/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // Generic feature extractor for extracting features from objects. The feature // extractor can be used for extracting features from any object. The feature // extractor and feature function classes are template classes that have to // be instantiated for extracting feature from a specific object type. // // A feature extractor consists of a hierarchy of feature functions. Each // feature function extracts one or more feature type and value pairs from the // object. // // The feature extractor has a modular design where new feature functions can be // registered as components. The feature extractor is initialized from a // descriptor represented by a protocol buffer. The feature extractor can also // be initialized from a text-based source specification of the feature // extractor. Feature specification parsers can be added as components. By // default the feature extractor can be read from an ASCII protocol buffer or in // a simple feature modeling language (fml). // A feature function is invoked with a focus. Nested feature function can be // invoked with another focus determined by the parent feature function. #ifndef NLP_SAFT_COMPONENTS_COMMON_MOBILE_FEL_FEATURE_EXTRACTOR_H_ #define NLP_SAFT_COMPONENTS_COMMON_MOBILE_FEL_FEATURE_EXTRACTOR_H_ #include #include #include #include "lang_id/common/fel/feature-descriptors.h" #include "lang_id/common/fel/feature-types.h" #include "lang_id/common/fel/task-context.h" #include "lang_id/common/fel/workspace.h" #include "lang_id/common/lite_base/attributes.h" #include "lang_id/common/lite_base/integral-types.h" #include "lang_id/common/lite_base/logging.h" #include "lang_id/common/lite_base/macros.h" #include "lang_id/common/registry.h" #include "lang_id/common/stl-util.h" namespace libtextclassifier3 { namespace mobile { // TODO(djweiss) Clean this up as well. // Use the same type for feature values as is used for predicated. typedef int64 Predicate; typedef Predicate FeatureValue; // A union used to represent discrete and continuous feature values. union FloatFeatureValue { public: explicit FloatFeatureValue(FeatureValue v) : discrete_value(v) {} FloatFeatureValue(uint32 i, float w) : id(i), weight(w) {} FeatureValue discrete_value; struct { uint32 id; float weight; }; }; // A feature vector contains feature type and value pairs. class FeatureVector { public: FeatureVector() {} // Adds feature type and value pair to feature vector. void add(FeatureType *type, FeatureValue value) { features_.emplace_back(type, value); } // Removes all elements from the feature vector. void clear() { features_.clear(); } // Returns the number of elements in the feature vector. int size() const { return features_.size(); } // Reserves space in the underlying feature vector. void reserve(int n) { features_.reserve(n); } // Returns feature type for an element in the feature vector. FeatureType *type(int index) const { return features_[index].type; } // Returns feature value for an element in the feature vector. FeatureValue value(int index) const { return features_[index].value; } private: // Structure for holding feature type and value pairs. struct Element { Element() : type(nullptr), value(-1) {} Element(FeatureType *t, FeatureValue v) : type(t), value(v) {} FeatureType *type; FeatureValue value; }; // Array for storing feature vector elements. std::vector features_; SAFTM_DISALLOW_COPY_AND_ASSIGN(FeatureVector); }; // The generic feature extractor is the type-independent part of a feature // extractor. This holds the descriptor for the feature extractor and the // collection of feature types used in the feature extractor. The feature // types are not available until FeatureExtractor<>::Init() has been called. class GenericFeatureExtractor { public: GenericFeatureExtractor(); virtual ~GenericFeatureExtractor(); // Initializes the feature extractor from the FEL specification |source|. // // Returns true on success, false otherwise (e.g., FEL syntax error). SAFTM_MUST_USE_RESULT bool Parse(const string &source); // Returns the feature extractor descriptor. const FeatureExtractorDescriptor &descriptor() const { return descriptor_; } FeatureExtractorDescriptor *mutable_descriptor() { return &descriptor_; } // Returns the number of feature types in the feature extractor. Invalid // before Init() has been called. int feature_types() const { return feature_types_.size(); } protected: // Initializes the feature types used by the extractor. Called from // FeatureExtractor<>::Init(). // // Returns true on success, false otherwise. SAFTM_MUST_USE_RESULT bool InitializeFeatureTypes(); private: // Initializes the top-level feature functions. // // Returns true on