"); printf("+--------------------------------------------------------+\n"); printf("| Super block |\n"); printf("+--------------------------------------------------------+\n"); DISP_u32(sb, magic); DISP_u32(sb, major_ver); DISP_label(sb->volume_name); DISP_u32(sb, minor_ver); DISP_u32(sb, log_sectorsize); DISP_u32(sb, log_sectors_per_block); DISP_u32(sb, log_blocksize); DISP_u32(sb, log_blocks_per_seg); DISP_u32(sb, segs_per_sec); DISP_u32(sb, secs_per_zone); DISP_u32(sb, checksum_offset); DISP_u64(sb, block_count); DISP_u32(sb, section_count); DISP_u32(sb, segment_count); DISP_u32(sb, segment_count_ckpt); DISP_u32(sb, segment_count_sit); DISP_u32(sb, segment_count_nat); DISP_u32(sb, segment_count_ssa); DISP_u32(sb, segment_count_main); DISP_u32(sb, segment0_blkaddr); DISP_u32(sb, cp_blkaddr); DISP_u32(sb, sit_blkaddr); DISP_u32(sb, nat_blkaddr); DISP_u32(sb, ssa_blkaddr); DISP_u32(sb, main_blkaddr); DISP_u32(sb, root_ino); DISP_u32(sb, node_ino); DISP_u32(sb, meta_ino); DISP_u32(sb, cp_payload); DISP_u32(sb, crc); DISP("%-.256s", sb, version); printf("\n"); } void print_ckpt_info(struct f2fs_sb_info *sbi) { struct f2fs_checkpoint *cp = F2FS_CKPT(sbi); if (!c.dbg_lv) return; printf("\n"); printf("+--------------------------------------------------------+\n"); printf("| Checkpoint |\n"); printf("+--------------------------------------------------------+\n"); DISP_u64(cp, checkpoint_ver); DISP_u64(cp, user_block_count); DISP_u64(cp, valid_block_count); DISP_u32(cp, rsvd_segment_count); DISP_u32(cp, overprov_segment_count); DISP_u32(cp, free_segment_count); DISP_u32(cp, alloc_type[CURSEG_HOT_NODE]); DISP_u32(cp, alloc_type[CURSEG_WARM_NODE]); DISP_u32(cp, alloc_type[CURSEG_COLD_NODE]); DISP_u32(cp, cur_node_segno[0]); DISP_u32(cp, cur_node_segno[1]); DISP_u32(cp, cur_node_segno[2]); DISP_u32(cp, cur_node_blkoff[0]); DISP_u32(cp, cur_node_blkoff[1]); DISP_u32(cp, cur_node_blkoff[2]); DISP_u32(cp, alloc_type[CURSEG_HOT_DATA]); DISP_u32(cp, alloc_type[CURSEG_WARM_DATA]); DISP_u32(cp, alloc_type[CURSEG_COLD_DATA]); DISP_u32(cp, cur_data_segno[0]); DISP_u32(cp, cur_data_segno[1]); DISP_u32(cp, cur_data_segno[2]); DISP_u32(cp, cur_data_blkoff[0]); DISP_u32(cp, cur_data_blkoff[1]); DISP_u32(cp, cur_data_blkoff[2]); DISP_u32(cp, ckpt_flags); DISP_u32(cp, cp_pack_total_block_count); DISP_u32(cp, cp_pack_start_sum); DISP_u32(cp, valid_node_count); DISP_u32(cp, valid_inode_count); DISP_u32(cp, next_free_nid); DISP_u32(cp, sit_ver_bitmap_bytesize); DISP_u32(cp, nat_ver_bitmap_bytesize); DISP_u32(cp, checksum_offset); DISP_u64(cp, elapsed_time); DISP_u32(cp, sit_nat_version_bitmap[0]); printf("\n\n"); } void print_cp_state(u32 flag) { MSG(0, "Info: checkpoint state = %x : ", flag); if (flag & CP_QUOTA_NEED_FSCK_FLAG) MSG(0, "%s", " quota_need_fsck"); if (flag & CP_LARGE_NAT_BITMAP_FLAG) MSG(0, "%s", " large_nat_bitmap"); if (flag & CP_NOCRC_RECOVERY_FLAG) MSG(0, "%s", " allow_nocrc"); if (flag & CP_TRIMMED_FLAG) MSG(0, "%s", " trimmed"); if (flag & CP_NAT_BITS_FLAG) MSG(0, "%s", " nat_bits"); if (flag & CP_CRC_RECOVERY_FLAG) MSG(0, "%s", " crc"); if (flag & CP_FASTBOOT_FLAG) MSG(0, "%s", " fastboot"); if (flag & CP_FSCK_FLAG) MSG(0, "%s", " fsck"); if (flag & CP_ERROR_FLAG) MSG(0, "%s", " error"); if (flag & CP_COMPACT_SUM_FLAG) MSG(0, "%s", " compacted_summary"); if (flag & CP_ORPHAN_PRESENT_FLAG) MSG(0, "%s", " orphan_inodes"); if (flag & CP_DISABLED_FLAG) MSG(0, "%s", " disabled"); if (flag & CP_UMOUNT_FLAG) MSG(0, "%s", " unmount"); else MSG(0, "%s", " sudden-power-off"); MSG(0, "\n"); } void print_sb_state(struct f2fs_super_block *sb) { __le32 f = sb->feature; int i; MSG(0, "Info: superblock features = %x : ", f); if (f & cpu_to_le32(F2FS_FEATURE_ENCRYPT)) { MSG(0, "%s", " encrypt"); } if (f & cpu_to_le32(F2FS_FEATURE_VERITY)) { MSG(0, "%s", " verity"); } if (f & cpu_to_le32(F2FS_FEATURE_BLKZONED)) { MSG(0, "%s", " blkzoned"); } if (f & cpu_to_le32(F2FS_FEATURE_EXTRA_ATTR)) { MSG(0, "%s", " extra_attr"); } if (f & cpu_to_le32(F2FS_FEATURE_PRJQUOTA)) { MSG(0, "%s", " project_quota"); } if (f & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM)) { MSG(0, "%s", " inode_checksum"); } if (f & cpu_to_le32(F2FS_FEATURE_FLEXIBLE_INLINE_XATTR)) { MSG(0, "%s", " flexible_inline_xattr"); } if (f & cpu_to_le32(F2FS_FEATURE_QUOTA_INO)) { MSG(0, "%s", " quota_ino"); } if (f & cpu_to_le32(F2FS_FEATURE_INODE_CRTIME)) { MSG(0, "%s", " inode_crtime"); } if (f & cpu_to_le32(F2FS_FEATURE_LOST_FOUND)) { MSG(0, "%s", " lost_found"); } if (f & cpu_to_le32(F2FS_FEATURE_SB_CHKSUM)) { MSG(0, "%s", " sb_checksum"); } MSG(0, "\n"); MSG(0, "Info: superblock encrypt level = %d, salt = ", sb->encryption_level); for (i = 0; i < 16; i++) MSG(0, "%02x", sb->encrypt_pw_salt[i]); MSG(0, "\n"); } void update_superblock(struct f2fs_super_block *sb, int sb_mask) { int addr, ret; u_int8_t *buf; u32 old_crc, new_crc; buf = calloc(BLOCK_SZ, 1); ASSERT(buf); if (get_sb(feature) & F2FS_FEATURE_SB_CHKSUM) { old_crc = get_sb(crc); new_crc = f2fs_cal_crc32(F2FS_SUPER_MAGIC, sb, SB_CHKSUM_OFFSET); set_sb(crc, new_crc); MSG(1, "Info: SB CRC is updated (0x%x -> 0x%x)\n", old_crc, new_crc); } memcpy(buf + F2FS_SUPER_OFFSET, sb, sizeof(*sb)); for (addr = SB0_ADDR; addr < SB_MAX_ADDR; addr++) { if (SB_MASK(addr) & sb_mask) { ret = dev_write_block(buf, addr); ASSERT(ret >= 0); } } free(buf); DBG(0, "Info: Done to update superblock\n"); } static inline int sanity_check_area_boundary(struct f2fs_super_block *sb, enum SB_ADDR sb_addr) { u32 segment0_blkaddr = get_sb(segment0_blkaddr); u32 cp_blkaddr = get_sb(cp_blkaddr); u32 sit_blkaddr = get_sb(sit_blkaddr); u32 nat_blkaddr = get_sb(nat_blkaddr); u32 ssa_blkaddr = get_sb(ssa_blkaddr); u32 main_blkaddr = get_sb(main_blkaddr); u32 segment_count_ckpt = get_sb(segment_count_ckpt); u32 segment_count_sit = get_sb(segment_count_sit); u32 segment_count_nat = get_sb(segment_count_nat); u32 segment_count_ssa = get_sb(segment_count_ssa); u32 segment_count_main = get_sb(segment_count_main); u32 segment_count = get_sb(segment_count); u32 log_blocks_per_seg = get_sb(log_blocks_per_seg); u64 main_end_blkaddr = main_blkaddr + (segment_count_main << log_blocks_per_seg); u64 seg_end_blkaddr = segment0_blkaddr + (segment_count << log_blocks_per_seg); if (segment0_blkaddr != cp_blkaddr) { MSG(0, "\tMismatch segment0(%u) cp_blkaddr(%u)\n", segment0_blkaddr, cp_blkaddr); return -1; } if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != sit_blkaddr) { MSG(0, "\tWrong CP boundary, start(%u) end(%u) blocks(%u)\n", cp_blkaddr, sit_blkaddr, segment_count_ckpt << log_blocks_per_seg); return -1; } if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != nat_blkaddr) { MSG(0, "\tWrong SIT boundary, start(%u) end(%u) blocks(%u)\n", sit_blkaddr, nat_blkaddr, segment_count_sit << log_blocks_per_seg); return -1; } if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != ssa_blkaddr) { MSG(0, "\tWrong NAT boundary, start(%u) end(%u) blocks(%u)\n", nat_blkaddr, ssa_blkaddr, segment_count_nat << log_blocks_per_seg); return -1; } if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != main_blkaddr) { MSG(0, "\tWrong SSA boundary, start(%u) end(%u) blocks(%u)\n", ssa_blkaddr, main_blkaddr, segment_count_ssa << log_blocks_per_seg); return -1; } if (main_end_blkaddr > seg_end_blkaddr) { MSG(0, "\tWrong MAIN_AREA, start(%u) end(%u) block(%u)\n", main_blkaddr, segment0_blkaddr + (segment_count << log_blocks_per_seg), segment_count_main << log_blocks_per_seg); return -1; } else if (main_end_blkaddr < seg_end_blkaddr) { set_sb(segment_count, (main_end_blkaddr - segment0_blkaddr) >> log_blocks_per_seg); update_superblock(sb, SB_MASK(sb_addr)); MSG(0, "Info: Fix alignment: start(%u) end(%u) block(%u)\n", main_blkaddr, segment0_blkaddr + (segment_count << log_blocks_per_seg), segment_count_main << log_blocks_per_seg); } return 0; } static int verify_sb_chksum(struct f2fs_super_block *sb) { if (SB_CHKSUM_OFFSET != get_sb(checksum_offset)) { MSG(0, "\tInvalid SB CRC offset: %u\n", get_sb(checksum_offset)); return -1; } if (f2fs_crc_valid(get_sb(crc), sb, get_sb(checksum_offset))) { MSG(0, "\tInvalid SB CRC: 0x%x\n", get_sb(crc)); return -1; } return 0; } int sanity_check_raw_super(struct f2fs_super_block *sb, enum SB_ADDR sb_addr) { unsigned int blocksize; if ((get_sb(feature) & F2FS_FEATURE_SB_CHKSUM) && verify_sb_chksum(sb)) return -1; if (F2FS_SUPER_MAGIC != get_sb(magic)) return -1; if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) return -1; blocksize = 1 << get_sb(log_blocksize); if (F2FS_BLKSIZE != blocksize) return -1; /* check log blocks per segment */ if (get_sb(log_blocks_per_seg) != 9) return -1; /* Currently, support 512/1024/2048/4096 bytes sector size */ if (get_sb(log_sectorsize) > F2FS_MAX_LOG_SECTOR_SIZE || get_sb(log_sectorsize) < F2FS_MIN_LOG_SECTOR_SIZE) return -1; if (get_sb(log_sectors_per_block) + get_sb(log_sectorsize) != F2FS_MAX_LOG_SECTOR_SIZE) return -1; /* check reserved ino info */ if (get_sb(node_ino) != 1 || get_sb(meta_ino) != 2 || get_sb(root_ino) != 3) return -1; /* Check zoned block device feature */ if (c.devices[0].zoned_model == F2FS_ZONED_HM && !(sb->feature & cpu_to_le32(F2FS_FEATURE_BLKZONED))) { MSG(0, "\tMissing zoned block device feature\n"); return -1; } if (get_sb(segment_count) > F2FS_MAX_SEGMENT) return -1; if (sanity_check_area_boundary(sb, sb_addr)) return -1; return 0; } int validate_super_block(struct f2fs_sb_info *sbi, enum SB_ADDR sb_addr) { char buf[F2FS_BLKSIZE]; sbi->raw_super = malloc(sizeof(struct f2fs_super_block)); if (!sbi->raw_super) return -ENOMEM; if (dev_read_block(buf, sb_addr)) return -1; memcpy(sbi->raw_super, buf + F2FS_SUPER_OFFSET, sizeof(struct f2fs_super_block)); if (!sanity_check_raw_super(sbi->raw_super, sb_addr)) { /* get kernel version */ if (c.kd >= 0) { dev_read_version(c.version, 0, VERSION_LEN); get_kernel_version(c.version); } else { get_kernel_uname_version(c.version); } /* build sb version */ memcpy(c.sb_version, sbi->raw_super->version, VERSION_LEN); get_kernel_version(c.sb_version); memcpy(c.init_version, sbi->raw_super->init_version, VERSION_LEN); get_kernel_version(c.init_version); MSG(0, "Info: MKFS version\n \"%s\"\n", c.init_version); MSG(0, "Info: FSCK version\n from \"%s\"\n to \"%s\"\n", c.sb_version, c.version); if (memcmp(c.sb_version, c.version, VERSION_LEN)) { memcpy(sbi->raw_super->version, c.version, VERSION_LEN); update_superblock(sbi->raw_super, SB_MASK(sb_addr)); c.auto_fix = 0; c.fix_on = 1; } print_sb_state(sbi->raw_super); return 0; } free(sbi->raw_super); sbi->raw_super = NULL; MSG(0, "\tCan't find a valid F2FS superblock at 0x%x\n", sb_addr); return -EINVAL; } int init_sb_info(struct f2fs_sb_info *sbi) { struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi); u64 total_sectors; int i; sbi->log_sectors_per_block = get_sb(log_sectors_per_block); sbi->log_blocksize = get_sb(log_blocksize); sbi->blocksize = 1 << sbi->log_blocksize; sbi->log_blocks_per_seg = get_sb(log_blocks_per_seg); sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; sbi->segs_per_sec = get_sb(segs_per_sec); sbi->secs_per_zone = get_sb(secs_per_zone); sbi->total_sections = get_sb(section_count); sbi->total_node_count = (get_sb(segment_count_nat) / 2) * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; sbi->root_ino_num = get_sb(root_ino); sbi->node_ino_num = get_sb(node_ino); sbi->meta_ino_num = get_sb(meta_ino); sbi->cur_victim_sec = NULL_SEGNO; for (i = 0; i < MAX_DEVICES; i++) { if (!sb->devs[i].path[0]) break; if (i) { c.devices[i].path = strdup((char *)sb->devs[i].path); if (get_device_info(i)) ASSERT(0); } else { ASSERT(!strcmp((char *)sb->devs[i].path, (char *)c.devices[i].path)); } c.devices[i].total_segments = le32_to_cpu(sb->devs[i].total_segments); if (i) c.devices[i].start_blkaddr = c.devices[i - 1].end_blkaddr + 1; c.devices[i].end_blkaddr = c.devices[i].start_blkaddr + c.devices[i].total_segments * c.blks_per_seg - 1; if (i == 0) c.devices[i].end_blkaddr += get_sb(segment0_blkaddr); c.ndevs = i + 1; MSG(0, "Info: Device[%d] : %s blkaddr = %"PRIx64"--%"PRIx64"\n", i, c.devices[i].path, c.devices[i].start_blkaddr, c.devices[i].end_blkaddr); } total_sectors = get_sb(block_count) << sbi->log_sectors_per_block; MSG(0, "Info: total FS sectors = %"PRIu64" (%"PRIu64" MB)\n", total_sectors, total_sectors >> (20 - get_sb(log_sectorsize))); return 0; } void *validate_checkpoint(struct f2fs_sb_info *sbi, block_t cp_addr, unsigned long long *version) { void *cp_page_1, *cp_page_2; struct f2fs_checkpoint *cp; unsigned long blk_size = sbi->blocksize; unsigned long long cur_version = 0, pre_version = 0; unsigned int crc = 0; size_t crc_offset; /* Read the 1st cp block in this CP pack */ cp_page_1 = malloc(PAGE_SIZE); ASSERT(cp_page_1); if (dev_read_block(cp_page_1, cp_addr) < 0) goto invalid_cp1; cp = (struct f2fs_checkpoint *)cp_page_1; crc_offset = get_cp(checksum_offset); if (crc_offset > (blk_size - sizeof(__le32))) goto invalid_cp1; crc = le32_to_cpu(*(__le32 *)((unsigned char *)cp + crc_offset)); if (f2fs_crc_valid(crc, cp, crc_offset)) goto invalid_cp1; if (get_cp(cp_pack_total_block_count) > sbi->blocks_per_seg) goto invalid_cp1; pre_version = get_cp(checkpoint_ver); /* Read the 2nd cp block in this CP pack */ cp_page_2 = malloc(PAGE_SIZE); ASSERT(cp_page_2); cp_addr += get_cp(cp_pack_total_block_count) - 1; if (dev_read_block(cp_page_2, cp_addr) < 0) goto invalid_cp2; cp = (struct f2fs_checkpoint *)cp_page_2; crc_offset = get_cp(checksum_offset); if (crc_offset > (blk_size - sizeof(__le32))) goto invalid_cp2; crc = le32_to_cpu(*(__le32 *)((unsigned char *)cp + crc_offset)); if (f2fs_crc_valid(crc, cp, crc_offset)) goto invalid_cp2; cur_version = get_cp(checkpoint_ver); if (cur_version == pre_version) { *version = cur_version; free(cp_page_2); return cp_page_1; } invalid_cp2: free(cp_page_2); invalid_cp1: free(cp_page_1); return NULL; } int get_valid_checkpoint(struct f2fs_sb_info *sbi) { struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi); void *cp1, *cp2, *cur_page; unsigned long blk_size = sbi->blocksize; unsigned long long cp1_version = 0, cp2_version = 0, version; unsigned long long cp_start_blk_no; unsigned int cp_payload, cp_blks; int ret; cp_payload = get_sb(cp_payload); if (cp_payload > F2FS_BLK_ALIGN(MAX_SIT_BITMAP_SIZE)) return -EINVAL; cp_blks = 1 + cp_payload; sbi->ckpt = malloc(cp_blks * blk_size); if (!sbi->ckpt) return -ENOMEM; /* * Finding out valid cp block involves read both * sets( cp pack1 and cp pack 2) */ cp_start_blk_no = get_sb(cp_blkaddr); cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); /* The second checkpoint pack should start at the next segment */ cp_start_blk_no += 1 << get_sb(log_blocks_per_seg); cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); if (cp1 && cp2) { if (ver_after(cp2_version, cp1_version)) { cur_page = cp2; sbi->cur_cp = 2; version = cp2_version; } else { cur_page = cp1; sbi->cur_cp = 1; version = cp1_version; } } else if (cp1) { cur_page = cp1; sbi->cur_cp = 1; version = cp1_version; } else if (cp2) { cur_page = cp2; sbi->cur_cp = 2; version = cp2_version; } else goto fail_no_cp; MSG(0, "Info: CKPT version = %llx\n", version); memcpy(sbi->ckpt, cur_page, blk_size); if (cp_blks > 1) { unsigned int i; unsigned long long