// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_BIND_H_ #define BASE_BIND_H_ #include <utility> #include "base/bind_internal.h" #include "base/compiler_specific.h" #include "build/build_config.h" #if defined(OS_MACOSX) && !HAS_FEATURE(objc_arc) #include "base/mac/scoped_block.h" #endif // ----------------------------------------------------------------------------- // Usage documentation // ----------------------------------------------------------------------------- // // Overview: // base::BindOnce() and base::BindRepeating() are helpers for creating // base::OnceCallback and base::RepeatingCallback objects respectively. // // For a runnable object of n-arity, the base::Bind*() family allows partial // application of the first m arguments. The remaining n - m arguments must be // passed when invoking the callback with Run(). // // // The first argument is bound at callback creation; the remaining // // two must be passed when calling Run() on the callback object. // base::OnceCallback<void(int, long)> cb = base::BindOnce( // [](short x, int y, long z) { return x * y * z; }, 42); // // When binding to a method, the receiver object must also be specified at // callback creation time. When Run() is invoked, the method will be invoked on // the specified receiver object. // // class C : public base::RefCounted<C> { void F(); }; // auto instance = base::MakeRefCounted<C>(); // auto cb = base::BindOnce(&C::F, instance); // cb.Run(); // Identical to instance->F() // // base::Bind is currently a type alias for base::BindRepeating(). In the // future, we expect to flip this to default to base::BindOnce(). // // See //docs/callback.md for the full documentation. // // ----------------------------------------------------------------------------- // Implementation notes // ----------------------------------------------------------------------------- // // If you're reading the implementation, before proceeding further, you should // read the top comment of base/bind_internal.h for a definition of common // terms and concepts. namespace base { namespace internal { // IsOnceCallback<T> is a std::true_type if |T| is a OnceCallback. template <typename T> struct IsOnceCallback : std::false_type {}; template <typename Signature> struct IsOnceCallback<OnceCallback<Signature>> : std::true_type {}; // Helper to assert that parameter |i| of type |Arg| can be bound, which means: // - |Arg| can be retained internally as |Storage|. // - |Arg| can be forwarded as |Unwrapped| to |Param|. template <size_t i, typename Arg, typename Storage, typename Unwrapped, typename Param> struct AssertConstructible { private: static constexpr bool param_is_forwardable = std::is_constructible<Param, Unwrapped>::value; // Unlike the check for binding into storage below, the check for // forwardability drops the const qualifier for repeating callbacks. This is // to try to catch instances where std::move()--which forwards as a const // reference with repeating callbacks--is used instead of base::Passed(). static_assert( param_is_forwardable || !std::is_constructible<Param, std::decay_t<Unwrapped>&&>::value, "Bound argument |i| is move-only but will be forwarded by copy. " "Ensure |Arg| is bound using base::Passed(), not std::move()."); static_assert( param_is_forwardable, "Bound argument |i| of type |Arg| cannot be forwarded as " "|Unwrapped| to the bound functor, which declares it as |Param|."); static constexpr bool arg_is_storable = std::is_constructible<Storage, Arg>::value; static_assert(arg_is_storable || !std::is_constructible<Storage, std::decay_t<Arg>&&>::value, "Bound argument |i| is move-only but will be bound by copy. " "Ensure |Arg| is mutable and bound using std::move()."); static_assert(arg_is_storable, "Bound argument |i| of type |Arg| cannot be converted and " "bound as |Storage|."); }; // Takes three same-length TypeLists, and applies AssertConstructible for each // triples. template <typename Index, typename Args, typename UnwrappedTypeList, typename ParamsList> struct AssertBindArgsValidity; template <size_t... Ns, typename... Args, typename... Unwrapped, typename... Params> struct AssertBindArgsValidity<std::index_sequence<Ns...>, TypeList<Args...>, TypeList<Unwrapped...>, TypeList<Params...