success, false otherwise. SAFTM_MUST_USE_RESULT virtual bool InitializeFeatureFunctions() = 0; // Returns all feature types used by the extractor. The feature types are // added to the result array. virtual void GetFeatureTypes(std::vector *types) const = 0; // Descriptor for the feature extractor. This is a protocol buffer that // contains all the information about the feature extractor. The feature // functions are initialized from the information in the descriptor. FeatureExtractorDescriptor descriptor_; // All feature types used by the feature extractor. The collection of all the // feature types describes the feature space of the feature set produced by // the feature extractor. Not owned. std::vector feature_types_; }; // The generic feature function is the type-independent part of a feature // function. Each feature function is associated with the descriptor that it is // instantiated from. The feature types associated with this feature function // will be established by the time FeatureExtractor<>::Init() completes. class GenericFeatureFunction { public: // A feature value that represents the absence of a value. static constexpr FeatureValue kNone = -1; GenericFeatureFunction(); virtual ~GenericFeatureFunction(); // Sets up the feature function. NB: FeatureTypes of nested functions are not // guaranteed to be available until Init(). // // Returns true on success, false otherwise. SAFTM_MUST_USE_RESULT virtual bool Setup(TaskContext *context) { return true; } // Initializes the feature function. NB: The FeatureType of this function must // be established when this method completes. // // Returns true on success, false otherwise. SAFTM_MUST_USE_RESULT virtual bool Init(TaskContext *context) { return true; } // Requests workspaces from a registry to obtain indices into a WorkspaceSet // for any Workspace objects used by this feature function. NB: This will be // called after Init(), so it can depend on resources and arguments. virtual void RequestWorkspaces(WorkspaceRegistry *registry) {} // Appends the feature types produced by the feature function to types. The // default implementation appends feature_type(), if non-null. Invalid // before Init() has been called. virtual void GetFeatureTypes(std::vector *types) const; // Returns the feature type for feature produced by this feature function. If // the feature function produces features of different types this returns // null. Invalid before Init() has been called. virtual FeatureType *GetFeatureType() const; // Returns value of parameter |name| from the feature function descriptor. // If the parameter is not present, returns the indicated |default_value|. string GetParameter(const string &name, const string &default_value) const; // Returns value of int parameter |name| from feature function descriptor. // If the parameter is not present, or its value can't be parsed as an int, // returns |default_value|. int GetIntParameter(const string &name, int default_value) const; // Returns value of bool parameter |name| from feature function descriptor. // If the parameter is not present, or its value is not "true" or "false", // returns |default_value|. NOTE: this method is case sensitive, it doesn't // do any lower-casing. bool GetBoolParameter(const string &name, bool default_value) const; // Returns the FEL function description for the feature function, i.e. the // name and parameters without the nested features. string FunctionName() const { string output; ToFELFunction(*descriptor_, &output); return output; } // Returns the prefix for nested feature functions. This is the prefix of this // feature function concatenated with the feature function name. string SubPrefix() const { return prefix_.empty() ? FunctionName() : prefix_ + "." + FunctionName(); } // Returns/sets the feature extractor this function belongs to. const GenericFeatureExtractor *extractor() const { return extractor_; } void set_extractor(const GenericFeatureExtractor *extractor) { extractor_ = extractor; } // Returns/sets the feature function descriptor. const FeatureFunctionDescriptor *descriptor() const { return descriptor_; } void set_descriptor(const FeatureFunctionDescriptor *descriptor) { descriptor_ = descriptor; } // Returns a descriptive name for the feature function. The name is taken from // the descriptor for the feature function. If the name is empty or the // feature function is a variable the name is the FEL representation of the // feature, including the prefix. string name() const; // Returns the argument from the feature function descriptor. It defaults to // 0 if the argument has not been specified. int argument() const { return descriptor_->has_argument() ? descriptor_->argument() : 