cp_blk_no; cp_blk_no = get_sb(cp_blkaddr); if (cur_page == cp2) cp_blk_no += 1 << get_sb(log_blocks_per_seg); /* copy sit bitmap */ for (i = 1; i < cp_blks; i++) { unsigned char *ckpt = (unsigned char *)sbi->ckpt; ret = dev_read_block(cur_page, cp_blk_no + i); ASSERT(ret >= 0); memcpy(ckpt + i * blk_size, cur_page, blk_size); } } if (cp1) free(cp1); if (cp2) free(cp2); return 0; fail_no_cp: free(sbi->ckpt); sbi->ckpt = NULL; return -EINVAL; } int sanity_check_ckpt(struct f2fs_sb_info *sbi) { unsigned int total, fsmeta; struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi); struct f2fs_checkpoint *cp = F2FS_CKPT(sbi); unsigned int ovp_segments, reserved_segments; unsigned int main_segs, blocks_per_seg; unsigned int sit_segs, nat_segs; unsigned int sit_bitmap_size, nat_bitmap_size; unsigned int log_blocks_per_seg; unsigned int segment_count_main; unsigned int cp_pack_start_sum, cp_payload; block_t user_block_count; int i; total = get_sb(segment_count); fsmeta = get_sb(segment_count_ckpt); sit_segs = get_sb(segment_count_sit); fsmeta += sit_segs; nat_segs = get_sb(segment_count_nat); fsmeta += nat_segs; fsmeta += get_cp(rsvd_segment_count); fsmeta += get_sb(segment_count_ssa); if (fsmeta >= total) return 1; ovp_segments = get_cp(overprov_segment_count); reserved_segments = get_cp(rsvd_segment_count); if (fsmeta < F2FS_MIN_SEGMENT || ovp_segments == 0 || reserved_segments == 0) { MSG(0, "\tWrong layout: check mkfs.f2fs version\n"); return 1; } user_block_count = get_cp(user_block_count); segment_count_main = get_sb(segment_count_main); log_blocks_per_seg = get_sb(log_blocks_per_seg); if (!user_block_count || user_block_count >= segment_count_main << log_blocks_per_seg) { MSG(0, "\tWrong user_block_count(%u)\n", user_block_count); return 1; } main_segs = get_sb(segment_count_main); blocks_per_seg = sbi->blocks_per_seg; for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { if (get_cp(cur_node_segno[i]) >= main_segs || get_cp(cur_node_blkoff[i]) >= blocks_per_seg) return 1; } for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { if (get_cp(cur_data_segno[i]) >= main_segs || get_cp(cur_data_blkoff[i]) >= blocks_per_seg) return 1; } sit_bitmap_size = get_cp(sit_ver_bitmap_bytesize); nat_bitmap_size = get_cp(nat_ver_bitmap_bytesize); if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { MSG(0, "\tWrong bitmap size: sit(%u), nat(%u)\n", sit_bitmap_size, nat_bitmap_size); return 1; } cp_pack_start_sum = __start_sum_addr(sbi); cp_payload = __cp_payload(sbi); if (cp_pack_start_sum < cp_payload + 1 || cp_pack_start_sum > blocks_per_seg - 1 - NR_CURSEG_TYPE) { MSG(0, "\tWrong cp_pack_start_sum(%u) or cp_payload(%u)\n", cp_pack_start_sum, cp_payload); if ((get_sb(feature) & F2FS_FEATURE_SB_CHKSUM)) return 1; set_sb(cp_payload, cp_pack_start_sum - 1); update_superblock(sb, SB_MASK_ALL); } return 0; } pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start, int *pack) { struct f2fs_nm_info *nm_i = NM_I(sbi); pgoff_t block_off; pgoff_t block_addr; int seg_off; block_off = NAT_BLOCK_OFFSET(start); seg_off = block_off >> sbi->log_blocks_per_seg; block_addr = (pgoff_t)(nm_i->nat_blkaddr + (seg_off << sbi->log_blocks_per_seg << 1) + (block_off & ((1 << sbi->log_blocks_per_seg) -1))); if (pack) *pack = 1; if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) { block_addr += sbi->blocks_per_seg; if (pack) *pack = 2; } return block_addr; } static int f2fs_init_nid_bitmap(struct f2fs_sb_info *sbi) { struct f2fs_nm_info *nm_i = NM_I(sbi); int nid_bitmap_size = (nm_i->max_nid + BITS_PER_BYTE - 1) / BITS_PER_BYTE; struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); struct f2fs_summary_block *sum = curseg->sum_blk; struct f2fs_journal *journal = &sum->journal; struct f2fs_nat_block *nat_block; block_t start_blk; nid_t nid; int i; if (!(c.func == SLOAD || c.func == FSCK)) return 0; nm_i->nid_bitmap = (char *)calloc(nid_bitmap_size, 1); if (!nm_i->nid_bitmap) return -ENOMEM; /* arbitrarily set 0 bit */ f2fs_set_bit(0, nm_i->nid_bitmap); nat_block = malloc(F2FS_BLKSIZE); if (!nat_block) { free(nm_i->nid_bitmap); return -ENOMEM; } for (nid = 0; nid < nm_i->max_nid; nid++) { if (!(nid % NAT_ENTRY_PER_BLOCK)) { int ret; start_blk = current_nat_addr(sbi, nid, NULL); ret = dev_read_block(nat_block, start_blk); ASSERT(ret >= 0); } if (nat_block->entries[nid % NAT_ENTRY_PER_BLOCK].block_addr) f2fs_set_bit(nid, nm_i->nid_bitmap); } if (nats_in_cursum(journal) > NAT_JOURNAL_ENTRIES) { MSG(0, "\tError: f2fs_init_nid_bitmap truncate n_nats(%u) to " "NAT_JOURNAL_ENTRIES(%lu)\n", nats_in_cursum(journal), NAT_JOURNAL_ENTRIES); journal->n_nats = cpu_to_le16(NAT_JOURNAL_ENTRIES); } for (i = 0; i < nats_in_cursum(journal); i++) { block_t addr; addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); if (!IS_VALID_BLK_ADDR(sbi, addr)) { MSG(0, "\tError: f2fs_init_nid_bitmap: addr(%u) is invalid!!!\n", addr); journal->n_nats = cpu_to_le16(i); continue; } nid = le32_to_cpu(nid_in_journal(journal, i)); if (!IS_VALID_NID(sbi, nid)) { MSG(0, "\tError: f2fs_init_nid_bitmap: nid(%u) is invalid!!!\n", nid); journal->n_nats = cpu_to_le16(i); continue; } if (addr != NULL_ADDR) f2fs_set_bit(nid, nm_i->nid_bitmap); } free(nat_block); return 0; } u32 update_nat_bits_flags(struct f2fs_super_block *sb, struct f2fs_checkpoint *cp, u32 flags) { u_int32_t nat_bits_bytes, nat_bits_blocks; nat_bits_bytes = get_sb(segment_count_nat) << 5; nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 + F2FS_BLKSIZE - 1); if (get_cp(cp_pack_total_block_count) <= (1 << get_sb(log_blocks_per_seg)) - nat_bits_blocks) flags |= CP_NAT_BITS_FLAG; else flags &= (~CP_NAT_BITS_FLAG); return flags; } /* should call flush_journal_entries() bfore this */ void write_nat_bits(struct f2fs_sb_info *sbi, struct f2fs_super_block *sb, struct f2fs_checkpoint *cp, int set) { struct f2fs_nm_info *nm_i = NM_I(sbi); u_int32_t nat_blocks = get_sb(segment_count_nat) << (get_sb(log_blocks_per_seg) - 1); u_int32_t nat_bits_bytes = nat_blocks >> 3; u_int32_t nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 + F2FS_BLKSIZE - 1); unsigned char *nat_bits, *full_nat_bits, *empty_nat_bits; struct f2fs_nat_block *nat_block; u_int32_t i, j; block_t blkaddr; int ret; nat_bits = calloc(F2FS_BLKSIZE, nat_bits_blocks); ASSERT(nat_bits); nat_block = malloc(F2FS_BLKSIZE); ASSERT(nat_block); full_nat_bits = nat_bits + 8; empty_nat_bits = full_nat_bits + nat_bits_bytes; memset(full_nat_bits, 0, nat_bits_bytes); memset(empty_nat_bits, 0, nat_bits_bytes); for (i = 0; i < nat_blocks; i++) { int seg_off = i >> get_sb(log_blocks_per_seg); int valid = 0; blkaddr = (pgoff_t)(get_sb(nat_blkaddr) + (seg_off << get_sb(log_blocks_per_seg) << 1) + (i & ((1 << get_sb(log_blocks_per_seg)) - 1))); /* * Should consider new nat_blocks is larger than old * nm_i->nat_blocks, since nm_i->nat_bitmap is based on * old one. */ if (i < nm_i->nat_blocks && f2fs_test_bit(i, nm_i->nat_bitmap)) blkaddr += (1 << get_sb(log_blocks_per_seg)); ret = dev_read_block(nat_block, blkaddr); ASSERT(ret >= 0); for (j = 0; j < NAT_ENTRY_PER_BLOCK; j++) { if ((i == 0 && j == 0) || nat_block->entries[j].block_addr != NULL_ADDR) valid++; } if (valid == 0) test_and_set_bit_le(i, empty_nat_bits); else if (valid == NAT_ENTRY_PER_BLOCK) test_and_set_bit_le(i, full_nat_bits); } *(__le64 *)nat_bits = get_cp_crc(cp); free(nat_block); blkaddr = get_sb(segment0_blkaddr) + (set << get_sb(log_blocks_per_seg)) - nat_bits_blocks; DBG(1, "\tWriting NAT bits pages, at offset 0x%08x\n", blkaddr); for (i = 0; i < nat_bits_blocks; i++) { if (dev_write_block(nat_bits + i * F2FS_BLKSIZE, blkaddr + i)) ASSERT_MSG("\tError: write NAT bits to disk!!!