//===- WebAssemblyTargetMachine.cpp - Define TargetMachine for WebAssembly -==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// \brief This file defines the WebAssembly-specific subclass of TargetMachine. /// //===----------------------------------------------------------------------===// #include "WebAssembly.h" #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" #include "WebAssemblyTargetMachine.h" #include "WebAssemblyTargetObjectFile.h" #include "WebAssemblyTargetTransformInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegAllocRegistry.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/Function.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Transforms/Scalar.h" using namespace llvm; #define DEBUG_TYPE "wasm" extern "C" void LLVMInitializeWebAssemblyTarget() { // Register the target. RegisterTargetMachine X(TheWebAssemblyTarget32); RegisterTargetMachine Y(TheWebAssemblyTarget64); } //===----------------------------------------------------------------------===// // WebAssembly Lowering public interface. //===----------------------------------------------------------------------===// static Reloc::Model getEffectiveRelocModel(Optional RM) { if (!RM.hasValue()) return Reloc::PIC_; return *RM; } /// Create an WebAssembly architecture model. /// WebAssemblyTargetMachine::WebAssemblyTargetMachine( const Target &T, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Optional RM, CodeModel::Model CM, CodeGenOpt::Level OL) : LLVMTargetMachine(T, TT.isArch64Bit() ? "e-m:e-p:64:64-i64:64-n32:64-S128" : "e-m:e-p:32:32-i64:64-n32:64-S128", TT, CPU, FS, Options, getEffectiveRelocModel(RM), CM, OL), TLOF(make_unique()) { // WebAssembly type-checks expressions, but a noreturn function with a return // type that doesn't match the context will cause a check failure. So we lower // LLVM 'unreachable' to ISD::TRAP and then lower that to WebAssembly's // 'unreachable' expression which is meant for that case. this->Options.TrapUnreachable = true; initAsmInfo(); // Note that we don't use setRequiresStructuredCFG(true). It disables // optimizations than we're ok with, and want, such as critical edge // splitting and tail merging. } WebAssemblyTargetMachine::~WebAssemblyTargetMachine() {} const WebAssemblySubtarget * WebAssemblyTargetMachine::getSubtargetImpl(const Function &F) const { Attribute CPUAttr = F.getFnAttribute("target-cpu"); Attribute FSAttr = F.getFnAttribute("target-features"); std::string CPU = !CPUAttr.hasAttribute(Attribute::None) ? CPUAttr.getValueAsString().str() : TargetCPU; std::string FS = !FSAttr.hasAttribute(Attribute::None) ? FSAttr.getValueAsString().str() : TargetFS; auto &I = SubtargetMap[CPU + FS]; if (!I) { // This needs to be done before we create a new subtarget since any // creation will depend on the TM and the code generation flags on the // function that reside in TargetOptions. resetTargetOptions(F); I = llvm::make_unique(TargetTriple, CPU, FS, *this); } return I.get(); } namespace { /// WebAssembly Code Generator Pass Configuration Options. class WebAssemblyPassConfig final : public TargetPassConfig { public: WebAssemblyPassConfig(WebAssemblyTargetMachine *TM, PassManagerBase &PM) : TargetPassConfig(TM, PM) {} WebAssemblyTargetMachine &getWebAssemblyTargetMachine() const { return getTM(); } FunctionPass *createTargetRegisterAllocator(bool) override; void addIRPasses() override; bool addInstSelector() override; void addPostRegAlloc() override; bool addGCPasses() override { return false; } void addPreEmitPass() override; }; } // end anonymous namespace TargetIRAnalysis WebAssemblyTargetMachine::getTargetIRAnalysis() { return TargetIRAnalysis([this](const Function &F) { return TargetTransformInfo(WebAssemblyTTIImpl(this, F)); }); } TargetPassConfig * WebAssemblyTargetMachine::createPassConfig(PassManagerBase &PM) { return new WebAssemblyPassConfig(this, PM); } FunctionPass *WebAssemblyPassConfig::createTargetRegisterAllocator(bool) { return nullptr; // No reg alloc } //===----------------------------------------------------------------------===// // The following functions are called from lib/CodeGen/Passes.cpp to modify // the CodeGen pass sequence. //===----------------------------------------------------------------------===// void WebAssemblyPassConfig::addIRPasses() { if (TM->Options.ThreadModel == ThreadModel::Single) // In "single" mode, atomics get lowered to non-atomics. addPass(createLowerAtomicPass()); else // Expand some atomic operations. WebAssemblyTargetLowering has hooks which // control specifically what gets lowered. addPass(createAtomicExpandPass(TM)); // Optimize "returned" function attributes. if (getOptLevel() != CodeGenOpt::None) addPass(createWebAssemblyOptimizeReturned()); TargetPassConfig::addIRPasses(); } bool WebAssemblyPassConfig::addInstSelector() { (void)TargetPassConfig::addInstSelector(); addPass( createWebAssemblyISelDag(getWebAssemblyTargetMachine(), getOptLevel())); // Run the argument-move pass immediately after the ScheduleDAG scheduler // so that we can fix up the ARGUMENT instructions before anything else // sees them in the wrong place. addPass(createWebAssemblyArgumentMove()); // Set the p2align operands. This information is present during ISel, however // it's inconvenient to collect. Collect it now, and update the immediate // operands. addPass(createWebAssemblySetP2AlignOperands()); return false; } void WebAssemblyPassConfig::addPostRegAlloc() { // TODO: The following CodeGen passes don't currently support code containing // virtual registers. Consider removing their restrictions and re-enabling // them. // Has no asserts of its own, but was not written to handle virtual regs. disablePass(&ShrinkWrapID); // These functions all require the AllVRegsAllocated property. disablePass(&MachineCopyPropagationID); disablePass(&PostRASchedulerID); disablePass(&FuncletLayoutID); disablePass(&StackMapLivenessID); disablePass(&LiveDebugValuesID); disablePass(&PatchableFunctionID); TargetPassConfig::addPostRegAlloc(); } void WebAssemblyPassConfig::addPreEmitPass() { TargetPassConfig::addPreEmitPass(); // Now that we have a prologue and epilogue and all frame indices are // rewritten, eliminate SP and FP. This allows them to be stackified, // colored, and numbered with the rest of the registers. addPass(createWebAssemblyReplacePhysRegs()); if (getOptLevel() != CodeGenOpt::None) { // LiveIntervals isn't commonly run this late. Re-establish preconditions. addPass(createWebAssemblyPrepareForLiveIntervals()); // Depend on LiveIntervals and perform some optimizations on it. addPass(createWebAssemblyOptimizeLiveIntervals()); // Prepare store instructions for register stackifying. addPass(createWebAssemblyStoreResults()); // Mark registers as representing wasm's expression stack. This is a key // code-compression technique in WebAssembly. We run this pass (and // StoreResults above) very late, so that it sees as much code as possible, // including code emitted by PEI and expanded by late tail duplication. addPass(createWebAssemblyRegStackify()); // Run the register coloring pass to reduce the total number of registers. // This runs after stackification so that it doesn't consider registers // that become stackified. addPass(createWebAssemblyRegColoring()); } // Eliminate multiple-entry loops. addPass(createWebAssemblyFixIrreducibleControlFlow()); // Put the CFG in structured form; insert BLOCK and LOOP markers. addPass(createWebAssemblyCFGStackify()); // Lower br_unless into br_if. addPass(createWebAssemblyLowerBrUnless()); // Perform the very last peephole optimizations on the code. if (getOptLevel() != CodeGenOpt::None) addPass(createWebAssemblyPeephole()); // Create a mapping from LLVM CodeGen virtual registers to wasm registers. addPass(createWebAssemblyRegNumbering()); }