>> : AssertConstructible<Ns, Args, std::decay_t<Args>, Unwrapped, Params>... { static constexpr bool ok = true; }; // The implementation of TransformToUnwrappedType below. template <bool is_once, typename T> struct TransformToUnwrappedTypeImpl; template <typename T> struct TransformToUnwrappedTypeImpl<true, T> { using StoredType = std::decay_t<T>; using ForwardType = StoredType&&; using Unwrapped = decltype(Unwrap(std::declval<ForwardType>())); }; template <typename T> struct TransformToUnwrappedTypeImpl<false, T> { using StoredType = std::decay_t<T>; using ForwardType = const StoredType&; using Unwrapped = decltype(Unwrap(std::declval<ForwardType>())); }; // Transform |T| into `Unwrapped` type, which is passed to the target function. // Example: // In is_once == true case, // `int&&` -> `int&&`, // `const int&` -> `int&&`, // `OwnedWrapper<int>&` -> `int*&&`. // In is_once == false case, // `int&&` -> `const int&`, // `const int&` -> `const int&`, // `OwnedWrapper<int>&` -> `int* const &`. template <bool is_once, typename T> using TransformToUnwrappedType = typename TransformToUnwrappedTypeImpl<is_once, T>::Unwrapped; // Transforms |Args| into `Unwrapped` types, and packs them into a TypeList. // If |is_method| is true, tries to dereference the first argument to support // smart pointers. template <bool is_once, bool is_method, typename... Args> struct MakeUnwrappedTypeListImpl { using Type = TypeList<TransformToUnwrappedType<is_once, Args>...>; }; // Performs special handling for this pointers. // Example: // int* -> int*, // std::unique_ptr<int> -> int*. template <bool is_once, typename Receiver, typename... Args> struct MakeUnwrappedTypeListImpl<is_once, true, Receiver, Args...> { using UnwrappedReceiver = TransformToUnwrappedType<is_once, Receiver>; using Type = TypeList<decltype(&*std::declval<UnwrappedReceiver>()), TransformToUnwrappedType<is_once, Args>...>; }; template <bool is_once, bool is_method, typename... Args> using MakeUnwrappedTypeList = typename MakeUnwrappedTypeListImpl<is_once, is_method, Args...>::Type; } // namespace internal // Bind as OnceCallback. template <typename Functor, typename... Args> inline OnceCallback<MakeUnboundRunType<Functor, Args...>> BindOnce(Functor&& functor, Args&&... args) { static_assert(!internal::IsOnceCallback<std::decay_t<Functor>>() || (std::is_rvalue_reference<Functor&&>() && !std::is_const<std::remove_reference_t<Functor>>()), "BindOnce requires non-const rvalue for OnceCallback binding." " I.e.: base::BindOnce(std::move(callback))."); // This block checks if each |args| matches to the corresponding params of the // target function. This check does not affect the behavior of Bind, but its // error message should be more readable. using Helper = internal::BindTypeHelper<Functor, Args...>; using FunctorTraits = typename Helper::FunctorTraits; using BoundArgsList = typename Helper::BoundArgsList; using UnwrappedArgsList = internal::MakeUnwrappedTypeList<true, FunctorTraits::is_method, Args&&...>; using BoundParamsList = typename Helper::BoundParamsList; static_assert(internal::AssertBindArgsValidity< std::make_index_sequence<Helper::num_bounds>, BoundArgsList, UnwrappedArgsList, BoundParamsList>::ok, "The bound args need to be convertible to the target params."); using BindState = internal::MakeBindStateType<Functor, Args...>; using UnboundRunType = MakeUnboundRunType<Functor, Args...>; using Invoker = internal::Invoker<BindState, UnboundRunType>; using CallbackType = OnceCallback<UnboundRunType>; // Store the invoke func into PolymorphicInvoke before casting it to // InvokeFuncStorage, so that we can ensure its type matches to // PolymorphicInvoke, to which CallbackType will cast back. using PolymorphicInvoke = typename CallbackType::PolymorphicInvoke; PolymorphicInvoke invoke_func = &Invoker::RunOnce; using InvokeFuncStorage = internal::BindStateBase::InvokeFuncStorage; return CallbackType(new BindState( reinterpret_cast<InvokeFuncStorage>(invoke_func), std::forward<Functor>(functor), std::forward<Args>(args)...)); } // Bind as RepeatingCallback. template <typename Functor, typename... Args> inline RepeatingCallback<MakeUnboundRunType<Functor, Args...>> BindRepeating(Functor&& functor, Args&&... args) { static_assert( !internal::IsOnceCallback<std::decay_t<Functor>>(), "BindRepeating cannot bind OnceCallback. Use BindOnce with std::move()."); // This block checks if each |args| matches to the corresponding params of the // target function. This check does not affect the behavior of Bind, but its // error message should be more readable. using Helper = internal::BindTypeHelper<Functor, Args...