"""psCharStrings.py -- module implementing various kinds of CharStrings: CFF dictionary data and Type1/Type2 CharStrings. """ from __future__ import print_function, division, absolute_import from fontTools.misc.py23 import * from fontTools.misc.fixedTools import fixedToFloat, otRound from fontTools.pens.boundsPen import BoundsPen import struct import logging log = logging.getLogger(__name__) def read_operator(self, b0, data, index): if b0 == 12: op = (b0, byteord(data[index])) index = index+1 else: op = b0 try: operator = self.operators[op] except KeyError: return None, index value = self.handle_operator(operator) return value, index def read_byte(self, b0, data, index): return b0 - 139, index def read_smallInt1(self, b0, data, index): b1 = byteord(data[index]) return (b0-247)*256 + b1 + 108, index+1 def read_smallInt2(self, b0, data, index): b1 = byteord(data[index]) return -(b0-251)*256 - b1 - 108, index+1 def read_shortInt(self, b0, data, index): value, = struct.unpack(">h", data[index:index+2]) return value, index+2 def read_longInt(self, b0, data, index): value, = struct.unpack(">l", data[index:index+4]) return value, index+4 def read_fixed1616(self, b0, data, index): value, = struct.unpack(">l", data[index:index+4]) return fixedToFloat(value, precisionBits=16), index+4 def read_reserved(self, b0, data, index): assert NotImplementedError return NotImplemented, index def read_realNumber(self, b0, data, index): number = '' while True: b = byteord(data[index]) index = index + 1 nibble0 = (b & 0xf0) >> 4 nibble1 = b & 0x0f if nibble0 == 0xf: break number = number + realNibbles[nibble0] if nibble1 == 0xf: break number = number + realNibbles[nibble1] return float(number), index t1OperandEncoding = [None] * 256 t1OperandEncoding[0:32] = (32) * [read_operator] t1OperandEncoding[32:247] = (247 - 32) * [read_byte] t1OperandEncoding[247:251] = (251 - 247) * [read_smallInt1] t1OperandEncoding[251:255] = (255 - 251) * [read_smallInt2] t1OperandEncoding[255] = read_longInt assert len(t1OperandEncoding) == 256 t2OperandEncoding = t1OperandEncoding[:] t2OperandEncoding[28] = read_shortInt t2OperandEncoding[255] = read_fixed1616 cffDictOperandEncoding = t2OperandEncoding[:] cffDictOperandEncoding[29] = read_longInt cffDictOperandEncoding[30] = read_realNumber cffDictOperandEncoding[255] = read_reserved realNibbles = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '.', 'E', 'E-', None, '-'] realNibblesDict = {v:i for i,v in enumerate(realNibbles)} maxOpStack = 193 def buildOperatorDict(operatorList): oper = {} opc = {} for item in operatorList: if len(item) == 2: oper[item[0]] = item[1] else: oper[item[0]] = item[1:] if isinstance(item[0], tuple): opc[item[1]] = item[0] else: opc[item[1]] = (item[0],) return oper, opc t2Operators = [ # opcode name (1, 'hstem'), (3, 'vstem'), (4, 'vmoveto'), (5, 'rlineto'), (6, 'hlineto'), (7, 'vlineto'), (8, 'rrcurveto'), (10, 'callsubr'), (11, 'return'), (14, 'endchar'), (15, 'vsindex'), (16, 'blend'), (18, 'hstemhm'), (19, 'hintmask'), (20, 'cntrmask'), (21, 'rmoveto'), (22, 'hmoveto'), (23, 'vstemhm'), (24, 'rcurveline'), (25, 'rlinecurve'), (26, 'vvcurveto'), (27, 'hhcurveto'), # (28, 'shortint'), # not really an operator (29, 'callgsubr'), (30, 'vhcurveto'), (31, 'hvcurveto'), ((12, 0), 'ignore'), # dotsection. Yes, there a few very early OTF/CFF # fonts with this deprecated operator. Just ignore it. ((12, 3), 'and'), ((12, 4), 'or'), ((12, 5), 'not'), ((12, 8), 'store'), ((12, 9), 'abs'), ((12, 10), 'add'), ((12, 11), 'sub'), ((12, 12), 'div'), ((12, 13), 'load'), ((12, 14), 'neg'), ((12, 15), 'eq'), ((12, 18), 'drop'), ((12, 20), 'put'), ((12, 21), 'get'), ((12, 22), 'ifelse'), ((12, 23), 'random'), ((12, 24), 'mul'), ((12, 26), 'sqrt'), ((12, 27), 'dup'), ((12, 28), 'exch'), ((12, 29), 'index'), ((12, 30), 'roll'), ((12, 34), 'hflex'), ((12, 35), 'flex'), ((12, 