//===-- DelaySlotFiller.cpp - SPARC delay slot filler ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This is a simple local pass that attempts to fill delay slots with useful // instructions. If no instructions can be moved into the delay slot, then a // NOP is placed. //===----------------------------------------------------------------------===// #include "Sparc.h" #include "SparcSubtarget.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" using namespace llvm; #define DEBUG_TYPE "delay-slot-filler" STATISTIC(FilledSlots, "Number of delay slots filled"); static cl::opt DisableDelaySlotFiller( "disable-sparc-delay-filler", cl::init(false), cl::desc("Disable the Sparc delay slot filler."), cl::Hidden); namespace { struct Filler : public MachineFunctionPass { const SparcSubtarget *Subtarget; static char ID; Filler() : MachineFunctionPass(ID) {} const char *getPassName() const override { return "SPARC Delay Slot Filler"; } bool runOnMachineBasicBlock(MachineBasicBlock &MBB); bool runOnMachineFunction(MachineFunction &F) override { bool Changed = false; Subtarget = &F.getSubtarget(); // This pass invalidates liveness information when it reorders // instructions to fill delay slot. F.getRegInfo().invalidateLiveness(); for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) Changed |= runOnMachineBasicBlock(*FI); return Changed; } MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::AllVRegsAllocated); } void insertCallDefsUses(MachineBasicBlock::iterator MI, SmallSet& RegDefs, SmallSet& RegUses); void insertDefsUses(MachineBasicBlock::iterator MI, SmallSet& RegDefs, SmallSet& RegUses); bool IsRegInSet(SmallSet& RegSet, unsigned Reg); bool delayHasHazard(MachineBasicBlock::iterator candidate, bool &sawLoad, bool &sawStore, SmallSet &RegDefs, SmallSet &RegUses); MachineBasicBlock::iterator findDelayInstr(MachineBasicBlock &MBB, MachineBasicBlock::iterator slot); bool needsUnimp(MachineBasicBlock::iterator I, unsigned &StructSize); bool tryCombineRestoreWithPrevInst(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI); }; char Filler::ID = 0; } // end of anonymous namespace /// createSparcDelaySlotFillerPass - Returns a pass that fills in delay /// slots in Sparc MachineFunctions /// FunctionPass *llvm::createSparcDelaySlotFillerPass(TargetMachine &tm) { return new Filler; } /// runOnMachineBasicBlock - Fill in delay slots for the given basic block. /// We assume there is only one delay slot per delayed instruction. /// bool Filler::runOnMachineBasicBlock(MachineBasicBlock &MBB) { bool Changed = false; Subtarget = &MBB.getParent()->getSubtarget(); const TargetInstrInfo *TII = Subtarget->getInstrInfo(); for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ) { MachineBasicBlock::iterator MI = I; ++I; // If MI is restore, try combining it with previous inst. if (!DisableDelaySlotFiller && (MI->getOpcode() == SP::RESTORErr || MI->getOpcode() == SP::RESTOREri)) { Changed |= tryCombineRestoreWithPrevInst(MBB, MI); continue; } // TODO: If we ever want to support v7, this needs to be extended // to cover all floating point operations. if (!Subtarget->isV9() && (MI->getOpcode() == SP::FCMPS || MI->getOpcode() == SP::FCMPD || MI->getOpcode() == SP::FCMPQ)) { BuildMI(MBB, I, MI->getDebugLoc(), TII->get(SP::NOP)); Changed = true; continue; } // If MI has no delay slot, skip. if (!MI->hasDelaySlot()) continue; MachineBasicBlock::iterator D = MBB.end(); if (!DisableDelaySlotFiller) D = findDelayInstr(MBB, MI); ++FilledSlots; Changed = true; if (D == MBB.end()) BuildMI(MBB, I, MI->getDebugLoc(), TII->get(SP::NOP)); else MBB.splice(I, &MBB, D); unsigned structSize = 0; if (needsUnimp(MI, structSize)) { MachineBasicBlock::iterator J = MI; ++J; // skip the delay filler. assert (J != MBB.end() && "MI needs a delay instruction."); BuildMI(MBB, ++J, MI->getDebugLoc(), TII->get(SP::UNIMP)).addImm(structSize); // Bundle the delay filler and unimp with the instruction. MIBundleBuilder(MBB, MachineBasicBlock::iterator(MI), J); } else { MIBundleBuilder(MBB, MachineBasicBlock::iterator(MI), I); } } return Changed; } MachineBasicBlock::iterator Filler::findDelayInstr(MachineBasicBlock &MBB, MachineBasicBlock::iterator slot) { SmallSet RegDefs; SmallSet RegUses; bool sawLoad = false; bool sawStore = false; if (slot == MBB.begin()) return MBB.end(); if (slot->getOpcode() == SP::RET || slot->getOpcode() == SP::TLS_CALL) return MBB.end(); if (slot->getOpcode() == SP::RETL) { MachineBasicBlock::iterator J = slot; --J; if (J->getOpcode() == SP::RESTORErr || J->getOpcode() == SP::RESTOREri) { // change retl to ret. slot->setDesc(Subtarget->getInstrInfo()->get(SP::RET)); return J; } } // Call's delay filler can def some of call's uses. if (slot->isCall()) insertCallDefsUses(slot, RegDefs, RegUses); else insertDefsUses(slot, RegDefs, RegUses); bool done = false; MachineBasicBlock::iterator I = slot; while (!done) { done = (I == MBB.begin()); if (!done) --I; // skip debug value if (I->isDebugValue()) continue; if (I->hasUnmodeledSideEffects() || I->isInlineAsm() || I->isPosition() || I->hasDelaySlot() || I->isBundledWithSucc()) break; if (delayHasHazard(I, sawLoad, sawStore, RegDefs, RegUses)) { insertDefsUses(I, RegDefs, RegUses); continue; } return I; } return MBB.end(); } bool Filler::delayHasHazard(MachineBasicBlock::iterator candidate, bool &sawLoad, bool &sawStore, SmallSet &RegDefs, SmallSet &RegUses) { if (candidate->isImplicitDef() || candidate->isKill()) return true; if (candidate->mayLoad()) { sawLoad = true; if (sawStore) return true; } if (candidate->mayStore()) { if (sawStore) return true; sawStore = true; if (sawLoad) return true; } for (unsigned i = 0, e = candidate->getNumOperands(); i!= e; ++i) { const MachineOperand &MO = candidate->getOperand(i); if (!MO.isReg()) continue; // skip unsigned Reg = MO.getReg(); if (MO.isDef()) { // check whether Reg is defined or used before delay slot. if (IsRegInSet(RegDefs, Reg) || IsRegInSet(RegUses, Reg)) return true; } if (MO.isUse()) { // check whether Reg is defined before delay slot. if (IsRegInSet(RegDefs, Reg)) return true; } } unsigned Opcode = candidate->getOpcode(); // LD and LDD may have NOPs inserted afterwards in the case of some LEON // processors, so we can't use the delay slot if this feature is switched-on. if (Subtarget->insertNOPLoad() && Opcode >= SP::LDDArr && Opcode <= SP::LDrr) return true; // Same as above for FDIV and FSQRT on some LEON processors. if (Subtarget->fixAllFDIVSQRT() && Opcode >= SP::FDIVD && Opcode <= SP::FSQRTD) return true; return false; } void Filler::insertCallDefsUses(MachineBasicBlock::iterator MI, SmallSet& RegDefs, SmallSet& RegUses) { // Call defines o7, which is visible to the instruction in delay slot. RegDefs.insert(SP::O7); switch(MI->getOpcode()) { default: llvm_unreachable("Unknown opcode."); case SP::CALL: break; case SP::CALLrr: case SP::CALLri: assert(MI->getNumOperands() >= 2); const MachineOperand &Reg = MI->getOperand(0); assert(Reg.isReg() && "CALL first operand is not a register."); assert(Reg.isUse() && "CALL first operand is not a use."); RegUses.insert(Reg.getReg()); const MachineOperand &Operand1 = MI->getOperand(1); if (Operand1.isImm() || Operand1.isGlobal()) break; assert(Operand1.isReg() && "CALLrr second operand is not a register."); assert(Operand1.isUse() && "CALLrr second operand is not a use."); RegUses.insert(Operand1.getReg()); break; } } // Insert Defs and Uses of MI into the sets RegDefs and RegUses. void Filler::insertDefsUses(MachineBasicBlock::iterator MI, SmallSet& RegDefs, SmallSet& RegUses) { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (MO.isDef()) RegDefs.insert(Reg); if (MO.isUse()) { // Implicit register uses of retl are return values and // retl does not use them. if (MO.isImplicit() && MI->getOpcode() == SP::RETL) continue; RegUses.insert(Reg); } } } // returns true if the Reg or its alias is in the RegSet. bool Filler::IsRegInSet(SmallSet& RegSet, unsigned Reg) { // Check Reg and all