//===------------------------ fallback_malloc.cpp -------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // Define _LIBCPP_BUILDING_LIBRARY to ensure _LIBCPP_HAS_NO_LIBRARY_ALIGNED_ALLOCATION // is only defined when libc aligned allocation is not available. #define _LIBCPP_BUILDING_LIBRARY #include "fallback_malloc.h" #include <__threading_support> #include // for malloc, calloc, free #include // for memset // A small, simple heap manager based (loosely) on // the startup heap manager from FreeBSD, optimized for space. // // Manages a fixed-size memory pool, supports malloc and free only. // No support for realloc. // // Allocates chunks in multiples of four bytes, with a four byte header // for each chunk. The overhead of each chunk is kept low by keeping pointers // as two byte offsets within the heap, rather than (4 or 8 byte) pointers. namespace { // When POSIX threads are not available, make the mutex operations a nop #ifndef _LIBCXXABI_HAS_NO_THREADS _LIBCPP_SAFE_STATIC static std::__libcpp_mutex_t heap_mutex = _LIBCPP_MUTEX_INITIALIZER; #else static void* heap_mutex = 0; #endif class mutexor { public: #ifndef _LIBCXXABI_HAS_NO_THREADS mutexor(std::__libcpp_mutex_t* m) : mtx_(m) { std::__libcpp_mutex_lock(mtx_); } ~mutexor() { std::__libcpp_mutex_unlock(mtx_); } #else mutexor(void*) {} ~mutexor() {} #endif private: mutexor(const mutexor& rhs); mutexor& operator=(const mutexor& rhs); #ifndef _LIBCXXABI_HAS_NO_THREADS std::__libcpp_mutex_t* mtx_; #endif }; static const size_t HEAP_SIZE = 512; char heap[HEAP_SIZE] __attribute__((aligned)); typedef unsigned short heap_offset; typedef unsigned short heap_size; struct heap_node { heap_offset next_node; // offset into heap heap_size len; // size in units of "sizeof(heap_node)" }; static const heap_node* list_end = (heap_node*)(&heap[HEAP_SIZE]); // one past the end of the heap static heap_node* freelist = NULL; heap_node* node_from_offset(const heap_offset offset) { return (heap_node*)(heap + (offset * sizeof(heap_node))); } heap_offset offset_from_node(const heap_node* ptr) { return static_cast( static_cast(reinterpret_cast(ptr) - heap) / sizeof(heap_node)); } void init_heap() { freelist = (heap_node*)heap; freelist->next_node = offset_from_node(list_end); freelist->len = HEAP_SIZE / sizeof(heap_node); } // How big a chunk we allocate size_t alloc_size(size_t len) { return (len + sizeof(heap_node) - 1) / sizeof(heap_node) + 1; } bool is_fallback_ptr(void* ptr) { return ptr >= heap && ptr < (heap + HEAP_SIZE); } void* fallback_malloc(size_t len) { heap_node *p, *prev; const size_t nelems = alloc_size(len); mutexor mtx(&heap_mutex); if (NULL == freelist) init_heap(); // Walk the free list, looking for a "big enough" chunk for (p = freelist, prev = 0; p && p != list_end; prev = p, p = node_from_offset(p->next_node)) { if (p->len > nelems) { // chunk is larger, shorten, and return the tail heap_node* q; p->len = static_cast(p->len - nelems); q = p + p->len; q->next_node = 0; q->len = static_cast(nelems); return (void*)(q + 1); } if (p->len == nelems) { // exact size match if (prev == 0) freelist = node_from_offset(p->next_node); else prev->next_node = p->next_node; p->next_node = 0; return (void*)(p + 1); } } return NULL; // couldn't find a spot big enough } // Return the start of the next block heap_node* after(struct heap_node* p) { return p + p->len; } void fallback_free(void* ptr) { struct heap_node* cp = ((struct heap_node*)ptr) - 1; // retrieve the chunk struct heap_node *p, *prev; mutexor mtx(&heap_mutex); #ifdef DEBUG_FALLBACK_MALLOC std::cout << "Freeing item at " << offset_from_node(cp) << " of size " << cp->len << std::endl; #endif for (p = freelist, prev = 0; p && p != list_end; prev = p, p = node_from_offset(p->next_node)) { #ifdef DEBUG_FALLBACK_MALLOC std::cout << " p, cp, after (p), after(cp) " << offset_from_node(p) << ' ' << offset_from_node(cp) << ' ' << offset_from_node(after(p)) << ' ' << offset_from_node(after(cp)) << std::endl; #endif if (after(p) == cp) { #ifdef DEBUG_FALLBACK_MALLOC std::cout << " Appending onto chunk at " << offset_from_node(p) << std::endl; #endif p->len = static_cast( p->len + cp->len); // make the free heap_node larger return; } else if (after(cp) == p) { // there's a free heap_node right after #ifdef DEBUG_FALLBACK_MALLOC std::cout << " Appending free chunk at " << offset_from_node(p) << std::endl; #endif cp->len = static_cast(cp->len + p->len); if (prev == 0) { freelist = cp; cp->next_node = p->next_node; } else prev->next_node = offset_from_node(cp); return; } } // Nothing to merge with, add it to the start of the free list #ifdef DEBUG_FALLBACK_MALLOC std::cout << " Making new free list entry " << offset_from_node(cp) << std::endl; #endif cp->next_node = offset_from_node(freelist); freelist = cp; } #ifdef INSTRUMENT_FALLBACK_MALLOC size_t print_free_list() { struct heap_node *p, *prev; heap_size total_free = 0; if (NULL == freelist) init_heap(); for (p = freelist, prev = 0; p && p != list_end; prev = p, p = node_from_offset(p->next_node)) { std::cout << (prev == 0 ? "" : " ") << "Offset: " << offset_from_node(p) << "\tsize: " << p->len << " Next: " << p->next_node << std::endl; total_free += p->len; } std::cout << "Total Free space: " << total_free << std::endl; return total_free; } #endif } // end unnamed namespace namespace __cxxabiv1 { struct __attribute__((aligned)) __aligned_type {}; void* __aligned_malloc_with_fallback(size_t size) { #if defined(_WIN32) if (void* dest = _aligned_malloc(size, alignof(__aligned_type))) return dest; #elif defined(_LIBCPP_HAS_NO_LIBRARY_ALIGNED_ALLOCATION) if (void* dest = std::malloc(size)) return dest; #else if (size == 0) size = 1; void* dest; if (::posix_memalign(&dest, __alignof(__aligned_type), size) == 0) return dest; #endif return fallback_malloc(size); } void* __calloc_with_fallback(size_t count, size_t size) { void* ptr = std::calloc(count, size); if (NULL != ptr) return ptr; // if calloc fails, fall back to emergency stash ptr = fallback_malloc(size * count); if (NULL != ptr) std::memset(ptr, 0, size * count); return ptr; } void __aligned_free_with_fallback(void* ptr) { if (is_fallback_ptr(ptr)) fallback_free(ptr); else { #if defined(_WIN32) ::_aligned_free(ptr); #else std::free(ptr); #endif } } void __free_with_fallback(void* ptr) { if (is_fallback_ptr(ptr)) fallback_free(ptr); else std::free(ptr); } } // namespace __cxxabiv1