36), 'hflex1'), ((12, 37), 'flex1'), ] def getIntEncoder(format): if format == "cff": fourByteOp = bytechr(29) elif format == "t1": fourByteOp = bytechr(255) else: assert format == "t2" fourByteOp = None def encodeInt(value, fourByteOp=fourByteOp, bytechr=bytechr, pack=struct.pack, unpack=struct.unpack): if -107 <= value <= 107: code = bytechr(value + 139) elif 108 <= value <= 1131: value = value - 108 code = bytechr((value >> 8) + 247) + bytechr(value & 0xFF) elif -1131 <= value <= -108: value = -value - 108 code = bytechr((value >> 8) + 251) + bytechr(value & 0xFF) elif fourByteOp is None: # T2 only supports 2 byte ints if -32768 <= value <= 32767: code = bytechr(28) + pack(">h", value) else: # Backwards compatible hack: due to a previous bug in FontTools, # 16.16 fixed numbers were written out as 4-byte ints. When # these numbers were small, they were wrongly written back as # small ints instead of 4-byte ints, breaking round-tripping. # This here workaround doesn't do it any better, since we can't # distinguish anymore between small ints that were supposed to # be small fixed numbers and small ints that were just small # ints. Hence the warning. log.warning("4-byte T2 number got passed to the " "IntType handler. This should happen only when reading in " "old XML files.\n") code = bytechr(255) + pack(">l", value) else: code = fourByteOp + pack(">l", value) return code return encodeInt encodeIntCFF = getIntEncoder("cff") encodeIntT1 = getIntEncoder("t1") encodeIntT2 = getIntEncoder("t2") def encodeFixed(f, pack=struct.pack): """For T2 only""" value = otRound(f * 65536) # convert the float to fixed point if value & 0xFFFF == 0: # check if the fractional part is zero return encodeIntT2(value >> 16) # encode only the integer part else: return b"\xff" + pack(">l", value) # encode the entire fixed point value realZeroBytes = bytechr(30) + bytechr(0xf) def encodeFloat(f): # For CFF only, used in cffLib if f == 0.0: # 0.0 == +0.0 == -0.0 return realZeroBytes # Note: 14 decimal digits seems to be the limitation for CFF real numbers # in macOS. However, we use 8 here to match the implementation of AFDKO. s = "%.8G" % f if s[:2] == "0.": s = s[1:] elif s[:3] == "-0.": s = "-" + s[2:] nibbles = [] while s: c = s[0] s = s[1:] if c == "E": c2 = s[:1] if c2 == "-": s = s[1:] c = "E-" elif c2 == "+": s = s[1:] nibbles.append(realNibblesDict[c]) nibbles.append(0xf) if len(nibbles) % 2: nibbles.append(0xf) d = bytechr(30) for i in range(0, len(nibbles), 2): d = d + bytechr(nibbles[i] << 4 | nibbles[i+1]) return d class CharStringCompileError(Exception): pass class SimpleT2Decompiler(object): def __init__(self, localSubrs, globalSubrs, private=None): self.localSubrs = localSubrs self.localBias = calcSubrBias(localSubrs) self.globalSubrs = globalSubrs self.globalBias = calcSubrBias(globalSubrs) self.private = private self.reset() def reset(self): self.callingStack = [] self.operandStack = [] self.hintCount = 0 self.hintMaskBytes = 0 self.numRegions = 0 def execute(self, charString): self.callingStack.append(charString) needsDecompilation = charString.needsDecompilation() if needsDecompilation: program = [] pushToProgram = program.append else: pushToProgram = lambda x: None pushToStack = self.operandStack.append index = 0 while True: token, isOperator, index = charString.getToken(index) if token is None: break # we're done! pushToProgram(token) if isOperator: handlerName = "op_" + token handler = getattr(self, handlerName, None) if handler is not None: rv = handler(index) if rv: hintMaskBytes, index = rv pushToProgram(hintMaskBytes) else: self.popall() else: pushToStack(token) if needsDecompilation: charString.setProgram(program) del self.callingStack[-1] def pop(self): value = self.operandStack[-1] del self.operandStack[-1] return value def popall(self): stack = self.operandStack[:] self.operandStack[:] = [] return