aliased Registers. for (MCRegAliasIterator AI(Reg, Subtarget->getRegisterInfo(), true); AI.isValid(); ++AI) if (RegSet.count(*AI)) return true; return false; } bool Filler::needsUnimp(MachineBasicBlock::iterator I, unsigned &StructSize) { if (!I->isCall()) return false; unsigned structSizeOpNum = 0; switch (I->getOpcode()) { default: llvm_unreachable("Unknown call opcode."); case SP::CALL: structSizeOpNum = 1; break; case SP::CALLrr: case SP::CALLri: structSizeOpNum = 2; break; case SP::TLS_CALL: return false; } const MachineOperand &MO = I->getOperand(structSizeOpNum); if (!MO.isImm()) return false; StructSize = MO.getImm(); return true; } static bool combineRestoreADD(MachineBasicBlock::iterator RestoreMI, MachineBasicBlock::iterator AddMI, const TargetInstrInfo *TII) { // Before: add , , %i[0-7] // restore %g0, %g0, %i[0-7] // // After : restore , , %o[0-7] unsigned reg = AddMI->getOperand(0).getReg(); if (reg < SP::I0 || reg > SP::I7) return false; // Erase RESTORE. RestoreMI->eraseFromParent(); // Change ADD to RESTORE. AddMI->setDesc(TII->get((AddMI->getOpcode() == SP::ADDrr) ? SP::RESTORErr : SP::RESTOREri)); // Map the destination register. AddMI->getOperand(0).setReg(reg - SP::I0 + SP::O0); return true; } static bool combineRestoreOR(MachineBasicBlock::iterator RestoreMI, MachineBasicBlock::iterator OrMI, const TargetInstrInfo *TII) { // Before: or , , %i[0-7] // restore %g0, %g0, %i[0-7] // and or is zero, // // After : restore , , %o[0-7] unsigned reg = OrMI->getOperand(0).getReg(); if (reg < SP::I0 || reg > SP::I7) return false; // check whether it is a copy. if (OrMI->getOpcode() == SP::ORrr && OrMI->getOperand(1).getReg() != SP::G0 && OrMI->getOperand(2).getReg() != SP::G0) return false; if (OrMI->getOpcode() == SP::ORri && OrMI->getOperand(1).getReg() != SP::G0 && (!OrMI->getOperand(2).isImm() || OrMI->getOperand(2).getImm() != 0)) return false; // Erase RESTORE. RestoreMI->eraseFromParent(); // Change OR to RESTORE. OrMI->setDesc(TII->get((OrMI->getOpcode() == SP::ORrr) ? SP::RESTORErr : SP::RESTOREri)); // Map the destination register. OrMI->getOperand(0).setReg(reg - SP::I0 + SP::O0); return true; } static bool combineRestoreSETHIi(MachineBasicBlock::iterator RestoreMI, MachineBasicBlock::iterator SetHiMI, const TargetInstrInfo *TII) { // Before: sethi imm3, %i[0-7] // restore %g0, %g0, %g0 // // After : restore %g0, (imm3<<10), %o[0-7] unsigned reg = SetHiMI->getOperand(0).getReg(); if (reg < SP::I0 || reg > SP::I7) return false; if (!SetHiMI->getOperand(1).isImm()) return false; int64_t imm = SetHiMI->getOperand(1).getImm(); // Is it a 3 bit immediate? if (!isInt<3>(imm)) return false; // Make it a 13 bit immediate. imm = (imm << 10) & 0x1FFF; assert(RestoreMI->getOpcode() == SP::RESTORErr); RestoreMI->setDesc(TII->get(SP::RESTOREri)); RestoreMI->getOperand(0).setReg(reg - SP::I0 + SP::O0); RestoreMI->getOperand(1).setReg(SP::G0); RestoreMI->getOperand(2).ChangeToImmediate(imm); // Erase the original SETHI. SetHiMI->eraseFromParent(); return true; } bool Filler::tryCombineRestoreWithPrevInst(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) { // No previous instruction. if (MBBI == MBB.begin()) return false; // assert that MBBI is a "restore %g0, %g0, %g0". assert(MBBI->getOpcode() == SP::RESTORErr && MBBI->getOperand(0).getReg() == SP::G0 && MBBI->getOperand(1).getReg() == SP::G0 && MBBI->getOperand(2).getReg() == SP::G0); MachineBasicBlock::iterator PrevInst = std::prev(MBBI); // It cannot be combined with a bundled instruction. if (PrevInst->isBundledWithSucc()) return false; const TargetInstrInfo *TII = Subtarget->getInstrInfo(); switch (PrevInst->getOpcode()) { default: break; case SP::ADDrr: case SP::ADDri: return combineRestoreADD(MBBI, PrevInst, TII); break; case SP::ORrr: case SP::ORri: return combineRestoreOR(MBBI, PrevInst, TII); break; case SP::SETHIi: return combineRestoreSETHIi(MBBI, PrevInst, TII); break; } // It cannot combine with the previous instruction. return false; }