\n"); } MSG(0, "Info: Write valid nat_bits in checkpoint\n"); free(nat_bits); } static int check_nat_bits(struct f2fs_sb_info *sbi, struct f2fs_super_block *sb, struct f2fs_checkpoint *cp) { struct f2fs_nm_info *nm_i = NM_I(sbi); u_int32_t nat_blocks = get_sb(segment_count_nat) << (get_sb(log_blocks_per_seg) - 1); u_int32_t nat_bits_bytes = nat_blocks >> 3; u_int32_t nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 + F2FS_BLKSIZE - 1); unsigned char *nat_bits, *full_nat_bits, *empty_nat_bits; struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); struct f2fs_journal *journal = &curseg->sum_blk->journal; u_int32_t i, j; block_t blkaddr; int err = 0; nat_bits = calloc(F2FS_BLKSIZE, nat_bits_blocks); ASSERT(nat_bits); full_nat_bits = nat_bits + 8; empty_nat_bits = full_nat_bits + nat_bits_bytes; blkaddr = get_sb(segment0_blkaddr) + (sbi->cur_cp << get_sb(log_blocks_per_seg)) - nat_bits_blocks; for (i = 0; i < nat_bits_blocks; i++) { if (dev_read_block(nat_bits + i * F2FS_BLKSIZE, blkaddr + i)) ASSERT_MSG("\tError: read NAT bits to disk!!!\n"); } if (*(__le64 *)nat_bits != get_cp_crc(cp) || nats_in_cursum(journal)) { /* * if there is a journal, f2fs was not shutdown cleanly. Let's * flush them with nat_bits. */ if (c.fix_on) err = -1; /* Otherwise, kernel will disable nat_bits */ goto out; } for (i = 0; i < nat_blocks; i++) { u_int32_t start_nid = i * NAT_ENTRY_PER_BLOCK; u_int32_t valid = 0; int empty = test_bit_le(i, empty_nat_bits); int full = test_bit_le(i, full_nat_bits); for (j = 0; j < NAT_ENTRY_PER_BLOCK; j++) { if (f2fs_test_bit(start_nid + j, nm_i->nid_bitmap)) valid++; } if (valid == 0) { if (!empty || full) { err = -1; goto out; } } else if (valid == NAT_ENTRY_PER_BLOCK) { if (empty || !full) { err = -1; goto out; } } else { if (empty || full) { err = -1; goto out; } } } out: free(nat_bits); if (!err) { MSG(0, "Info: Checked valid nat_bits in checkpoint\n"); } else { c.bug_nat_bits = 1; MSG(0, "Info: Corrupted valid nat_bits in checkpoint\n"); } return err; } int init_node_manager(struct f2fs_sb_info *sbi) { struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi); struct f2fs_checkpoint *cp = F2FS_CKPT(sbi); struct f2fs_nm_info *nm_i = NM_I(sbi); unsigned char *version_bitmap; unsigned int nat_segs; nm_i->nat_blkaddr = get_sb(nat_blkaddr); /* segment_count_nat includes pair segment so divide to 2. */ nat_segs = get_sb(segment_count_nat) >> 1; nm_i->nat_blocks = nat_segs << get_sb(log_blocks_per_seg); nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; nm_i->fcnt = 0; nm_i->nat_cnt = 0; nm_i->init_scan_nid = get_cp(next_free_nid); nm_i->next_scan_nid = get_cp(next_free_nid); nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); nm_i->nat_bitmap = malloc(nm_i->bitmap_size); if (!nm_i->nat_bitmap) return -ENOMEM; version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); if (!version_bitmap) return -EFAULT; /* copy version bitmap */ memcpy(nm_i->nat_bitmap, version_bitmap, nm_i->bitmap_size); return f2fs_init_nid_bitmap(sbi); } int build_node_manager(struct f2fs_sb_info *sbi) { int err; sbi->nm_info = malloc(sizeof(struct f2fs_nm_info)); if (!sbi->nm_info) return -ENOMEM; err = init_node_manager(sbi); if (err) return err; return 0; } int build_sit_info(struct f2fs_sb_info *sbi) { struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi); struct f2fs_checkpoint *cp = F2FS_CKPT(sbi); struct sit_info *sit_i; unsigned int sit_segs, start; char *src_bitmap, *dst_bitmap; unsigned int bitmap_size; sit_i = malloc(sizeof(struct sit_info)); if (!sit_i) { MSG(1, "\tError: Malloc failed for build_sit_info!\n"); return -ENOMEM; } SM_I(sbi)->sit_info = sit_i; sit_i->sentries = calloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry), 1); if (!sit_i->sentries) { MSG(1, "\tError: Calloc failed for build_sit_info!\n"); goto free_sit_info; } for (start = 0; start < TOTAL_SEGS(sbi); start++) { sit_i->sentries[start].cur_valid_map = calloc(SIT_VBLOCK_MAP_SIZE, 1); if (!sit_i->sentries[start].cur_valid_map) { MSG(1, "\tError: Calloc failed for build_sit_info!!\n"); goto free_validity_maps; } } sit_segs = get_sb(segment_count_sit) >> 1; bitmap_size = __bitmap_size(sbi, SIT_BITMAP); src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); dst_bitmap = malloc(bitmap_size); if (!dst_bitmap) { MSG(1, "\tError: Malloc failed for build_sit_info!!\n"); goto free_validity_maps; } memcpy(dst_bitmap, src_bitmap, bitmap_size); sit_i->sit_base_addr = get_sb(sit_blkaddr); sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; sit_i->written_valid_blocks = get_cp(valid_block_count); sit_i->sit_bitmap = dst_bitmap; sit_i->bitmap_size = bitmap_size; sit_i->dirty_sentries = 0; sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; sit_i->elapsed_time = get_cp(elapsed_time); return 0; free_validity_maps: for (--start ; start >= 0; --start) free(sit_i->sentries[start].cur_valid_map); free(sit_i->sentries); free_sit_info: free(sit_i); return -ENOMEM; } void reset_curseg(struct f2fs_sb_info *sbi, int type) { struct curseg_info *curseg = CURSEG_I(sbi, type); struct summary_footer *sum_footer; struct seg_entry *se; sum_footer = &(curseg->sum_blk->footer); memset(sum_footer, 0, sizeof(struct summary_footer)); if (IS_DATASEG(type)) SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); if (IS_NODESEG(type)) SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); se = get_seg_entry(sbi, curseg->segno); se->type = type; se->dirty = 1; } static void read_compacted_summaries(struct f2fs_sb_info *sbi) { struct curseg_info *curseg; unsigned int i, j, offset; block_t start; char *kaddr; int ret; start = start_sum_block(sbi); kaddr = (char *)malloc(PAGE_SIZE); ASSERT(kaddr); ret = dev_read_block(kaddr, start++); ASSERT(ret >= 0); curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); memcpy(&curseg->sum_blk->journal.n_nats, kaddr, SUM_JOURNAL_SIZE); curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); memcpy(&curseg->sum_blk->journal.n_sits, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); offset = 2 * SUM_JOURNAL_SIZE; for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { unsigned short blk_off; struct curseg_info *curseg = CURSEG_I(sbi, i); reset_curseg(sbi, i); if (curseg->alloc_type == SSR) blk_off = sbi->blocks_per_seg; else blk_off = curseg->next_blkoff; ASSERT(blk_off <= ENTRIES_IN_SUM); for (j = 0; j < blk_off; j++) { struct f2fs_summary *s; s = (struct f2fs_summary *)(kaddr + offset); curseg->sum_blk->entries[j] = *s; offset += SUMMARY_SIZE; if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) continue; memset(kaddr, 0, PAGE_SIZE); ret = dev_read_block(kaddr, start++); ASSERT(ret >= 0); offset = 0; } } free(kaddr); } static void restore_node_summary(struct f2fs_sb_info *sbi, unsigned int segno, struct f2fs_summary_block *sum_blk) { struct f2fs_node *node_blk; struct f2fs_summary *sum_entry; block_t addr; unsigned int i; int ret; node_blk = malloc(F2FS_BLKSIZE); ASSERT(node_blk); /* scan the node segment */ addr = START_BLOCK(sbi, segno); sum_entry = &sum_blk->entries[0]; for (i = 0; i < sbi->blocks_per_seg; i++, sum_entry++) { ret = dev_read_block(node_blk, addr); ASSERT(ret >= 0); sum_entry->nid = node_blk->footer.nid; addr++; } free(node_blk); } static void read_normal_summaries(struct f2fs_sb_info *sbi, int type) { struct f2fs_checkpoint *cp = F2FS_CKPT(sbi); struct f2fs_summary_block *sum_blk; struct curseg_info *curseg; unsigned int segno = 0; block_t blk_addr = 0; int ret; if (IS_DATASEG(type)) { segno = get_cp(cur_data_segno[type]); if (is_set_ckpt_flags(cp, CP_UMOUNT_FLAG)) blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); else blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); } else { segno = get_cp(cur_node_segno[type - CURSEG_HOT_NODE]); if (is_set_ckpt_flags(cp, CP_UMOUNT_FLAG)) blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, type - CURSEG_HOT_NODE); else blk_addr = GET_SUM_BLKADDR(sbi, segno); } sum_blk = (struct f2fs_summary_block *)malloc(PAGE_SIZE); ASSERT(sum_blk); ret = dev_read_block(sum_blk, blk_addr); ASSERT(ret >= 0); if (IS_NODESEG(type) && !is_set_ckpt_flags(cp, CP_UMOUNT_FLAG)) restore_node_summary(sbi, segno, sum_blk); curseg = CURSEG_I(sbi, type); memcpy(curseg->sum_blk, sum_blk, PAGE_CACHE_SIZE); reset_curseg(sbi, type); free(sum_blk); } void update_sum_entry(struct f2fs_sb_info *sbi, block_t blk_addr, struct f2fs_summary *sum) { struct f2fs_summary_block *sum_blk; u32 segno, offset; int type, ret; struct seg_entry *se; segno = GET_SEGNO(sbi, blk_addr); offset = OFFSET_IN_SEG(sbi, blk_addr); se = get_seg_entry(sbi, segno); sum_blk = get_sum_block(sbi, segno, &type); memcpy(&sum_blk->entries[offset], sum, sizeof(*sum)); sum_blk->footer.entry_type = IS_NODESEG(se->type) ? SUM_TYPE_NODE : SUM_TYPE_DATA; /* write SSA all the time */ ret = dev_write_block(sum_blk, GET_SUM_BLKADDR(sbi, segno)); ASSERT(ret >= 0); if (type == SEG_TYPE_NODE || type == SEG_TYPE_DATA || type == SEG_TYPE_MAX) free(sum_blk); } static void restore_curseg_summaries(struct f2fs_sb_info *sbi) { int type = CURSEG_HOT_DATA; if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) { read_compacted_summaries(sbi); type = CURSEG_HOT_NODE; } for (; type <= CURSEG_COLD_NODE; type++) read_normal_summaries(sbi, type); } static int build_curseg(struct f2fs_sb_info *sbi) { struct f2fs_checkpoint *cp = F2FS_CKPT(sbi); struct curseg_info *array; unsigned short blk_off; unsigned int segno; int i; array = malloc(sizeof(*array) * NR_CURSEG_TYPE); if (!array) { MSG(1, "\tError: Malloc failed for build_curseg!\n"); return -ENOMEM; } SM_I(sbi)->curseg_array = array; for (i = 0; i < NR_CURSEG_TYPE; i++) { array[i].sum_blk = malloc(PAGE_CACHE_SIZE); if (!array[i].sum_blk) { MSG(1, "\tError: Malloc failed for build_curseg!!\n"); goto seg_cleanup; } if (i <= CURSEG_COLD_DATA) { blk_off = get_cp(cur_data_blkoff[i]); segno = get_cp(cur_data_segno[i]); } if (i > CURSEG_COLD_DATA) { blk_off = get_cp(cur_node_blkoff[i - CURSEG_HOT_NODE]); segno = get_cp(cur_node_segno[i - CURSEG_HOT_NODE]); } ASSERT(segno < TOTAL_SEGS(sbi)); ASSERT(blk_off < DEFAULT_BLOCKS_PER_SEGMENT); array[i].segno = segno; array[i].zone = GET_ZONENO_FROM_SEGNO(sbi, segno); array[i].next_segno = NULL_SEGNO; array[i].next_blkoff = blk_off; array[i].alloc_type = cp->alloc_type[i]; } restore_curseg_summaries(sbi); return 0; seg_cleanup: for(--i ; i >=0; --i) free(array[i].sum_blk); free(array); return -ENOMEM; } static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) { unsigned int end_segno = SM_I(sbi)->segment_count - 1; ASSERT(segno <= end_segno); } void get_current_sit_page(struct f2fs_sb_info *sbi, unsigned int segno, struct f2fs_sit_block *sit_blk) { struct sit_info *sit_i = SIT_I(sbi); unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno); block_t blk_addr = sit_i->sit_base_addr + offset; int ret; check_seg_range(sbi, segno); /* calculate sit block address */ if (f2fs_test_bit(offset, sit_i->sit_bitmap)) blk_addr += sit_i->sit_blocks; ret = dev_read_block(sit_blk, blk_addr); ASSERT(ret >= 0); } void rewrite_current_sit_page(struct f2fs_sb_info *sbi, unsigned int segno, struct f2fs_sit_block *sit_blk) { struct sit_info *sit_i = SIT_I(sbi); unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno); block_t blk_addr = sit_i->sit_base_addr + offset; int ret; /* calculate sit block address */ if (f2fs_test_bit(offset, sit_i->sit_bitmap)) blk_addr += sit_i->sit_blocks; ret = dev_write_block(sit_blk, blk_addr); ASSERT(ret >= 0); } void check_block_count(struct f2fs_sb_info *sbi, unsigned int segno, struct f2fs_sit_entry *raw_sit) { struct f2fs_sm_info *sm_info = SM_I(sbi); unsigned int end_segno = sm_info->segment_count - 1; int valid_blocks = 0; unsigned int i; /* check segment usage */ if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg) ASSERT_MSG("Invalid SIT vblocks: segno=0x%x, %u", segno, GET_SIT_VBLOCKS(raw_sit)); /* check boundary of a given segment number */ if (segno > end_segno) ASSERT_MSG("Invalid SEGNO: 0x%x", segno); /* check bitmap with valid block count */ for (i = 0; i < SIT_VBLOCK_MAP_SIZE; i++) valid_blocks += get_bits_in_byte(raw_sit->valid_map[i]); if (GET_SIT_VBLOCKS(raw_sit) != valid_blocks) ASSERT_MSG("Wrong SIT valid blocks: segno=0x%x, %u vs. %u", segno, GET_SIT_VBLOCKS(raw_sit), valid_blocks); if (GET_SIT_TYPE(raw_sit) >= NO_CHECK_TYPE) ASSERT_MSG("Wrong SIT type: segno=0x%x, %u", segno, GET_SIT_TYPE(raw_sit)); } void seg_info_from_raw_sit(struct seg_entry *se, struct f2fs_sit_entry *raw_sit) { se->valid_blocks = GET_SIT_VBLOCKS(raw_sit); memcpy(se->cur_valid_map, raw_sit->valid_map, SIT_VBLOCK_MAP_SIZE); se->type = GET_SIT_TYPE(raw_sit); se->orig_type = GET_SIT_TYPE(raw_sit); se->mtime = le64_to_cpu(raw_sit->mtime); } struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, unsigned int segno) { struct sit_info *sit_i = SIT_I(sbi); return &sit_i->sentries[segno]; } struct f2fs_summary_block *get_sum_block(struct f2fs_sb_info *sbi, unsigned int segno, int *ret_type) { struct f2fs_checkpoint *cp = F2FS_CKPT(sbi); struct f2fs_summary_block *sum_blk; struct curseg_info *curseg; int type, ret; u64 ssa_blk; *ret_type= SEG_TYPE_MAX; ssa_blk = GET_SUM_BLKADDR(sbi, segno); for (type = 0; type < NR_CURSEG_NODE_TYPE; type++) { if (segno == get_cp(cur_node_segno[type])) { curseg = CURSEG_I(sbi, CURSEG_HOT_NODE + type); if (!IS_SUM_NODE_SEG(curseg->sum_blk->footer)) { ASSERT_MSG("segno [0x%x] indicates a data " "segment, but should be node", segno); *ret_type = -SEG_TYPE_CUR_NODE; } else { *ret_type = SEG_TYPE_CUR_NODE; } return curseg->sum_blk; } } for (type = 0; type < NR_CURSEG_DATA_TYPE; type++) { if (segno == get_cp(cur_data_segno[type])) { curseg = CURSEG_I(sbi, type); if (IS_SUM_NODE_SEG(curseg->sum_blk->footer)) { ASSERT_MSG("segno [0x%x] indicates a node " "segment, but should be data", segno); *ret_type = -SEG_TYPE_CUR_DATA; } else { *ret_type = SEG_TYPE_CUR_DATA; } return curseg->sum_blk; } } sum_blk = calloc(BLOCK_SZ, 1); ASSERT(sum_blk); ret = dev_read_block(sum_blk, ssa_blk); ASSERT(ret >= 0); if (IS_SUM_NODE_SEG(sum_blk->footer)) *ret_type = SEG_TYPE_NODE; else if (IS_SUM_DATA_SEG(sum_blk->footer)) *ret_type = SEG_TYPE_DATA; return sum_blk; } int get_sum_entry(struct f2fs_sb_info *sbi, u32 blk_addr, struct f2fs_summary *sum_entry) { struct f2fs_summary_block *sum_blk; u32 segno, offset; int type; segno = GET_SEGNO(sbi, blk_addr); offset = OFFSET_IN_SEG(sbi, blk_addr); sum_blk = get_sum_block(sbi, segno, &type); memcpy(sum_entry, &(sum_blk->entries[offset]), sizeof(struct f2fs_summary)); if (type == SEG_TYPE_NODE || type == SEG_TYPE_DATA || type == SEG_TYPE_MAX) free(sum_blk); return type; } static void get_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, struct f2fs_nat_entry *raw_nat) { struct f2fs_nat_block *nat_block; pgoff_t block_addr; int entry_off; int ret; if (lookup_nat_in_journal(sbi, nid, raw_nat) >= 0) return; nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1); ASSERT(nat_block); entry_off = nid % NAT_ENTRY_PER_BLOCK; block_addr = current_nat_addr(sbi, nid, NULL); ret = dev_read_block(nat_block, block_addr); ASSERT(ret >= 0); memcpy(raw_nat, &nat_block->entries[entry_off], sizeof(struct f2fs_nat_entry)); free(nat_block); } void update_data_blkaddr(struct f2fs_sb_info *sbi, nid_t