stack def push(self, value): self.operandStack.append(value) def op_return(self, index): if self.operandStack: pass def op_endchar(self, index): pass def op_ignore(self, index): pass def op_callsubr(self, index): subrIndex = self.pop() subr = self.localSubrs[subrIndex+self.localBias] self.execute(subr) def op_callgsubr(self, index): subrIndex = self.pop() subr = self.globalSubrs[subrIndex+self.globalBias] self.execute(subr) def op_hstem(self, index): self.countHints() def op_vstem(self, index): self.countHints() def op_hstemhm(self, index): self.countHints() def op_vstemhm(self, index): self.countHints() def op_hintmask(self, index): if not self.hintMaskBytes: self.countHints() self.hintMaskBytes = (self.hintCount + 7) // 8 hintMaskBytes, index = self.callingStack[-1].getBytes(index, self.hintMaskBytes) return hintMaskBytes, index op_cntrmask = op_hintmask def countHints(self): args = self.popall() self.hintCount = self.hintCount + len(args) // 2 # misc def op_and(self, index): raise NotImplementedError def op_or(self, index): raise NotImplementedError def op_not(self, index): raise NotImplementedError def op_store(self, index): raise NotImplementedError def op_abs(self, index): raise NotImplementedError def op_add(self, index): raise NotImplementedError def op_sub(self, index): raise NotImplementedError def op_div(self, index): raise NotImplementedError def op_load(self, index): raise NotImplementedError def op_neg(self, index): raise NotImplementedError def op_eq(self, index): raise NotImplementedError def op_drop(self, index): raise NotImplementedError def op_put(self, index): raise NotImplementedError def op_get(self, index): raise NotImplementedError def op_ifelse(self, index): raise NotImplementedError def op_random(self, index): raise NotImplementedError def op_mul(self, index): raise NotImplementedError def op_sqrt(self, index): raise NotImplementedError def op_dup(self, index): raise NotImplementedError def op_exch(self, index): raise NotImplementedError def op_index(self, index): raise NotImplementedError def op_roll(self, index): raise NotImplementedError # TODO(behdad): move to T2OutlineExtractor and add a 'setVariation' # method that takes VarStoreData and a location def op_blend(self, index): if self.numRegions == 0: self.numRegions = self.private.getNumRegions() numBlends = self.pop() numOps = numBlends * (self.numRegions + 1) blendArgs = self.operandStack[-numOps:] del self.operandStack[-(numOps-numBlends):] # Leave the default operands on the stack. def op_vsindex(self, index): vi = self.pop() self.numRegions = self.private.getNumRegions(vi) t1Operators = [ # opcode name (1, 'hstem'), (3, 'vstem'), (4, 'vmoveto'), (5, 'rlineto'), (6, 'hlineto'), (7, 'vlineto'), (8, 'rrcurveto'), (9, 'closepath'), (10, 'callsubr'), (11, 'return'), (13, 'hsbw'), (14, 'endchar'), (21, 'rmoveto'), (22, 'hmoveto'), (30, 'vhcurveto'), (31, 'hvcurveto'), ((12, 0), 'dotsection'), ((12, 1), 'vstem3'), ((12, 2), 'hstem3'), ((12, 6), 'seac'), ((12, 7), 'sbw'), ((12, 12), 'div'), ((12, 16), 'callothersubr'), ((12, 17), 'pop'), ((12, 33), 'setcurrentpoint'), ] class T2WidthExtractor(SimpleT2Decompiler): def __init__(self, localSubrs, globalSubrs, nominalWidthX, defaultWidthX, private=None): SimpleT2Decompiler.__init__(self, localSubrs, globalSubrs, private) self.nominalWidthX = nominalWidthX self.defaultWidthX = defaultWidthX def reset(self): SimpleT2Decompiler.reset(self) self.gotWidth = 0 self.width = 0 def popallWidth(self, evenOdd=0): args = self.popall() if not self.gotWidth: if evenOdd ^ (len(args) % 2): # For CFF2 charstrings, this should never happen assert self.defaultWidthX is not None, "CFF2 CharStrings must not have an initial width value" self.width = self.nominalWidthX + args[0] args = args[1:] else: self.width = self.defaultWidthX self.gotWidth = 1 return args def countHints(self): args = self.popallWidth() self.hintCount = self.hintCount + len(args) // 2 def op_rmoveto(self, index): self.popallWidth() def op_hmoveto(self, index): self.popallWidth(1) def op_vmoveto(self, index): self.popallWidth(1) def op_endchar(self, index): self.popallWidth() class T2OutlineExtractor(T2WidthExtractor): def __init__(self, pen, localSubrs, globalSubrs, nominalWidthX, defaultWidthX, private=None): T2WidthExtractor.