; ; jchuff-sse2.asm - Huffman entropy encoding (SSE2) ; ; Copyright (C) 2009-2011, 2014-2017, D. R. Commander. ; Copyright (C) 2015, Matthieu Darbois. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains an SSE2 implementation for Huffman coding of one block. ; The following code is based directly on jchuff.c; see jchuff.c for more ; details. ; ; [TAB8] %include "jsimdext.inc" ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_huff_encode_one_block) EXTN(jconst_huff_encode_one_block): %include "jpeg_nbits_table.inc" alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; These macros perform the same task as the emit_bits() function in the ; original libjpeg code. In addition to reducing overhead by explicitly ; inlining the code, additional performance is achieved by taking into ; account the size of the bit buffer and waiting until it is almost full ; before emptying it. This mostly benefits 64-bit platforms, since 6 ; bytes can be stored in a 64-bit bit buffer before it has to be emptied. %macro EMIT_BYTE 0 sub put_bits, 8 ; put_bits -= 8; mov edx, put_buffer mov ecx, put_bits shr edx, cl ; c = (JOCTET)GETJOCTET(put_buffer >> put_bits); mov byte [eax], dl ; *buffer++ = c; add eax, 1 cmp dl, 0xFF ; need to stuff a zero byte? jne %%.EMIT_BYTE_END mov byte [eax], 0 ; *buffer++ = 0; add eax, 1 %%.EMIT_BYTE_END: %endmacro %macro PUT_BITS 1 add put_bits, ecx ; put_bits += size; shl put_buffer, cl ; put_buffer = (put_buffer << size); or put_buffer, %1 %endmacro %macro CHECKBUF15 0 cmp put_bits, 16 ; if (put_bits > 31) { jl %%.CHECKBUF15_END mov eax, POINTER [esp+buffer] EMIT_BYTE EMIT_BYTE mov POINTER [esp+buffer], eax %%.CHECKBUF15_END: %endmacro %macro EMIT_BITS 1 PUT_BITS %1 CHECKBUF15 %endmacro %macro kloop_prepare 37 ;(ko, jno0, ..., jno31, xmm0, xmm1, xmm2, xmm3) pxor xmm4, xmm4 ; __m128i neg = _mm_setzero_si128(); pxor xmm5, xmm5 ; __m128i neg = _mm_setzero_si128(); pxor xmm6, xmm6 ; __m128i neg = _mm_setzero_si128(); pxor xmm7, xmm7 ; __m128i neg = _mm_setzero_si128(); pinsrw %34, word [esi + %2 * SIZEOF_WORD], 0 ; xmm_shadow[0] = block[jno0]; pinsrw %35, word [esi + %10 * SIZEOF_WORD], 0 ; xmm_shadow[8] = block[jno8]; pinsrw %36, word [esi + %18 * SIZEOF_WORD], 0 ; xmm_shadow[16] = block[jno16]; pinsrw %37, word [esi + %26 * SIZEOF_WORD], 0 ; xmm_shadow[24] = block[jno24]; pinsrw %34, word [esi + %3 * SIZEOF_WORD], 1 ; xmm_shadow[1] = block[jno1]; pinsrw %35, word [esi + %11 * SIZEOF_WORD], 1 ; xmm_shadow[9] = block[jno9]; pinsrw %36, word [esi + %19 * SIZEOF_WORD], 1 ; xmm_shadow[17] = block[jno17]; pinsrw %37, word [esi + %27 * SIZEOF_WORD], 1 ; xmm_shadow[25] = block[jno25]; pinsrw %34, word [esi + %4 * SIZEOF_WORD], 2 ; xmm_shadow[2] = block[jno2]; pinsrw %35, word [esi + %12 * SIZEOF_WORD], 2 ; xmm_shadow[10] = block[jno10]; pinsrw %36, word [esi + %20 * SIZEOF_WORD], 2 ; xmm_shadow[18] = block[jno18]; pinsrw %37, word [esi + %28 * SIZEOF_WORD], 2 ; xmm_shadow[26] = block[jno26]; pinsrw %34, word [esi + %5 * SIZEOF_WORD], 3 ; xmm_shadow[3] = block[jno3]; pinsrw %35, word [esi + %13 * SIZEOF_WORD], 3 ; xmm_shadow[11] = block[jno11]; pinsrw %36, word [esi + %21 * SIZEOF_WORD], 3 ; xmm_shadow[19] = block[jno19]; pinsrw %37, word [esi + %29 * SIZEOF_WORD], 3 ; xmm_shadow[27] = block[jno27]; pinsrw %34, word [esi + %6 * SIZEOF_WORD], 4 ; xmm_shadow[4] = block[jno4]; pinsrw %35, word [esi + %14 * SIZEOF_WORD], 4 ; xmm_shadow[12] = block[jno12]; pinsrw %36, word [esi + %22 * SIZEOF_WORD], 4 ; xmm_shadow[20] = block[jno20]; pinsrw %37, word [esi + %30 * SIZEOF_WORD], 4 ; xmm_shadow[28] = block[jno28]; pinsrw %34, word [esi + %7 * SIZEOF_WORD], 5 ; xmm_shadow[5] = block[jno5]; pinsrw %35, word [esi + %15 * SIZEOF_WORD], 5 ; xmm_shadow[13] = block[jno13]; pinsrw %36, word [esi + %23 * SIZEOF_WORD], 5 ; xmm_shadow[21] = block[jno21]; pinsrw %37, word [esi + %31 * SIZEOF_WORD], 5 ; xmm_shadow[29] = block[jno29]; pinsrw %34, word [esi + %8 * SIZEOF_WORD], 6 ; xmm_shadow[6] = block[jno6]; pinsrw %35, word [esi + %16 * SIZEOF_WORD], 6 ; xmm_shadow[14] = block[jno14]; pinsrw %36, word [esi + %24 * SIZEOF_WORD], 6 ; xmm_shadow[22] = block[jno22]; pinsrw %37, word [esi + %32 * SIZEOF_WORD], 6 ; xmm_shadow[30] = block[jno30]; pinsrw %34, word [esi + %9 * SIZEOF_WORD], 7 ; xmm_shadow[7] = block[jno7]; pinsrw %35, word [esi + %17 * SIZEOF_WORD], 7 ; xmm_shadow[15] = block[jno15]; pinsrw %36, word [esi + %25 * SIZEOF_WORD], 7 ; xmm_shadow[23] = block[jno23]; %if %1 != 32 pinsrw %37, word [esi + %33 * SIZEOF_WORD], 7 ; xmm_shadow[31] = block[jno31]; %else pinsrw %37, ecx, 7 ; xmm_shadow[31] = block[jno31]; %endif pcmpgtw xmm4, %34 ; neg = _mm_cmpgt_epi16(neg, x1); pcmpgtw xmm5, %35 ; neg = _mm_cmpgt_epi16(neg, x1); pcmpgtw xmm6, %36 ; neg = _mm_cmpgt_epi16(neg, x1); pcmpgtw xmm7, %37 ; neg = _mm_cmpgt_epi16(neg, x1); paddw %34, xmm4 ; x1 = _mm_add_epi16(x1, neg); paddw %35, xmm5 ; x1 = _mm_add_epi16(x1, neg); paddw %36, xmm6 ; x1 = _mm_add_epi16(x1, neg); paddw %37, xmm7 ; x1 = _mm_add_epi16(x1, neg); pxor %34, xmm4 ; x1 = _mm_xor_si128(x1, neg); pxor %35, xmm5 ; x1 = _mm_xor_si128(x1, neg); pxor %36, xmm6 ; x1 = _mm_xor_si128(x1, neg); pxor %37, xmm7 ; x1 = _mm_xor_si128(x1, neg); pxor xmm4, %34 ; neg = _mm_xor_si128(neg, x1); pxor xmm5, %35 ; neg = _mm_xor_si128(neg, x1); pxor xmm6, %36 ; neg = _mm_xor_si128(neg, x1); pxor