nid, u16 ofs_in_node, block_t newaddr) { struct f2fs_node *node_blk = NULL; struct node_info ni; block_t oldaddr, startaddr, endaddr; int ret; node_blk = (struct f2fs_node *)calloc(BLOCK_SZ, 1); ASSERT(node_blk); get_node_info(sbi, nid, &ni); /* read node_block */ ret = dev_read_block(node_blk, ni.blk_addr); ASSERT(ret >= 0); /* check its block address */ if (node_blk->footer.nid == node_blk->footer.ino) { int ofs = get_extra_isize(node_blk); oldaddr = le32_to_cpu(node_blk->i.i_addr[ofs + ofs_in_node]); node_blk->i.i_addr[ofs + ofs_in_node] = cpu_to_le32(newaddr); } else { oldaddr = le32_to_cpu(node_blk->dn.addr[ofs_in_node]); node_blk->dn.addr[ofs_in_node] = cpu_to_le32(newaddr); } ret = dev_write_block(node_blk, ni.blk_addr); ASSERT(ret >= 0); /* check extent cache entry */ if (node_blk->footer.nid != node_blk->footer.ino) { get_node_info(sbi, le32_to_cpu(node_blk->footer.ino), &ni); /* read inode block */ ret = dev_read_block(node_blk, ni.blk_addr); ASSERT(ret >= 0); } startaddr = le32_to_cpu(node_blk->i.i_ext.blk_addr); endaddr = startaddr + le32_to_cpu(node_blk->i.i_ext.len); if (oldaddr >= startaddr && oldaddr < endaddr) { node_blk->i.i_ext.len = 0; /* update inode block */ ret = dev_write_block(node_blk, ni.blk_addr); ASSERT(ret >= 0); } free(node_blk); } void update_nat_blkaddr(struct f2fs_sb_info *sbi, nid_t ino, nid_t nid, block_t newaddr) { struct f2fs_nat_block *nat_block; pgoff_t block_addr; int entry_off; int ret; nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1); ASSERT(nat_block); entry_off = nid % NAT_ENTRY_PER_BLOCK; block_addr = current_nat_addr(sbi, nid, NULL); ret = dev_read_block(nat_block, block_addr); ASSERT(ret >= 0); if (ino) nat_block->entries[entry_off].ino = cpu_to_le32(ino); nat_block->entries[entry_off].block_addr = cpu_to_le32(newaddr); if (c.func == FSCK) F2FS_FSCK(sbi)->entries[nid] = nat_block->entries[entry_off]; ret = dev_write_block(nat_block, block_addr); ASSERT(ret >= 0); free(nat_block); } void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) { struct f2fs_nat_entry raw_nat; ni->nid = nid; if (c.func == FSCK) { node_info_from_raw_nat(ni, &(F2FS_FSCK(sbi)->entries[nid])); if (ni->blk_addr) return; /* nat entry is not cached, read it */ } get_nat_entry(sbi, nid, &raw_nat); node_info_from_raw_nat(ni, &raw_nat); } static int build_sit_entries(struct f2fs_sb_info *sbi) { struct sit_info *sit_i = SIT_I(sbi); struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); struct f2fs_journal *journal = &curseg->sum_blk->journal; struct f2fs_sit_block *sit_blk; struct seg_entry *se; struct f2fs_sit_entry sit; unsigned int i, segno; sit_blk = calloc(BLOCK_SZ, 1); if (!sit_blk) { MSG(1, "\tError: Calloc failed for build_sit_entries!\n"); return -ENOMEM; } for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) { se = &sit_i->sentries[segno]; get_current_sit_page(sbi, segno, sit_blk); sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno)]; check_block_count(sbi, segno, &sit); seg_info_from_raw_sit(se, &sit); } free(sit_blk); for (i = 0; i < sits_in_cursum(journal); i++) { segno = le32_to_cpu(segno_in_journal(journal, i)); se = &sit_i->sentries[segno]; sit = sit_in_journal(journal, i); check_block_count(sbi, segno, &sit); seg_info_from_raw_sit(se, &sit); } return 0; } static int build_segment_manager(struct f2fs_sb_info *sbi) { struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi); struct f2fs_checkpoint *cp = F2FS_CKPT(sbi); struct f2fs_sm_info *sm_info; sm_info = malloc(sizeof(struct f2fs_sm_info)); if (!sm_info) { MSG(1, "\tError: Malloc failed for build_segment_manager!\n"); return -ENOMEM; } /* init sm info */ sbi->sm_info = sm_info; sm_info->seg0_blkaddr = get_sb(segment0_blkaddr); sm_info->main_blkaddr = get_sb(main_blkaddr); sm_info->segment_count = get_sb(segment_count); sm_info->reserved_segments = get_cp(rsvd_segment_count); sm_info->ovp_segments = get_cp(overprov_segment_count); sm_info->main_segments = get_sb(segment_count_main); sm_info->ssa_blkaddr = get_sb(ssa_blkaddr); if (build_sit_info(sbi) || build_curseg(sbi) || build_sit_entries(sbi)) { free(sm_info); return -ENOMEM; } return 0; } void build_sit_area_bitmap(struct f2fs_sb_info *sbi) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct f2fs_sm_info *sm_i = SM_I(sbi); unsigned int segno = 0; char *ptr = NULL; u32 sum_vblocks = 0; u32 free_segs = 0; struct seg_entry *se; fsck->sit_area_bitmap_sz = sm_i->main_segments * SIT_VBLOCK_MAP_SIZE; fsck->sit_area_bitmap = calloc(1, fsck->sit_area_bitmap_sz); ASSERT(fsck->sit_area_bitmap); ptr = fsck->sit_area_bitmap; ASSERT(fsck->sit_area_bitmap_sz == fsck->main_area_bitmap_sz); for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) { se = get_seg_entry(sbi, segno); memcpy(ptr, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); ptr += SIT_VBLOCK_MAP_SIZE; if (se->valid_blocks == 0x0) { if (le32_to_cpu(sbi->ckpt->cur_node_segno[0]) == segno || le32_to_cpu(sbi->ckpt->cur_data_segno[0]) == segno || le32_to_cpu(sbi->ckpt->cur_node_segno[1]) == segno || le32_to_cpu(sbi->ckpt->cur_data_segno[1]) == segno || le32_to_cpu(sbi->ckpt->cur_node_segno[2]) == segno || le32_to_cpu(sbi->ckpt->cur_data_segno[2]) == segno) { continue; } else { free_segs++; } } else { sum_vblocks += se->valid_blocks; } } fsck->chk.sit_valid_blocks = sum_vblocks; fsck->chk.sit_free_segs = free_segs; DBG(1, "Blocks [0x%x : %d] Free Segs [0x%x : %d]\n\n", sum_vblocks, sum_vblocks, free_segs, free_segs); } void rewrite_sit_area_bitmap(struct f2fs_sb_info *sbi) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); struct sit_info *sit_i = SIT_I(sbi); struct f2fs_sit_block *sit_blk; unsigned int segno = 0; struct f2fs_summary_block *sum = curseg->sum_blk; char *ptr = NULL; sit_blk = calloc(BLOCK_SZ, 1); ASSERT(sit_blk); /* remove sit journal */ sum->journal.n_sits = 0; ptr = fsck->main_area_bitmap; for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) { struct f2fs_sit_entry *sit; struct seg_entry *se; u16 valid_blocks = 0; u16 type; int i; get_current_sit_page(sbi, segno, sit_blk); sit = &sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno)]; memcpy(sit->valid_map, ptr, SIT_VBLOCK_MAP_SIZE); /* update valid block count */ for (i = 0; i < SIT_VBLOCK_MAP_SIZE; i++) valid_blocks += get_bits_in_byte(sit->valid_map[i]); se = get_seg_entry(sbi, segno); memcpy(se->cur_valid_map, ptr, SIT_VBLOCK_MAP_SIZE); se->valid_blocks = valid_blocks; type = se->type; if (type >= NO_CHECK_TYPE) { ASSERT_MSG("Invalide type and valid blocks=%x,%x", segno, valid_blocks); type = 0; } sit->vblocks = cpu_to_le16((type << SIT_VBLOCKS_SHIFT) | valid_blocks); rewrite_current_sit_page(sbi, segno, sit_blk); ptr += SIT_VBLOCK_MAP_SIZE; } free(sit_blk); } static int flush_sit_journal_entries(struct f2fs_sb_info *sbi) { struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); struct f2fs_journal *journal = &curseg->sum_blk->journal; struct sit_info *sit_i = SIT_I(sbi); struct f2fs_sit_block *sit_blk; unsigned int segno; int i; sit_blk = calloc(BLOCK_SZ, 1); ASSERT(sit_blk); for (i = 0; i < sits_in_cursum(journal); i++) { struct f2fs_sit_entry *sit; struct seg_entry *se; segno = segno_in_journal(journal, i); se = get_seg_entry(sbi, segno); get_current_sit_page(sbi, segno, sit_blk); sit = &sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno)]; memcpy(sit->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); sit->vblocks = cpu_to_le16((se->type << SIT_VBLOCKS_SHIFT) | se->valid_blocks); sit->mtime = cpu_to_le64(se->mtime); rewrite_current_sit_page(sbi, segno, sit_blk); } free(sit_blk); journal->n_sits = 0; return i; } static int flush_nat_journal_entries(struct