__init__( self, localSubrs, globalSubrs, nominalWidthX, defaultWidthX, private) self.pen = pen def reset(self): T2WidthExtractor.reset(self) self.currentPoint = (0, 0) self.sawMoveTo = 0 def _nextPoint(self, point): x, y = self.currentPoint point = x + point[0], y + point[1] self.currentPoint = point return point def rMoveTo(self, point): self.pen.moveTo(self._nextPoint(point)) self.sawMoveTo = 1 def rLineTo(self, point): if not self.sawMoveTo: self.rMoveTo((0, 0)) self.pen.lineTo(self._nextPoint(point)) def rCurveTo(self, pt1, pt2, pt3): if not self.sawMoveTo: self.rMoveTo((0, 0)) nextPoint = self._nextPoint self.pen.curveTo(nextPoint(pt1), nextPoint(pt2), nextPoint(pt3)) def closePath(self): if self.sawMoveTo: self.pen.closePath() self.sawMoveTo = 0 def endPath(self): # In T2 there are no open paths, so always do a closePath when # finishing a sub path. self.closePath() # # hint operators # #def op_hstem(self, index): # self.countHints() #def op_vstem(self, index): # self.countHints() #def op_hstemhm(self, index): # self.countHints() #def op_vstemhm(self, index): # self.countHints() #def op_hintmask(self, index): # self.countHints() #def op_cntrmask(self, index): # self.countHints() # # path constructors, moveto # def op_rmoveto(self, index): self.endPath() self.rMoveTo(self.popallWidth()) def op_hmoveto(self, index): self.endPath() self.rMoveTo((self.popallWidth(1)[0], 0)) def op_vmoveto(self, index): self.endPath() self.rMoveTo((0, self.popallWidth(1)[0])) def op_endchar(self, index): self.endPath() args = self.popallWidth() if args: from fontTools.encodings.StandardEncoding import StandardEncoding # endchar can do seac accent bulding; The T2 spec says it's deprecated, # but recent software that shall remain nameless does output it. adx, ady, bchar, achar = args baseGlyph = StandardEncoding[bchar] self.pen.addComponent(baseGlyph, (1, 0, 0, 1, 0, 0)) accentGlyph = StandardEncoding[achar] self.pen.addComponent(accentGlyph, (1, 0, 0, 1, adx, ady)) # # path constructors, lines # def op_rlineto(self, index): args = self.popall() for i in range(0, len(args), 2): point = args[i:i+2] self.rLineTo(point) def op_hlineto(self, index): self.alternatingLineto(1) def op_vlineto(self, index): self.alternatingLineto(0) # # path constructors, curves # def op_rrcurveto(self, index): """{dxa dya dxb dyb dxc dyc}+ rrcurveto""" args = self.popall() for i in range(0, len(args), 6): dxa, dya, dxb, dyb, dxc, dyc, = args[i:i+6] self.rCurveTo((dxa, dya), (dxb, dyb), (dxc, dyc)) def op_rcurveline(self, index): """{dxa dya dxb dyb dxc dyc}+ dxd dyd rcurveline""" args = self.popall() for i in range(0, len(args)-2, 6): dxb, dyb, dxc, dyc, dxd, dyd = args[i:i+6] self.rCurveTo((dxb, dyb), (dxc, dyc), (dxd, dyd)) self.rLineTo(args[-2:]) def op_rlinecurve(self, index): """{dxa dya}+ dxb dyb dxc dyc dxd dyd rlinecurve""" args = self.popall() lineArgs = args[:-6] for i in range(0, len(lineArgs), 2): self.rLineTo(lineArgs[i:i+2]) dxb, dyb, dxc, dyc, dxd, dyd = args[-6:] self.rCurveTo((dxb, dyb), (dxc, dyc), (dxd, dyd)) def op_vvcurveto(self, index): "dx1? {dya dxb dyb dyc}+ vvcurveto" args = self.popall() if len(args) % 2: dx1 = args[0] args = args[1:] else: dx1 = 0 for i in range(0, len(args), 4): dya, dxb, dyb, dyc = args[i:i+4] self.rCurveTo((dx1, dya), (dxb, dyb), (0, dyc)) dx1 = 0 def op_hhcurveto(self, index): """dy1? {dxa dxb dyb dxc}+ hhcurveto""" args = self.popall() if len(args) % 2: dy1 = args[0] args = args[1:] else: dy1 = 0 for i in range(0, len(args), 4): dxa, dxb, dyb, dxc = args[i:i+4] self.rCurveTo((dxa, dy1), (dxb, dyb), (dxc, 0)) dy1 = 0 def op_vhcurveto(self, index): """dy1 dx2 dy2 dx3 {dxa dxb dyb dyc dyd dxe dye dxf}* dyf? vhcurveto (30) {dya dxb dyb dxc dxd dxe dye dyf}+ dxf? vhcurveto """ args = self.popall() while args: args = self.vcurveto(args) if args: args = self.hcurveto(args) def op_hvcurveto(self, index): """dx1 dx2 dy2 dy3 {dya dxb dyb dxc dxd dxe dye dyf}* dxf? {dxa dxb dyb dyc dyd dxe dye dxf}+ dyf? """ args = self.popall() while args: args = self.hcurveto(args) if args: args = self.vcurveto(args) # # path constructors, flex # def op_hflex(self, index): dx1, dx2, dy2, dx3, dx4, dx5, dx6 = self.popall() dy1 = dy3 = dy4 = dy6 = 0 dy5 = -dy2 self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3)) self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6)) def op_flex(self, index): dx1, dy1, dx2, dy2, dx3, dy3, dx4, dy4, dx5, dy5, dx6, dy6, fd = self.popall() self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3)) self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6)) def op_hflex1(self, index): dx1, dy1, dx2, dy2, dx3, dx4, dx5, dy5, dx6 = self.popall() dy3 = dy4 = 0 dy6 = -(dy1 + dy2 + dy3 + dy4 + dy5) self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3)) self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6)) def op_flex1(self, index): dx1, dy1, dx2, dy2, dx3, dy3, dx4, dy4, dx5, dy5, d6 = self.popall() dx = dx1 + dx2 + dx3 + dx4 + dx5 dy = dy1 + dy2 + dy3 + dy4 + dy5 if abs(dx) > abs(dy): dx6 = d6 dy6 = -dy else: dx6 = -dx dy6 = d6 self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3)) self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6)) # misc def op_and(self, index): raise NotImplementedError def op_or(self, index): raise NotImplementedError def op_not(self, index): raise NotImplementedError def op_store(self, index): raise NotImplementedError def op_abs(self, index): raise NotImplementedError def op_add(self, index): raise NotImplementedError def op_sub(self, index): raise NotImplementedError def op_div(self, index): num2 = self.pop() num1 = self.pop() d1 = num1//num2 d2 = num1/num2 if d1 == d2: self.push(d1) else: self.push(d2) def op_load(self, index): raise NotImplementedError def op_neg(self, index): raise NotImplementedError def op_eq(self, index): raise NotImplementedError def op_drop(self, index): raise NotImplementedError def op_put(self, index): raise NotImplementedError def op_get(self, index): raise NotImplementedError def op_ifelse(self, index): raise NotImplementedError def op_random(self, index): raise NotImplementedError def op_mul(self, index): raise NotImplementedError def op_sqrt(self, index): raise NotImplementedError def op_dup(self, index): raise NotImplementedError def op_exch(self, index): raise NotImplementedError def op_index(self, index): raise NotImplementedError def op_roll(self, index): raise NotImplementedError # # miscellaneous helpers # def alternatingLineto(self, isHorizontal): args = self.popall() for arg in args: if isHorizontal: point = (arg, 0) else: point = (0, arg) self.rLineTo(point) isHorizontal = not isHorizontal def vcurveto(self, args): dya, dxb, dyb, dxc = args[:4] args = args[4:] if len(args) == 1: dyc = args[0] args = [] else: dyc = 0 self.rCurveTo((0, dya), (dxb, dyb), (dxc, dyc)) return args def hcurveto(self, args): dxa, dxb, dyb, dyc = args[:4] args = args[4:] if len(args) == 1: dxc = args[0] args = [] else: dxc = 0 self.rCurveTo((dxa, 0), (dxb, dyb), (dxc, dyc)) return args class T1OutlineExtractor(T2OutlineExtractor): def __init__(self, pen, subrs): self.pen = pen self.subrs = subrs self.reset() def reset(self): self.flexing = 0 self.width = 0 self.sbx = 0 T2OutlineExtractor.reset(self) def endPath(self): if self.sawMoveTo: self.pen.endPath() self.sawMoveTo = 0 def