>; using FunctorTraits = typename Helper::FunctorTraits; using BoundArgsList = typename Helper::BoundArgsList; using UnwrappedArgsList = internal::MakeUnwrappedTypeList<false, FunctorTraits::is_method, Args&&...>; using BoundParamsList = typename Helper::BoundParamsList; static_assert(internal::AssertBindArgsValidity< std::make_index_sequence<Helper::num_bounds>, BoundArgsList, UnwrappedArgsList, BoundParamsList>::ok, "The bound args need to be convertible to the target params."); using BindState = internal::MakeBindStateType<Functor, Args...>; using UnboundRunType = MakeUnboundRunType<Functor, Args...>; using Invoker = internal::Invoker<BindState, UnboundRunType>; using CallbackType = RepeatingCallback<UnboundRunType>; // Store the invoke func into PolymorphicInvoke before casting it to // InvokeFuncStorage, so that we can ensure its type matches to // PolymorphicInvoke, to which CallbackType will cast back. using PolymorphicInvoke = typename CallbackType::PolymorphicInvoke; PolymorphicInvoke invoke_func = &Invoker::Run; using InvokeFuncStorage = internal::BindStateBase::InvokeFuncStorage; return CallbackType(new BindState( reinterpret_cast<InvokeFuncStorage>(invoke_func), std::forward<Functor>(functor), std::forward<Args>(args)...)); } // Unannotated Bind. // TODO(tzik): Deprecate this and migrate to OnceCallback and // RepeatingCallback, once they get ready. template <typename Functor, typename... Args> inline Callback<MakeUnboundRunType<Functor, Args...>> Bind(Functor&& functor, Args&&... args) { return base::BindRepeating(std::forward<Functor>(functor), std::forward<Args>(args)...); } // Special cases for binding to a base::Callback without extra bound arguments. template <typename Signature> OnceCallback<Signature> BindOnce(OnceCallback<Signature> closure) { return closure; } template <typename Signature> RepeatingCallback<Signature> BindRepeating( RepeatingCallback<Signature> closure) { return closure; } template <typename Signature> Callback<Signature> Bind(Callback<Signature> closure) { return closure; } // Unretained() allows Bind() to bind a non-refcounted class, and to disable // refcounting on arguments that are refcounted objects. // // EXAMPLE OF Unretained(): // // class Foo { // public: // void func() { cout << "Foo:f" << endl; } // }; // // // In some function somewhere. // Foo foo; // Closure foo_callback = // Bind(&Foo::func, Unretained(&foo)); // foo_callback.Run(); // Prints "Foo:f". // // Without the Unretained() wrapper on |&foo|, the above call would fail // to compile because Foo does not support the AddRef() and Release() methods. template <typename T> static inline internal::UnretainedWrapper<T> Unretained(T* o) { return internal::UnretainedWrapper<T>(o); } // RetainedRef() accepts a ref counted object and retains a reference to it. // When the callback is called, the object is passed as a raw pointer. // // EXAMPLE OF RetainedRef(): // // void foo(RefCountedBytes* bytes) {} // // scoped_refptr<RefCountedBytes> bytes = ...; // Closure callback = Bind(&foo, base::RetainedRef(bytes)); // callback.Run(); // // Without RetainedRef, the scoped_refptr would try to implicitly convert to // a raw pointer and fail compilation: // // Closure callback = Bind(&foo, bytes); // ERROR! template <typename T> static inline internal::RetainedRefWrapper<T> RetainedRef(T* o) { return internal::RetainedRefWrapper<T>(o); } template <typename T> static inline internal::RetainedRefWrapper<T> RetainedRef(scoped_refptr<T> o) { return internal::RetainedRefWrapper<T>(std::move(o)); } // ConstRef() allows binding a constant reference to an argument rather // than a copy. // // EXAMPLE OF ConstRef(): // // void foo(int arg) { cout << arg << endl } // // int n = 1; // Closure no_ref = Bind(&foo, n); // Closure has_ref = Bind(&foo, ConstRef(n)); // // no_ref.Run(); // Prints "1" // has_ref.Run(); // Prints "1" // // n = 2; // no_ref.Run(); // Prints "1" // has_ref.Run(); // Prints "2" // // Note that because ConstRef() takes a reference on |n|, |n| must outlive all // its bound callbacks. template <typename T> static inline internal::ConstRefWrapper<T> ConstRef(const T& o) { return internal::ConstRefWrapper<T>(o); } // Owned() transfers ownership of an object to the Callback resulting from // bind; the object will be deleted when