0; } // Returns/sets/clears function name prefix. const string &prefix() const { return prefix_; } void set_prefix(const string &prefix) { prefix_ = prefix; } protected: // Returns the feature type for single-type feature functions. FeatureType *feature_type() const { return feature_type_; } // Sets the feature type for single-type feature functions. This takes // ownership of feature_type. Can only be called once. void set_feature_type(FeatureType *feature_type) { SAFTM_CHECK_EQ(feature_type_, nullptr); feature_type_ = feature_type; } private: // Feature extractor this feature function belongs to. Not owned. Set to a // pointer != nullptr as soon as this object is created by Instantiate(). // Normal methods can safely assume this is != nullptr. const GenericFeatureExtractor *extractor_ = nullptr; // Descriptor for feature function. Not owned. Set to a pointer != nullptr // as soon as this object is created by Instantiate(). Normal methods can // safely assume this is != nullptr. const FeatureFunctionDescriptor *descriptor_ = nullptr; // Feature type for features produced by this feature function. If the // feature function produces features of multiple feature types this is null // and the feature function must return it's feature types in // GetFeatureTypes(). Owned. FeatureType *feature_type_ = nullptr; // Prefix used for sub-feature types of this function. string prefix_; }; // Feature function that can extract features from an object. Templated on // two type arguments: // // OBJ: The "object" from which features are extracted; e.g., a sentence. This // should be a plain type, rather than a reference or pointer. // // ARGS: A set of 0 or more types that are used to "index" into some part of the // object that should be extracted, e.g. an int token index for a sentence // object. This should not be a reference type. template class FeatureFunction : public GenericFeatureFunction, public RegisterableClass > { public: using Self = FeatureFunction; // Preprocesses the object. This will be called prior to calling Evaluate() // or Compute() on that object. virtual void Preprocess(WorkspaceSet *workspaces, const OBJ *object) const {} // Appends features computed from the object and focus to the result. The // default implementation delegates to Compute(), adding a single value if // available. Multi-valued feature functions must override this method. virtual void Evaluate(const WorkspaceSet &workspaces, const OBJ &object, ARGS... args, FeatureVector *result) const { FeatureValue value = Compute(workspaces, object, args...); if (value != kNone) result->add(feature_type(), value); } // Returns a feature value computed from the object and focus, or kNone if no // value is computed. Single-valued feature functions only need to override // this method. virtual FeatureValue Compute(const WorkspaceSet &workspaces, const OBJ &object, ARGS... args) const { return kNone; } // Instantiates a new feature function in a feature extractor from a feature // descriptor. // // Returns a pointer to the newly-created object if everything goes well. // Returns nullptr if the feature function could not be instantiated (e.g., if // the function with that name is not registered; this usually happens because // the relevant cc_library was not linked-in). static Self *Instantiate(const GenericFeatureExtractor *extractor, const FeatureFunctionDescriptor *fd, const string &prefix) { Self *f = Self::Create(fd->type()); if (f != nullptr) { f->set_extractor(extractor); f->set_descriptor(fd); f->set_prefix(prefix); } return f; } private: // Special feature function class for resolving variable references. The type // of the feature function is used for resolving the variable reference. When // evaluated it will either get the feature value(s) from the variable portion // of the feature vector, if present, or otherwise it will call the referenced // feature extractor function directly to extract the feature(s). class Reference; }; // Base class for features with nested feature functions. The nested functions // are of type NES, which may be different from the type of the parent function. // NB: NestedFeatureFunction will ensure that all initialization of nested // functions takes place during Setup() and Init() -- after the nested features // are initialized, the parent feature is initialized via SetupNested() and // InitNested(). Alternatively, a derived classes that overrides Setup() and // Init() directly should call Parent::Setup(), Parent::Init(), etc. first. // // Note: NestedFeatureFunction cannot know how to call Preprocess, Evaluate, or // Compute, since the nested functions may be of a different type. template class NestedFeatureFunction : public FeatureFunction { public: using Parent = NestedFeatureFunction; // Clean up nested functions. ~NestedFeatureFunction() override { utils::STLDeleteElements(&nested_); } // By default, just appends the nested feature types. void GetFeatureTypes(std::vector *types) const override { SAFTM_CHECK(!this->nested().empty()) << "Nested features require nested features to be defined."; for (auto *function : nested_) function->GetFeatureTypes(types); } // Sets up the nested features. // // Returns true on success, false otherwise. SAFTM_MUST_USE_RESULT bool Setup(TaskContext *context) override { bool success = CreateNested(this->extractor(), this->descriptor(), &nested_, this->SubPrefix()); if (!success) return false; for (auto *function : nested_) { if (!function->Setup(context)) return false; } if (!SetupNested(context)) return false; return true; } // Sets up this NestedFeatureFunction specifically. // // Returns true on success, false otherwise. SAFTM_MUST_USE_RESULT virtual bool SetupNested(TaskContext *context) { return true; } // Initializes the nested features. // // Returns true on success, false otherwise. SAFTM_MUST_USE_RESULT bool Init(TaskContext *context) override { for (auto *function : nested_) { if (!function->Init(context)) return false; } if (!InitNested(context)) return false; return true; } // Initializes this NestedFeatureFunction specifically. // // Returns true on success, false otherwise. SAFTM_MUST_USE_RESULT virtual bool InitNested(TaskContext *context) { return true; } // Gets all the workspaces needed for the nested functions. void RequestWorkspaces(WorkspaceRegistry *registry) override { for (auto *function : nested_) function->RequestWorkspaces(registry); } // Returns the list of nested feature functions. const std::vector &nested() const { return nested_; } // Instantiates nested feature functions for a feature function. Creates and // initializes one feature function for each sub-descriptor in the feature // descriptor. // // Returns true on success, false otherwise. SAFTM_MUST_USE_RESULT static bool CreateNested( const GenericFeatureExtractor *extractor, const FeatureFunctionDescriptor *fd, std::vector *functions, const string &prefix) { for (int i = 0; i < fd->feature_size(); ++i) { const FeatureFunctionDescriptor &sub = fd->feature(i); NES *f = NES::Instantiate(extractor, &sub, prefix); if (f == nullptr) return false; functions->push_back(f); } return true; } protected: // The nested feature functions, if any, in order of declaration in the // feature descriptor. Owned. std::vector nested_; }; // Base class for a nested feature function that takes nested features with the // same signature as these features, i.e. a meta feature. For this class, we can // provide preprocessing of the nested features. template class MetaFeatureFunction : public NestedFeatureFunction, OBJ, ARGS...> { public: // Preprocesses using the nested features. void Preprocess(WorkspaceSet *workspaces, const OBJ *object) const override { for (auto *function : this->nested_) { function->Preprocess(workspaces, object); } } }; // Template for a special type of locator: The locator of type // FeatureFunction calls nested functions of type // FeatureFunction, where the derived class DER is // responsible for translating by providing the following: // // // Gets the new additional focus. // IDX GetFocus(const WorkspaceSet &workspaces, const OBJ &object); // // This is useful to e.g. add a token focus to a parser state based on some // desired property of that state. template class FeatureAddFocusLocator : public NestedFeatureFunction, OBJ, ARGS...> { public: void Preprocess(WorkspaceSet *workspaces, const OBJ *object) const override { for (auto *function : this->nested_) { function->Preprocess(workspaces, object); } } void Evaluate(const WorkspaceSet &workspaces, const OBJ &object, ARGS... args, FeatureVector *result) const override { IDX focus = static_cast(this)->GetFocus(workspaces, object, args...); for (auto *function : this->nested()) { function->Evaluate(workspaces, object, focus, args..., result); } } // Returns the first nested feature's computed value. FeatureValue Compute(const WorkspaceSet &workspaces, const OBJ &object, ARGS... args) const override { IDX focus = static_cast(this)->GetFocus(workspaces, object, args...); return this->nested()[0]->Compute(workspaces, object, focus, args...); } }; // CRTP feature locator class. This is a meta feature that modifies ARGS and // then calls the nested feature functions with the modified ARGS. Note that in // order for this template to work correctly, all of ARGS must be types for // which the reference operator & can be interpreted as a pointer to the // argument. The derived class DER must