popallWidth(self, evenOdd=0): return self.popall() def exch(self): stack = self.operandStack stack[-1], stack[-2] = stack[-2], stack[-1] # # path constructors # def op_rmoveto(self, index): if self.flexing: return self.endPath() self.rMoveTo(self.popall()) def op_hmoveto(self, index): if self.flexing: # We must add a parameter to the stack if we are flexing self.push(0) return self.endPath() self.rMoveTo((self.popall()[0], 0)) def op_vmoveto(self, index): if self.flexing: # We must add a parameter to the stack if we are flexing self.push(0) self.exch() return self.endPath() self.rMoveTo((0, self.popall()[0])) def op_closepath(self, index): self.closePath() def op_setcurrentpoint(self, index): args = self.popall() x, y = args self.currentPoint = x, y def op_endchar(self, index): self.endPath() def op_hsbw(self, index): sbx, wx = self.popall() self.width = wx self.sbx = sbx self.currentPoint = sbx, self.currentPoint[1] def op_sbw(self, index): self.popall() # XXX # def op_callsubr(self, index): subrIndex = self.pop() subr = self.subrs[subrIndex] self.execute(subr) def op_callothersubr(self, index): subrIndex = self.pop() nArgs = self.pop() #print nArgs, subrIndex, "callothersubr" if subrIndex == 0 and nArgs == 3: self.doFlex() self.flexing = 0 elif subrIndex == 1 and nArgs == 0: self.flexing = 1 # ignore... def op_pop(self, index): pass # ignore... def doFlex(self): finaly = self.pop() finalx = self.pop() self.pop() # flex height is unused p3y = self.pop() p3x = self.pop() bcp4y = self.pop() bcp4x = self.pop() bcp3y = self.pop() bcp3x = self.pop() p2y = self.pop() p2x = self.pop() bcp2y = self.pop() bcp2x = self.pop() bcp1y = self.pop() bcp1x = self.pop() rpy = self.pop() rpx = self.pop() # call rrcurveto self.push(bcp1x+rpx) self.push(bcp1y+rpy) self.push(bcp2x) self.push(bcp2y) self.push(p2x) self.push(p2y) self.op_rrcurveto(None) # call rrcurveto self.push(bcp3x) self.push(bcp3y) self.push(bcp4x) self.push(bcp4y) self.push(p3x) self.push(p3y) self.op_rrcurveto(None) # Push back final coords so subr 0 can find them self.push(finalx) self.push(finaly) def op_dotsection(self, index): self.popall() # XXX def op_hstem3(self, index): self.popall() # XXX def op_seac(self, index): "asb adx ady bchar achar seac" from fontTools.encodings.StandardEncoding import StandardEncoding asb, adx, ady, bchar, achar = self.popall() baseGlyph = StandardEncoding[bchar] self.pen.addComponent(baseGlyph, (1, 0, 0, 1, 0, 0)) accentGlyph = StandardEncoding[achar] adx = adx + self.sbx - asb # seac weirdness self.pen.addComponent(accentGlyph, (1, 0, 0, 1, adx, ady)) def op_vstem3(self, index): self.popall() # XXX class T2CharString(object): operandEncoding = t2OperandEncoding operators, opcodes = buildOperatorDict(t2Operators) decompilerClass = SimpleT2Decompiler outlineExtractor = T2OutlineExtractor def __init__(self, bytecode=None, program=None, private=None, globalSubrs=None): if program is None: program = [] self.bytecode = bytecode self.program = program self.private = private self.globalSubrs = globalSubrs if globalSubrs is not None else [] def __repr__(self): if self.bytecode is None: return "<%s (source) at %x>" % (self.__class__.__name__, id(self)) else: return "<%s (bytecode) at %x>" % (self.__class__.__name__, id(self)) def getIntEncoder(self): return encodeIntT2 def getFixedEncoder(self): return encodeFixed def decompile(self): if not self.needsDecompilation(): return subrs = getattr(self.private, "Subrs", []) decompiler = self.decompilerClass(subrs, self.globalSubrs, self.private) decompiler.execute(self) def draw(self, pen): subrs = getattr(self.private, "Subrs", []) extractor = self.outlineExtractor(pen, subrs, self.globalSubrs, self.private.nominalWidthX, self.private.defaultWidthX, self.private) extractor.execute(self) self.width = extractor.width def calcBounds(self, glyphSet): boundsPen = BoundsPen(glyphSet) self.draw(boundsPen) return