f2fs_sb_info *sbi) { struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); struct f2fs_journal *journal = &curseg->sum_blk->journal; struct f2fs_nat_block *nat_block; pgoff_t block_addr; int entry_off; nid_t nid; int ret; int i = 0; nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1); ASSERT(nat_block); next: if (i >= nats_in_cursum(journal)) { free(nat_block); journal->n_nats = 0; return i; } nid = le32_to_cpu(nid_in_journal(journal, i)); entry_off = nid % NAT_ENTRY_PER_BLOCK; block_addr = current_nat_addr(sbi, nid, NULL); ret = dev_read_block(nat_block, block_addr); ASSERT(ret >= 0); memcpy(&nat_block->entries[entry_off], &nat_in_journal(journal, i), sizeof(struct f2fs_nat_entry)); ret = dev_write_block(nat_block, block_addr); ASSERT(ret >= 0); i++; goto next; } void flush_journal_entries(struct f2fs_sb_info *sbi) { int n_nats = flush_nat_journal_entries(sbi); int n_sits = flush_sit_journal_entries(sbi); if (n_nats || n_sits) write_checkpoint(sbi); } void flush_sit_entries(struct f2fs_sb_info *sbi) { struct sit_info *sit_i = SIT_I(sbi); struct f2fs_sit_block *sit_blk; unsigned int segno = 0; sit_blk = calloc(BLOCK_SZ, 1); ASSERT(sit_blk); /* update free segments */ for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) { struct f2fs_sit_entry *sit; struct seg_entry *se; se = get_seg_entry(sbi, segno); if (!se->dirty) continue; get_current_sit_page(sbi, segno, sit_blk); sit = &sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno)]; memcpy(sit->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); sit->vblocks = cpu_to_le16((se->type << SIT_VBLOCKS_SHIFT) | se->valid_blocks); rewrite_current_sit_page(sbi, segno, sit_blk); } free(sit_blk); } int find_next_free_block(struct f2fs_sb_info *sbi, u64 *to, int left, int type) { struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi); struct seg_entry *se; u32 segno; u32 offset; int not_enough = 0; u64 end_blkaddr = (get_sb(segment_count_main) << get_sb(log_blocks_per_seg)) + get_sb(main_blkaddr); if (*to > 0) *to -= left; if (get_free_segments(sbi) <= SM_I(sbi)->reserved_segments + 1) not_enough = 1; while (*to >= SM_I(sbi)->main_blkaddr && *to < end_blkaddr) { segno = GET_SEGNO(sbi, *to); offset = OFFSET_IN_SEG(sbi, *to); se = get_seg_entry(sbi, segno); if (se->valid_blocks == sbi->blocks_per_seg || IS_CUR_SEGNO(sbi, segno)) { *to = left ? START_BLOCK(sbi, segno) - 1: START_BLOCK(sbi, segno + 1); continue; } if (se->valid_blocks == 0 && not_enough) { *to = left ? START_BLOCK(sbi, segno) - 1: START_BLOCK(sbi, segno + 1); continue; } if (se->valid_blocks == 0 && !(segno % sbi->segs_per_sec)) { struct seg_entry *se2; unsigned int i; for (i = 1; i < sbi->segs_per_sec; i++) { se2 = get_seg_entry(sbi, segno + i); if (se2->valid_blocks) break; } if (i == sbi->segs_per_sec) return 0; } if (se->type == type && !f2fs_test_bit(offset, (const char *)se->cur_valid_map)) return 0; *to = left ? *to - 1: *to + 1; } return -1; } void move_curseg_info(struct f2fs_sb_info *sbi, u64 from, int left) { int i, ret; /* update summary blocks having nullified journal entries */ for (i = 0; i < NO_CHECK_TYPE; i++) { struct curseg_info *curseg = CURSEG_I(sbi, i); struct f2fs_summary_block buf; u32 old_segno; u64 ssa_blk, to; /* update original SSA too */ ssa_blk = GET_SUM_BLKADDR(sbi, curseg->segno); ret = dev_write_block(curseg->sum_blk, ssa_blk); ASSERT(ret >= 0); to = from; ret = find_next_free_block(sbi, &to, left, i); ASSERT(ret == 0); old_segno = curseg->segno; curseg->segno = GET_SEGNO(sbi, to); curseg->next_blkoff = OFFSET_IN_SEG(sbi, to); curseg->alloc_type = SSR; /* update new segno */ ssa_blk = GET_SUM_BLKADDR(sbi, curseg->segno); ret = dev_read_block(&buf, ssa_blk); ASSERT(ret >= 0); memcpy(curseg->sum_blk, &buf, SUM_ENTRIES_SIZE); /* update se->types */ reset_curseg(sbi, i); DBG(1, "Move curseg[%d] %x -> %x after %"PRIx64"\n", i, old_segno, curseg->segno, from); } } void zero_journal_entries(struct f2fs_sb_info *sbi) { int i; for (i = 0; i < NO_CHECK_TYPE; i++) CURSEG_I(sbi, i)->sum_blk->journal.n_nats = 0; } void write_curseg_info(struct f2fs_sb_info *sbi) { struct f2fs_checkpoint *cp = F2FS_CKPT(sbi); int i; for (i = 0; i < NO_CHECK_TYPE; i++) { cp->alloc_type[i] = CURSEG_I(sbi, i)->alloc_type; if (i < CURSEG_HOT_NODE) { set_cp(cur_data_segno[i], CURSEG_I(sbi, i)->segno); set_cp(cur_data_blkoff[i], CURSEG_I(sbi, i)->next_blkoff); } else { int n = i - CURSEG_HOT_NODE; set_cp(cur_node_segno[n], CURSEG_I(sbi, i)->segno); set_cp(cur_node_blkoff[n], CURSEG_I(sbi, i)->next_blkoff); } } } int lookup_nat_in_journal(struct f2fs_sb_info *sbi, u32 nid, struct f2fs_nat_entry *raw_nat) { struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); struct f2fs_journal *journal = &curseg->sum_blk->journal; int i = 0; for (i = 0; i < nats_in_cursum(journal); i++) { if (le32_to_cpu(nid_in_journal(journal, i)) == nid) { memcpy(raw_nat, &nat_in_journal(journal, i), sizeof(struct f2fs_nat_entry)); DBG(3, "==> Found nid [0x%x] in nat cache\n", nid); return i; } } return -1; } void nullify_nat_entry(struct f2fs_sb_info *sbi, u32 nid) { struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); struct f2fs_journal *journal = &curseg->sum_blk->journal; struct f2fs_nat_block *nat_block; pgoff_t block_addr; int entry_off; int ret; int i = 0; /* check in journal */ for (i = 0; i < nats_in_cursum(journal); i++) { if (le32_to_cpu(nid_in_journal(journal, i)) == nid) { memset(&nat_in_journal(journal, i), 0, sizeof(struct f2fs_nat_entry)); FIX_MSG("Remove nid [0x%x] in nat journal", nid); return; } } nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1); ASSERT(nat_block); entry_off = nid % NAT_ENTRY_PER_BLOCK; block_addr = current_nat_addr(sbi, nid, NULL); ret = dev_read_block(nat_block, block_addr); ASSERT(ret >= 0); if (nid == F2FS_NODE_INO(sbi) || nid == F2FS_META_INO(sbi)) { FIX_MSG("nid [0x%x] block_addr= 0x%x -> 0x1", nid, le32_to_cpu(nat_block->entries[entry_off].block_addr)); nat_block->entries[entry_off].block_addr = cpu_to_le32(0x1); } else { memset(&nat_block->entries[entry_off], 0, sizeof(struct f2fs_nat_entry)); FIX_MSG("Remove nid [0x%x] in NAT", nid); } ret = dev_write_block(nat_block, block_addr); ASSERT(ret >= 0); free(nat_block); } void write_checkpoint(struct f2fs_sb_info *sbi) { struct f2fs_checkpoint *cp = F2FS_CKPT(sbi); struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi); block_t orphan_blks = 0; unsigned long long cp_blk_no; u32 flags = CP_UMOUNT_FLAG; int i, ret; u_int32_t crc = 0; if (is_set_ckpt_flags(cp, CP_ORPHAN_PRESENT_FLAG)) { orphan_blks = __start_sum_addr(sbi) - 1; flags |= CP_ORPHAN_PRESENT_FLAG; } if (is_set_ckpt_flags(cp, CP_TRIMMED_FLAG)) flags |= CP_TRIMMED_FLAG; if (is_set_ckpt_flags(cp, CP_DISABLED_FLAG)) flags |= CP_DISABLED_FLAG; set_cp(free_segment_count, get_free_segments(sbi)); set_cp(valid_block_count, sbi->total_valid_block_count); set_cp(cp_pack_total_block_count, 8 + orphan_blks + get_sb(cp_payload)); flags = update_nat_bits_flags(sb, cp, flags); set_cp(ckpt_flags, flags); crc = f2fs_cal_crc32(F2FS_SUPER_MAGIC, cp, CP_CHKSUM_OFFSET); *((__le32 *)((unsigned char *)cp + CP_CHKSUM_OFFSET)) = cpu_to_le32(crc); cp_blk_no = get_sb(cp_blkaddr); if (sbi->cur_cp == 2) cp_blk_no += 1 << get_sb(log_blocks_per_seg); /* write the first cp */ ret = dev_write_block(cp, cp_blk_no++); ASSERT(ret >= 0); /* skip payload */ cp_blk_no += get_sb(cp_payload); /* skip orphan blocks */ cp_blk_no += orphan_blks; /* update summary blocks having nullified journal entries */ for (i = 0; i < NO_CHECK_TYPE; i++) { struct curseg_info *curseg = CURSEG_I(sbi, i); u64 ssa_blk; ret = dev_write_block(curseg->sum_blk, cp_blk_no++); ASSERT(ret >= 0); /* update original SSA too */ ssa_blk = GET_SUM_BLKADDR(sbi, curseg->segno); ret = dev_write_block(curseg->sum_blk, ssa_blk); ASSERT(ret >= 0); } /* Write nat bits */ if (flags & CP_NAT_BITS_FLAG) write_nat_bits(sbi, sb, cp, sbi->cur_cp); /* in case of sudden power off */ ret = f2fs_fsync_device(); ASSERT(ret >= 0); /* write the last cp */ ret = dev_write_block(cp, cp_blk_no++); ASSERT(ret >= 0); } void build_nat_area_bitmap(struct f2fs_sb_info *sbi) { struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); struct f2fs_journal *journal = &curseg->sum_blk->journal; struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi); struct f2fs_nm_info *nm_i = NM_I(sbi); struct f2fs_nat_block *nat_block; struct node_info ni; u32 nid, nr_nat_blks; pgoff_t block_off; pgoff_t block_addr; int seg_off; int ret; unsigned int i; nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1); ASSERT(nat_block); /* Alloc & build nat entry bitmap */ nr_nat_blks = (get_sb(segment_count_nat) / 2) << sbi->log_blocks_per_seg; fsck->nr_nat_entries = nr_nat_blks * NAT_ENTRY_PER_BLOCK; fsck->nat_area_bitmap_sz = (fsck->nr_nat_entries + 7) / 8; fsck->nat_area_bitmap = calloc(fsck->nat_area_bitmap_sz, 1); ASSERT(fsck->nat_area_bitmap); fsck->entries = calloc(sizeof(struct f2fs_nat_entry), fsck->nr_nat_entries); ASSERT(fsck->entries); for (block_off = 0; block_off < nr_nat_blks; block_off++) { seg_off = block_off >> sbi->log_blocks_per_seg; block_addr = (pgoff_t)(nm_i->nat_blkaddr + (seg_off << sbi->log_blocks_per_seg << 1) + (block_off & ((1 << sbi->log_blocks_per_seg) - 1))); if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) block_addr += sbi->blocks_per_seg; ret = dev_read_block(nat_block, block_addr); ASSERT(ret >= 0); nid = block_off * NAT_ENTRY_PER_BLOCK; for (i = 0; i < NAT_ENTRY_PER_BLOCK; i++) { ni.nid = nid + i; if ((nid + i) == F2FS_NODE_INO(sbi) || (nid + i) == F2FS_META_INO(sbi)) { /* * block_addr of node/meta inode should be 0x1. * Set this bit, and fsck_verify will fix it. */ if (le32_to_cpu(nat_block->entries[i].block_addr) != 0x1) { ASSERT_MSG("\tError: ino[0x%x] block_addr[0x%x] is invalid\n", nid + i, le32_to_cpu(nat_block->entries[i].block_addr)); f2fs_set_bit(nid + i, fsck->nat_area_bitmap); } continue; } node_info_from_raw_nat(&ni, &nat_block->entries[i]); if (ni.blk_addr == 0x0) continue; if (ni.ino == 0x0) { ASSERT_MSG("\tError: ino[0x%8x] or blk_addr[0x%16x]" " is invalid\n", ni.ino, ni.blk_addr); } if (ni.ino == (nid + i)) { fsck->nat_valid_inode_cnt++; DBG(3, "ino[0x%8x] maybe is inode\n", ni.ino); } if (nid + i == 0) { /* * nat entry [0] must be null. If * it is corrupted, set its bit in * nat_area_bitmap, fsck_verify will * nullify it */ ASSERT_MSG("Invalid nat entry[0]: " "blk_addr[0x%x]\n", ni.blk_addr); fsck->chk.valid_nat_entry_cnt--; } DBG(3, "nid[0x%8x] addr[0x%16x] ino[0x%8x]\n", nid + i, ni.blk_addr, ni.ino); f2fs_set_bit(nid + i, fsck->nat_area_bitmap); fsck->chk.valid_nat_entry_cnt++; fsck->entries[nid + i] = nat_block->entries[i]; } } /* Traverse nat journal, update the corresponding entries */ for (i = 0; i < nats_in_cursum(journal); i++) { struct f2fs_nat_entry raw_nat; nid = le32_to_cpu(nid_in_journal(journal, i)); ni.nid = nid; DBG(3, "==> Found nid [0x%x] in nat cache, update it\n", nid); /* Clear the original bit and count */ if (fsck->entries[nid].block_addr != 0x0) { fsck->chk.valid_nat_entry_cnt--; f2fs_clear_bit(nid, fsck->nat_area_bitmap); if (fsck->entries[nid].ino == nid) fsck->nat_valid_inode_cnt--; } /* Use nat entries in journal */ memcpy(&raw_nat, &nat_in_journal(journal, i), sizeof(struct f2fs_nat_entry)); node_info_from_raw_nat(&ni, &raw_nat); if (ni.blk_addr != 0x0) { if (ni.ino == 0x0) ASSERT_MSG("\tError: ino[0x%8x] or blk_addr[0x%16x]" " is invalid\n", ni.ino, ni.blk_addr); if (ni.ino == nid) { fsck->nat_valid_inode_cnt++; DBG(3, "ino[0x%8x] maybe is inode\n", ni.ino); } f2fs_set_bit(nid, fsck->nat_area_bitmap); fsck->chk.valid_nat_entry_cnt++; DBG(3, "nid[0x%x] in nat cache\n", nid); } fsck->entries[nid] = raw_nat; } free(nat_block); DBG(1, "valid nat entries (block_addr != 0x0) [0x%8x : %u]\n", fsck->chk.valid_nat_entry_cnt, fsck->chk.valid_nat_entry_cnt); } static int check_sector_size(struct f2fs_super_block *sb) { u_int32_t log_sectorsize, log_sectors_per_block; log_sectorsize = log_base_2(c.sector_size); log_sectors_per_block = log_base_2(c.sectors_per_blk); if (log_sectorsize == get_sb(log_sectorsize) && log_sectors_per_block == get_sb(log_sectors_per_block)) return 0; set_sb(log_sectorsize, log_sectorsize); set_sb(log_sectors_per_block, log_sectors_per_block); update_superblock(sb, SB_MASK_ALL); return 0; } static void tune_sb_features(struct f2fs_sb_info *sbi) { int sb_changed = 0; struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi); if (!(sb->feature & cpu_to_le32(F2FS_FEATURE_ENCRYPT)) && c.feature & cpu_to_le32(F2FS_FEATURE_ENCRYPT)) { sb->feature |= cpu_to_le32(F2FS_FEATURE_ENCRYPT); MSG(0, "Info: Set Encryption feature\n"); sb_changed = 1; } /* TODO: quota needs to allocate inode numbers */ c.feature = sb->feature; if (!sb_changed) return; update_superblock(sb, SB_MASK_ALL); } int f2fs_do_mount(struct f2fs_sb_info *sbi) { struct f2fs_checkpoint *cp = NULL; struct f2fs_super_block *sb = NULL; int ret; sbi->active_logs = NR_CURSEG_TYPE; ret = validate_super_block(sbi, SB0_ADDR); if (ret) { ret = validate_super_block(sbi, SB1_ADDR); if (ret) return -1; } sb = F2FS_RAW_SUPER(sbi); ret = check_sector_size(sb); if (ret) return -1; print_raw_sb_info(sb); init_sb_info(sbi); ret = get_valid_checkpoint(sbi); if (ret) { ERR_MSG("Can't find valid checkpoint\n"); return -1; } if (sanity_check_ckpt(sbi)) { ERR_MSG("Checkpoint is polluted\n"); return -1; } cp = F2FS_CKPT(sbi); print_ckpt_info(sbi); if (c.quota_fix) { if (get_cp(ckpt_flags) & CP_QUOTA_NEED_FSCK_FLAG) c.fix_on = 1; } if (c.auto_fix || c.preen_mode) { u32 flag = get_cp(ckpt_flags); if (flag & CP_FSCK_FLAG || flag & CP_QUOTA_NEED_FSCK_FLAG || (exist_qf_ino(sb) && (flag & CP_ERROR_FLAG))) { c.fix_on = 1; } else if (!c.preen_mode) { print_cp_state(flag); return 1; } } c.bug_on = 0; tune_sb_features(sbi); /* precompute checksum seed for metadata */ if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM)) c.chksum_seed = f2fs_cal_crc32(~0, sb->uuid, sizeof(sb->uuid)); sbi->total_valid_node_count = get_cp(valid_node_count); sbi->total_valid_inode_count = get_cp(valid_inode_count); sbi->user_block_count = get_cp(user_block_count); sbi->total_valid_block_count = get_cp(valid_block_count); sbi->last_valid_block_count = sbi->total_valid_block_count; sbi->alloc_valid_block_count = 0; if (build_segment_manager(sbi)) { ERR_MSG("build_segment_manager failed\n"); return -1; } if (build_node_manager(sbi)) { ERR_MSG("build_node_manager failed\n"); return -1; } /* Check nat_bits */ if (c.func == FSCK && is_set_ckpt_flags(cp, CP_NAT_BITS_FLAG)) { if (check_nat_bits(sbi, sb, cp) && c.fix_on) write_nat_bits(sbi, sb, cp, sbi->cur_cp); } return 0; } void f2fs_do_umount(struct f2fs_sb_info *sbi) { struct sit_info *sit_i = SIT_I(sbi); struct f2fs_sm_info *sm_i = SM_I(sbi); struct f2fs_nm_info *nm_i = NM_I(sbi); unsigned int i; /* free nm_info */ if (c.func == SLOAD || c.func == FSCK) free(nm_i->nid_bitmap); free(nm_i->nat_bitmap); free(sbi->nm_info); /* free sit_info */ for (i = 0; i < TOTAL_SEGS(sbi); i++) free(sit_i->sentries[i].cur_valid_map); free(sit_i->sit_bitmap); free(sm_i->sit_info); /* free sm_info */ for (i = 0; i < NR_CURSEG_TYPE; i++) free(sm_i->curseg_array[i].sum_blk); free(sm_i->curseg_array); free(sbi->sm_info); free(sbi->ckpt); free(sbi->raw_super); }