implement the UpdateFocus method which // takes pointers to the ARGS arguments: // // // Updates the current arguments. // void UpdateArgs(const OBJ &object, ARGS *...args) const; template class FeatureLocator : public MetaFeatureFunction { public: // Feature locators have an additional check that there is no intrinsic type. void GetFeatureTypes(std::vector *types) const override { SAFTM_CHECK_EQ(this->feature_type(), nullptr) << "FeatureLocators should not have an intrinsic type."; MetaFeatureFunction::GetFeatureTypes(types); } // Evaluates the locator. void Evaluate(const WorkspaceSet &workspaces, const OBJ &object, ARGS... args, FeatureVector *result) const override { static_cast(this)->UpdateArgs(workspaces, object, &args...); for (auto *function : this->nested()) { function->Evaluate(workspaces, object, args..., result); } } // Returns the first nested feature's computed value. FeatureValue Compute(const WorkspaceSet &workspaces, const OBJ &object, ARGS... args) const override { static_cast(this)->UpdateArgs(workspaces, object, &args...); return this->nested()[0]->Compute(workspaces, object, args...); } }; // Feature extractor for extracting features from objects of a certain class. // Template type parameters are as defined for FeatureFunction. template class FeatureExtractor : public GenericFeatureExtractor { public: // Feature function type for top-level functions in the feature extractor. typedef FeatureFunction Function; typedef FeatureExtractor Self; // Feature locator type for the feature extractor. template using Locator = FeatureLocator; // Initializes feature extractor. FeatureExtractor() {} ~FeatureExtractor() override { utils::STLDeleteElements(&functions_); } // Sets up the feature extractor. Note that only top-level functions exist // until Setup() is called. This does not take ownership over the context, // which must outlive this. // // Returns true on success, false otherwise. SAFTM_MUST_USE_RESULT bool Setup(TaskContext *context) { for (Function *function : functions_) { if (!function->Setup(context)) return false; } return true; } // Initializes the feature extractor. Must be called after Setup(). This // does not take ownership over the context, which must outlive this. // // Returns true on success, false otherwise. SAFTM_MUST_USE_RESULT bool Init(TaskContext *context) { for (Function *function : functions_) { if (!function->Init(context)) return false; } if (!this->InitializeFeatureTypes()) return false; return true; } // Requests workspaces from the registry. Must be called after Init(), and // before Preprocess(). Does not take ownership over registry. This should be // the same registry used to initialize the WorkspaceSet used in Preprocess() // and ExtractFeatures(). NB: This is a different ordering from that used in // SentenceFeatureRepresentation style feature computation. void RequestWorkspaces(WorkspaceRegistry *registry) { for (auto *function : functions_) function->RequestWorkspaces(registry); } // Preprocesses the object using feature functions for the phase. Must be // called before any calls to ExtractFeatures() on that object and phase. void Preprocess(WorkspaceSet *workspaces, const OBJ *object) const { for (Function *function : functions_) { function->Preprocess(workspaces, object); } } // Extracts features from an object with a focus. This invokes all the // top-level feature functions in the feature extractor. Only feature // functions belonging to the specified phase are invoked. void ExtractFeatures(const WorkspaceSet &workspaces, const OBJ &object, ARGS... args, FeatureVector *result) const { result->reserve(this->feature_types()); // Extract features. for (int i = 0; i < functions_.size(); ++i) { functions_[i]->Evaluate(workspaces, object, args..., result); } } private: // Creates and initializes all feature functions in the feature extractor. // // Returns true on success, false otherwise. SAFTM_MUST_USE_RESULT bool InitializeFeatureFunctions() override { // Create all top-level feature functions. for (int i = 0; i < descriptor().feature_size(); ++i) { const FeatureFunctionDescriptor &fd = descriptor().feature(i); Function *function = Function::Instantiate(this, &fd, ""); if (function == nullptr) return false; functions_.push_back(function); } return true; } // Collect all feature types used in the feature extractor. void GetFeatureTypes(std::vector *types) const override { for (int i = 0; i < functions_.size(); ++i) { functions_[i]->GetFeatureTypes(types); } } // Top-level feature functions (and variables) in the feature extractor. // Owned. std::vector functions_; }; } // namespace mobile } // namespace nlp_saft #endif // NLP_SAFT_COMPONENTS_COMMON_MOBILE_FEL_FEATURE_EXTRACTOR_H_