boundsPen.bounds def compile(self, isCFF2=False): if self.bytecode is not None: return opcodes = self.opcodes program = self.program if isCFF2: # If present, remove return and endchar operators. if program and program[-1] in ("return", "endchar"): program = program[:-1] elif program and not isinstance(program[-1], basestring): raise CharStringCompileError( "T2CharString or Subr has items on the stack after last operator." ) bytecode = [] encodeInt = self.getIntEncoder() encodeFixed = self.getFixedEncoder() i = 0 end = len(program) while i < end: token = program[i] i = i + 1 if isinstance(token, basestring): try: bytecode.extend(bytechr(b) for b in opcodes[token]) except KeyError: raise CharStringCompileError("illegal operator: %s" % token) if token in ('hintmask', 'cntrmask'): bytecode.append(program[i]) # hint mask i = i + 1 elif isinstance(token, int): bytecode.append(encodeInt(token)) elif isinstance(token, float): bytecode.append(encodeFixed(token)) else: assert 0, "unsupported type: %s" % type(token) try: bytecode = bytesjoin(bytecode) except TypeError: log.error(bytecode) raise self.setBytecode(bytecode) def needsDecompilation(self): return self.bytecode is not None def setProgram(self, program): self.program = program self.bytecode = None def setBytecode(self, bytecode): self.bytecode = bytecode self.program = None def getToken(self, index, len=len, byteord=byteord, basestring=basestring, isinstance=isinstance): if self.bytecode is not None: if index >= len(self.bytecode): return None, 0, 0 b0 = byteord(self.bytecode[index]) index = index + 1 handler = self.operandEncoding[b0] token, index = handler(self, b0, self.bytecode, index) else: if index >= len(self.program): return None, 0, 0 token = self.program[index] index = index + 1 isOperator = isinstance(token, basestring) return token, isOperator, index def getBytes(self, index, nBytes): if self.bytecode is not None: newIndex = index + nBytes bytes = self.bytecode[index:newIndex] index = newIndex else: bytes = self.program[index] index = index + 1 assert len(bytes) == nBytes return bytes, index def handle_operator(self, operator): return operator def toXML(self, xmlWriter): from fontTools.misc.textTools import num2binary if self.bytecode is not None: xmlWriter.dumphex(self.bytecode) else: index = 0 args = [] while True: token, isOperator, index = self.getToken(index) if token is None: break if isOperator: args = [str(arg) for arg in args] if token in ('hintmask', 'cntrmask'): hintMask, isOperator, index = self.getToken(index) bits = [] for byte in hintMask: bits.append(num2binary(byteord(byte), 8)) hintMask = strjoin(bits) line = ' '.join(args + [token, hintMask]) else: line = ' '.join(args + [token]) xmlWriter.write(line) xmlWriter.newline() args = [] else: args.append(token) if args: # NOTE: only CFF2 charstrings/subrs can have numeric arguments on # the stack after the last operator. Compiling this would fail if # this is part of CFF 1.0 table. args = [str(arg) for arg in args] line = ' '.join(args) xmlWriter.write(line) def fromXML(self, name, attrs, content): from fontTools.misc.textTools import binary2num, readHex if attrs.get("raw"): self.setBytecode(readHex(content)) return content = strjoin(content) content = content.split() program = [] end = len(content) i = 0 while i < end: token = content[i] i = i + 1 try: token = int(token) except ValueError: try: token = float(token) except ValueError: program.append(token) if token in ('hintmask', 'cntrmask'): mask = content[i] maskBytes = b"" for j in range(0, len(mask), 8): maskBytes = maskBytes + bytechr(binary2num(mask[j:j+8])) program.append(maskBytes) i = i + 1 else: program.append(token) else: program.append(token) self.setProgram(program) class T1CharString(T2CharString): operandEncoding = t1OperandEncoding operators, opcodes = buildOperatorDict(t1Operators) def __init__(self, bytecode=None, program=None, subrs=None): if program is None: program = [] self.bytecode = bytecode self.program = program self.subrs = subrs def getIntEncoder(self): return encodeIntT1 def getFixedEncoder(self): def encodeFixed(value): raise TypeError("Type 1 charstrings don't support floating point operands") def decompile(self): if self.bytecode is None: return program = [] index = 0 while True: token, isOperator, index = self.getToken(index) if token is None: break program.append(token) self.setProgram(program) def draw(self, pen): extractor = T1OutlineExtractor(pen, self.subrs) extractor.execute(self) self.width = extractor.width class DictDecompiler(object): operandEncoding = cffDictOperandEncoding def __init__(self, strings, parent=None): self.stack = [] self.strings = strings self.dict = {} self.parent = parent def getDict(self): assert len(self.stack) == 0, "non-empty stack" return self.dict def decompile(self, data): index = 0 lenData = len(data) push = self.stack.append while index < lenData: b0 = byteord(data[index]) index = index + 1 handler = self.operandEncoding[b0] value, index = handler(self, b0, data, index) if value is not None: push(value) def pop(self): value = self.stack[-1] del self.stack[-1] return value def popall(self): args = self.stack[:] del self.stack[:] return args def handle_operator(self, operator): operator, argType = operator if isinstance(argType, tuple): value = () for i in range(len(argType)-1, -1, -1): arg = argType[i] arghandler = getattr(self, "arg_" + arg) value = (arghandler(operator),) + value else: arghandler = getattr(self, "arg_" + argType) value = arghandler(operator) if operator == "blend": self.stack.extend(value) else: self.dict[operator] = value def arg_number(self, name): if isinstance(self.stack[0], list): out = self.arg_blend_number(self.stack) else: out = self.pop() return out def arg_blend_number(self, name): out = [] blendArgs = self.pop() numMasters = len(blendArgs) out.append(blendArgs) out.append("blend") dummy = self.popall() return blendArgs def arg_SID(self, name): return self.strings[self.pop()] def arg_array(self, name): return self.popall() def arg_blendList(self, name): """ There may be non-blend args at the top of the stack. We first calculate where the blend args start in the stack. These are the last numMasters*numBlends) +1 args. The blend args starts with numMasters relative coordinate values, the BlueValues in the list from the default master font. This is followed by numBlends list of values. Each of value in one of these lists is the Variable Font delta for the matching region. We re-arrange this to be a list of numMaster entries. Each entry starts with the corresponding default font relative value, and is followed by the delta values. We then convert the default values, the first item in each entry, to an absolute value. """ vsindex = self.dict.get('vsindex', 0) numMasters = self.parent.getNumRegions(vsindex) + 1 # only a PrivateDict has blended ops. numBlends = self.pop() args = self.popall() numArgs = len(args) # The spec says that there should be no non-blended Blue Values,. assert(numArgs == numMasters * numBlends) value = [None]*numBlends numDeltas = numMasters-1 i = 0 prevVal = 0 while i < numBlends: newVal = args[i] + prevVal prevVal = newVal masterOffset = numBlends + (i* numDeltas) blendList = [newVal] + args[masterOffset:masterOffset+numDeltas] value[i] = blendList i += 1 return value def arg_delta(self, name): valueList = self.popall() out = [] if valueList and isinstance(valueList[0], list): # arg_blendList() has already converted these to absolute values. out = valueList else: current = 0 for v in valueList: current = current + v out.append(current) return out def calcSubrBias(subrs): nSubrs = len(subrs) if nSubrs < 1240: bias = 107 elif nSubrs < 33900: bias = 1131 else: bias = 32768 return bias