the Callback is deleted. // // EXAMPLE OF Owned(): // // void foo(int* arg) { cout << *arg << endl } // // int* pn = new int(1); // Closure foo_callback = Bind(&foo, Owned(pn)); // // foo_callback.Run(); // Prints "1" // foo_callback.Run(); // Prints "1" // *n = 2; // foo_callback.Run(); // Prints "2" // // foo_callback.Reset(); // |pn| is deleted. Also will happen when // // |foo_callback| goes out of scope. // // Without Owned(), someone would have to know to delete |pn| when the last // reference to the Callback is deleted. template <typename T> static inline internal::OwnedWrapper<T> Owned(T* o) { return internal::OwnedWrapper<T>(o); } // Passed() is for transferring movable-but-not-copyable types (eg. unique_ptr) // through a Callback. Logically, this signifies a destructive transfer of // the state of the argument into the target function. Invoking // Callback::Run() twice on a Callback that was created with a Passed() // argument will CHECK() because the first invocation would have already // transferred ownership to the target function. // // Note that Passed() is not necessary with BindOnce(), as std::move() does the // same thing. Avoid Passed() in favor of std::move() with BindOnce(). // // EXAMPLE OF Passed(): // // void TakesOwnership(std::unique_ptr<Foo> arg) { } // std::unique_ptr<Foo> CreateFoo() { return std::make_unique<Foo>(); // } // // auto f = std::make_unique<Foo>(); // // // |cb| is given ownership of Foo(). |f| is now NULL. // // You can use std::move(f) in place of &f, but it's more verbose. // Closure cb = Bind(&TakesOwnership, Passed(&f)); // // // Run was never called so |cb| still owns Foo() and deletes // // it on Reset(). // cb.Reset(); // // // |cb| is given a new Foo created by CreateFoo(). // cb = Bind(&TakesOwnership, Passed(CreateFoo())); // // // |arg| in TakesOwnership() is given ownership of Foo(). |cb| // // no longer owns Foo() and, if reset, would not delete Foo(). // cb.Run(); // Foo() is now transferred to |arg| and deleted. // cb.Run(); // This CHECK()s since Foo() already been used once. // // We offer 2 syntaxes for calling Passed(). The first takes an rvalue and // is best suited for use with the return value of a function or other temporary // rvalues. The second takes a pointer to the scoper and is just syntactic sugar // to avoid having to write Passed(std::move(scoper)). // // Both versions of Passed() prevent T from being an lvalue reference. The first // via use of enable_if, and the second takes a T* which will not bind to T&. template <typename T, std::enable_if_t<!std::is_lvalue_reference<T>::value>* = nullptr> static inline internal::PassedWrapper<T> Passed(T&& scoper) { return internal::PassedWrapper<T>(std::move(scoper)); } template <typename T> static inline internal::PassedWrapper<T> Passed(T* scoper) { return internal::PassedWrapper<T>(std::move(*scoper)); } // IgnoreResult() is used to adapt a function or Callback with a return type to // one with a void return. This is most useful if you have a function with, // say, a pesky ignorable bool return that you want to use with PostTask or // something else that expect a Callback with a void return. // // EXAMPLE OF IgnoreResult(): // // int DoSomething(int arg) { cout << arg << endl; } // // // Assign to a Callback with a void return type. // Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething)); // cb->Run(1); // Prints "1". // // // Prints "1" on |ml|. // ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1); template <typename T> static inline internal::IgnoreResultHelper<T> IgnoreResult(T data) { return internal::IgnoreResultHelper<T>(std::move(data)); } #if defined(OS_MACOSX) && !HAS_FEATURE(objc_arc) // RetainBlock() is used to adapt an Objective-C block when Automated Reference // Counting (ARC) is disabled. This is unnecessary when ARC is enabled, as the // BindOnce and BindRepeating already support blocks then. // // EXAMPLE OF RetainBlock(): // // // Wrap the block and bind it to a callback. // Callback<void(int)> cb = Bind(RetainBlock(^(int n) { NSLog(@"%d", n); })); // cb.Run(1); // Logs "1". template <typename R, typename... Args> base::mac::ScopedBlock<R (^)(Args...)> RetainBlock(R (^block)(Args...)) { return base::mac::ScopedBlock<R (^)(Args...)>(block, base::scoped_policy::RETAIN); } #endif // defined(OS_MACOSX) && !HAS_FEATURE(objc_arc) } // namespace base #endif // BASE_BIND_H_