// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/sys_info.h" #include #include #include #include #include #include #include #include "base/files/file_util.h" #include "base/lazy_instance.h" #include "base/logging.h" #include "base/strings/utf_string_conversions.h" #include "base/sys_info_internal.h" #include "base/threading/thread_restrictions.h" #include "build/build_config.h" #if !defined(OS_FUCHSIA) #include #endif #if defined(OS_ANDROID) #include #define statvfs statfs // Android uses a statvfs-like statfs struct and call. #else #include #endif #if defined(OS_LINUX) #include #include #endif namespace { #if !defined(OS_OPENBSD) && !defined(OS_FUCHSIA) int NumberOfProcessors() { // sysconf returns the number of "logical" (not "physical") processors on both // Mac and Linux. So we get the number of max available "logical" processors. // // Note that the number of "currently online" processors may be fewer than the // returned value of NumberOfProcessors(). On some platforms, the kernel may // make some processors offline intermittently, to save power when system // loading is low. // // One common use case that needs to know the processor count is to create // optimal number of threads for optimization. It should make plan according // to the number of "max available" processors instead of "currently online" // ones. The kernel should be smart enough to make all processors online when // it has sufficient number of threads waiting to run. long res = sysconf(_SC_NPROCESSORS_CONF); if (res == -1) { NOTREACHED(); return 1; } return static_cast(res); } base::LazyInstance< base::internal::LazySysInfoValue >::Leaky g_lazy_number_of_processors = LAZY_INSTANCE_INITIALIZER; #endif // !defined(OS_OPENBSD) && !defined(OS_FUCHSIA) #if !defined(OS_FUCHSIA) int64_t AmountOfVirtualMemory() { struct rlimit limit; int result = getrlimit(RLIMIT_DATA, &limit); if (result != 0) { NOTREACHED(); return 0; } return limit.rlim_cur == RLIM_INFINITY ? 0 : limit.rlim_cur; } base::LazyInstance< base::internal::LazySysInfoValue>::Leaky g_lazy_virtual_memory = LAZY_INSTANCE_INITIALIZER; #endif // !defined(OS_FUCHSIA) #if defined(OS_LINUX) bool IsStatsZeroIfUnlimited(const base::FilePath& path) { struct statfs stats; if (HANDLE_EINTR(statfs(path.value().c_str(), &stats)) != 0) return false; // In some platforms, |statfs_buf.f_type| is declared as signed, but some of // the values will overflow it, causing narrowing warnings. Cast to the // largest possible unsigned integer type to avoid it. switch (static_cast(stats.f_type)) { case TMPFS_MAGIC: case HUGETLBFS_MAGIC: case RAMFS_MAGIC: return true; } return false; } #endif bool GetDiskSpaceInfo(const base::FilePath& path, int64_t* available_bytes, int64_t* total_bytes) { struct statvfs stats; if (HANDLE_EINTR(statvfs(path.value().c_str(), &stats)) != 0) return false; #if defined(OS_LINUX) const bool zero_size_means_unlimited = stats.f_blocks == 0 && IsStatsZeroIfUnlimited(path); #else const bool zero_size_means_unlimited = false; #endif if (available_bytes) { *available_bytes = zero_size_means_unlimited ? std::numeric_limits::max() : static_cast(stats.f_bavail) * stats.f_frsize; } if (total_bytes) { *total_bytes = zero_size_means_unlimited ? std::numeric_limits::max() : static_cast(stats.f_blocks) * stats.f_frsize; } return true; } } // namespace namespace base { #if !defined(OS_OPENBSD) && !defined(OS_FUCHSIA) int SysInfo::NumberOfProcessors() { return g_lazy_number_of_processors.Get().value(); } #endif #if !defined(OS_FUCHSIA) // static int64_t SysInfo::AmountOfVirtualMemory() { return g_lazy_virtual_memory.Get().value(); } #endif // static int64_t SysInfo::AmountOfFreeDiskSpace(const FilePath& path) { AssertBlockingAllowed(); int64_t available; if (!GetDiskSpaceInfo(path, &available, nullptr)) return -1; return available; } // static int64_t SysInfo::AmountOfTotalDiskSpace(const FilePath& path) { AssertBlockingAllowed(); int64_t total; if (!GetDiskSpaceInfo(path, nullptr, &total)) return -1; return total; } #if !defined(OS_MACOSX) && !defined(OS_ANDROID) // static std::string SysInfo::OperatingSystemName() { struct utsname info; if (uname(&info) < 0) { NOTREACHED(); return std::string(); } return std::string(info.sysname); } #endif #if !defined(OS_MACOSX) && !defined(OS_ANDROID) // static std::string SysInfo::OperatingSystemVersion() { struct utsname info; if (uname(&info) < 0) { NOTREACHED(); return std::string(); } return std::string(info.release); } #endif #if !defined(OS_MACOSX) && !defined(OS_ANDROID) && !defined(OS_CHROMEOS) // static void SysInfo::OperatingSystemVersionNumbers(int32_t* major_version, int32_t* minor_version, int32_t* bugfix_version) { struct utsname info; if (uname(&info) < 0) { NOTREACHED(); *major_version = 0; *minor_version = 0; *bugfix_version = 0; return; } int num_read = sscanf(info.release, "%d.%d.%d", major_version, minor_version, bugfix_version); if (num_read < 1) *major_version = 0; if (num_read < 2) *minor_version = 0; if (num_read < 3) *bugfix_version = 0; } #endif // static std::string SysInfo::OperatingSystemArchitecture() { struct utsname info; if (uname(&info) < 0) { NOTREACHED(); return std::string(); } std::string arch(info.machine); if (arch == "i386" || arch == "i486" || arch == "i586" || arch == "i686") { arch = "x86"; } else if (arch == "amd64") { arch = "x86_64"; } else if (std::string(info.sysname) == "AIX") { arch = "ppc64"; } return arch; } // static size_t SysInfo::VMAllocationGranularity() { return getpagesize(); } } // namespace base