xmm7, %37 ; neg = _mm_xor_si128(neg, x1); movdqa XMMWORD [esp + t1 + %1 * SIZEOF_WORD], %34 ; _mm_storeu_si128((__m128i *)(t1 + ko), x1); movdqa XMMWORD [esp + t1 + (%1 + 8) * SIZEOF_WORD], %35 ; _mm_storeu_si128((__m128i *)(t1 + ko + 8), x1); movdqa XMMWORD [esp + t1 + (%1 + 16) * SIZEOF_WORD], %36 ; _mm_storeu_si128((__m128i *)(t1 + ko + 16), x1); movdqa XMMWORD [esp + t1 + (%1 + 24) * SIZEOF_WORD], %37 ; _mm_storeu_si128((__m128i *)(t1 + ko + 24), x1); movdqa XMMWORD [esp + t2 + %1 * SIZEOF_WORD], xmm4 ; _mm_storeu_si128((__m128i *)(t2 + ko), neg); movdqa XMMWORD [esp + t2 + (%1 + 8) * SIZEOF_WORD], xmm5 ; _mm_storeu_si128((__m128i *)(t2 + ko + 8), neg); movdqa XMMWORD [esp + t2 + (%1 + 16) * SIZEOF_WORD], xmm6 ; _mm_storeu_si128((__m128i *)(t2 + ko + 16), neg); movdqa XMMWORD [esp + t2 + (%1 + 24) * SIZEOF_WORD], xmm7 ; _mm_storeu_si128((__m128i *)(t2 + ko + 24), neg); %endmacro ; ; Encode a single block's worth of coefficients. ; ; GLOBAL(JOCTET *) ; jsimd_huff_encode_one_block_sse2(working_state *state, JOCTET *buffer, ; JCOEFPTR block, int last_dc_val, ; c_derived_tbl *dctbl, c_derived_tbl *actbl) ; ; eax + 8 = working_state *state ; eax + 12 = JOCTET *buffer ; eax + 16 = JCOEFPTR block ; eax + 20 = int last_dc_val ; eax + 24 = c_derived_tbl *dctbl ; eax + 28 = c_derived_tbl *actbl %define pad 6 * SIZEOF_DWORD ; Align to 16 bytes %define t1 pad %define t2 t1 + (DCTSIZE2 * SIZEOF_WORD) %define block t2 + (DCTSIZE2 * SIZEOF_WORD) %define actbl block + SIZEOF_DWORD %define buffer actbl + SIZEOF_DWORD %define temp buffer + SIZEOF_DWORD %define temp2 temp + SIZEOF_DWORD %define temp3 temp2 + SIZEOF_DWORD %define temp4 temp3 + SIZEOF_DWORD %define temp5 temp4 + SIZEOF_DWORD %define gotptr temp5 + SIZEOF_DWORD ; void *gotptr %define put_buffer ebx %define put_bits edi align 32 GLOBAL_FUNCTION(jsimd_huff_encode_one_block_sse2) EXTN(jsimd_huff_encode_one_block_sse2): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp sub esp, temp5+9*SIZEOF_DWORD-pad push ebx push ecx ; push edx ; need not be preserved push esi push edi push ebp mov esi, POINTER [eax+8] ; (working_state *state) mov put_buffer, DWORD [esi+8] ; put_buffer = state->cur.put_buffer; mov put_bits, DWORD [esi+12] ; put_bits = state->cur.put_bits; push esi ; esi is now scratch get_GOT edx ; get GOT address movpic POINTER [esp+gotptr], edx ; save GOT address mov ecx, POINTER [eax+28] mov edx, POINTER [eax+16] mov esi, POINTER [eax+12] mov POINTER [esp+actbl], ecx mov POINTER [esp+block], edx mov POINTER [esp+buffer], esi ; Encode the DC coefficient difference per section F.1.2.1 mov esi, POINTER [esp+block] ; block movsx ecx, word [esi] ; temp = temp2 = block[0] - last_dc_val; sub ecx, DWORD [eax+20] mov esi, ecx ; This is a well-known technique for obtaining the absolute value ; with out a branch. It is derived from an assembly language technique ; presented in "How to Optimize for the Pentium Processors", ; Copyright (c) 1996, 1997 by Agner Fog. mov edx, ecx sar edx, 31 ; temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); xor ecx, edx ; temp ^= temp3; sub ecx, edx ; temp -= temp3; ; For a negative input, want temp2 = bitwise complement of abs(input) ; This code assumes we are on a two's complement machine add esi, edx ; temp2 += temp3; mov DWORD [esp+temp], esi ; backup temp2 in temp ; Find the number of bits needed for the magnitude of the coefficient movpic ebp, POINTER [esp+gotptr] ; load GOT address (ebp) movzx edx, byte [GOTOFF(ebp, jpeg_nbits_table + ecx)] ; nbits = JPEG_NBITS(temp); mov DWORD [esp+temp2], edx ; backup nbits in temp2 ; Emit the Huffman-coded symbol for the number of bits mov ebp, POINTER [eax+24] ; After this point, arguments are not accessible anymore mov eax, INT [ebp + edx * 4] ; code = dctbl->ehufco[nbits]; movzx ecx, byte [ebp + edx + 1024] ; size = dctbl->ehufsi[nbits]; EMIT_BITS eax ; EMIT_BITS(code, size) mov ecx, DWORD [esp+temp2] ; restore nbits ; Mask off any extra bits in code mov eax, 1 shl eax, cl dec eax and eax, DWORD [esp+temp] ; temp2 &= (((JLONG)1)<>= r; mov DWORD [esp+temp3], edx .BRLOOP: cmp ecx, 16 ; while (r > 15) { jl near .ERLOOP sub ecx, 16 ; r -= 16; mov DWORD [esp+temp], ecx mov eax, INT [ebp + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0]; movzx ecx, byte [ebp + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0]; EMIT_BITS eax ; EMIT_BITS(code_0xf0, size_0xf0) mov ecx, DWORD [esp+temp] jmp .BRLOOP .ERLOOP: movsx eax, word [esi] ; temp = t1[k]; movpic edx, POINTER [esp+gotptr] ; load GOT address (edx) movzx eax, byte [GOTOFF(edx, jpeg_nbits_table + eax)] ; nbits = JPEG_NBITS(temp); mov DWORD [esp+temp2], eax ; Emit Huffman symbol for run length / number of bits shl ecx, 4 ; temp3 = (r << 4) + nbits; add ecx, eax mov eax, INT [ebp + ecx * 4] ; code = actbl->ehufco[temp3]; movzx ecx, byte [ebp + ecx + 1024] ; size = actbl->ehufsi[temp3]; EMIT_BITS eax movsx edx, word [esi+DCTSIZE2*2] ; temp2 = t2[k]; ; Mask off any extra bits in code mov ecx, DWORD [esp+temp2] mov eax, 1 shl eax, cl dec eax and eax, edx ; temp2 &= (((JLONG)1)<>= 1; jmp .BLOOP .ELOOP: movdqa xmm0, XMMWORD [esp + t1 + 32 * SIZEOF_WORD] ; __m128i tmp0 = _mm_loadu_si128((__m128i *)(t1 + 0)); movdqa xmm1, XMMWORD [esp + t1 + 40 * SIZEOF_WORD] ; __m128i tmp1 = _mm_loadu_si128((__m128i *)(t1 + 8)); movdqa xmm2, XMMWORD [esp + t1 + 48 * SIZEOF_WORD] ; __m128i tmp2 = _mm_loadu_si128((__m128i *)(t1 + 16)); movdqa xmm3, XMMWORD [esp + t1 + 56 * SIZEOF_WORD] ; __m128i tmp3 = _mm_loadu_si128((__m128i *)(t1 + 24)); pcmpeqw xmm0, xmm7 ; tmp0 = _mm_cmpeq_epi16(tmp0, zero); pcmpeqw xmm1, xmm7 ; tmp1 = _mm_cmpeq_epi16(tmp1, zero); pcmpeqw xmm2, xmm7 ; tmp2 = _mm_cmpeq_epi16(tmp2, zero); pcmpeqw xmm3, xmm7 ; tmp3 = _mm_cmpeq_epi16(tmp3, zero); packsswb xmm0, xmm1 ; tmp0 = _mm_packs_epi16(tmp0, tmp1); packsswb xmm2, xmm3 ; tmp2 = _mm_packs_epi16(tmp2, tmp3); pmovmskb edx, xmm0 ; index = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0; pmovmskb ecx, xmm2 ; index = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16; shl ecx, 16 or edx, ecx not edx ; index = ~index; lea eax, [esp + t1 + (DCTSIZE2/2) * 2] sub eax, esi shr eax, 1 bsf ecx, edx ; r = __builtin_ctzl(index); jz near .ELOOP2 shr edx, cl ; index >>= r; add ecx, eax lea esi, [esi+ecx*2] ; k += r; mov DWORD [esp+temp3], edx jmp .BRLOOP2 .BLOOP2: bsf ecx, edx ; r = __builtin_ctzl(index); jz near .ELOOP2 lea esi, [esi+ecx*2] ; k += r; shr edx, cl ; index >>= r; mov DWORD [esp+temp3], edx .BRLOOP2: cmp ecx, 16 ; while (r > 15) { jl near .ERLOOP2 sub ecx, 16 ; r -= 16; mov DWORD [esp+temp], ecx mov eax, INT [ebp + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0]; movzx ecx, byte [ebp + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0]; EMIT_BITS eax ; EMIT_BITS(code_0xf0, size_0xf0) mov ecx, DWORD [esp+temp] jmp .BRLOOP2 .ERLOOP2: movsx eax, word [esi] ; temp = t1[k]; bsr eax, eax ; nbits = 32 - __builtin_clz(temp); inc eax mov DWORD [esp+temp2], eax ; Emit Huffman symbol for run length / number of bits shl ecx, 4 ; temp3 = (r << 4) + nbits; add ecx, eax mov eax, INT [ebp + ecx * 4] ; code = actbl->ehufco[temp3]; movzx ecx, byte [ebp + ecx + 1024] ; size = actbl->ehufsi[temp3]; EMIT_BITS eax movsx edx, word [esi+DCTSIZE2*2] ; temp2 = t2[k]; ; Mask off any extra bits in code mov ecx, DWORD [esp+temp2] mov eax, 1 shl eax, cl dec eax and eax, edx ; temp2 &= (((JLONG)1)<>= 1; jmp .BLOOP2 .ELOOP2: ; If the last coef(s) were zero, emit an end-of-block code lea edx, [esp + t1 + (DCTSIZE2-1) * 2] ; r = DCTSIZE2-1-k; cmp edx, esi ; if (r > 0) { je .EFN mov eax, INT [ebp] ; code = actbl->ehufco[0]; movzx ecx, byte [ebp + 1024] ; size = actbl->ehufsi[0]; EMIT_BITS eax .EFN: mov eax, [esp+buffer] pop esi ; Save put_buffer & put_bits mov DWORD [esi+8], put_buffer ; state->cur.put_buffer = put_buffer; mov DWORD [esi+12], put_bits ; state->cur.put_bits = put_bits; pop ebp pop edi pop esi ; pop edx ; need not be preserved pop ecx pop ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32