//===- ScalarEvolutionsTest.cpp - ScalarEvolution unit tests --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/LegacyPassManager.h" #include "gtest/gtest.h" namespace llvm { namespace { // We use this fixture to ensure that we clean up ScalarEvolution before // deleting the PassManager. class ScalarEvolutionsTest : public testing::Test { protected: LLVMContext Context; Module M; TargetLibraryInfoImpl TLII; TargetLibraryInfo TLI; std::unique_ptr AC; std::unique_ptr DT; std::unique_ptr LI; ScalarEvolutionsTest() : M("", Context), TLII(), TLI(TLII) {} ScalarEvolution buildSE(Function &F) { AC.reset(new AssumptionCache(F)); DT.reset(new DominatorTree(F)); LI.reset(new LoopInfo(*DT)); return ScalarEvolution(F, TLI, *AC, *DT, *LI); } }; TEST_F(ScalarEvolutionsTest, SCEVUnknownRAUW) { FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), std::vector(), false); Function *F = cast(M.getOrInsertFunction("f", FTy)); BasicBlock *BB = BasicBlock::Create(Context, "entry", F); ReturnInst::Create(Context, nullptr, BB); Type *Ty = Type::getInt1Ty(Context); Constant *Init = Constant::getNullValue(Ty); Value *V0 = new GlobalVariable(M, Ty, false, GlobalValue::ExternalLinkage, Init, "V0"); Value *V1 = new GlobalVariable(M, Ty, false, GlobalValue::ExternalLinkage, Init, "V1"); Value *V2 = new GlobalVariable(M, Ty, false, GlobalValue::ExternalLinkage, Init, "V2"); ScalarEvolution SE = buildSE(*F); const SCEV *S0 = SE.getSCEV(V0); const SCEV *S1 = SE.getSCEV(V1); const SCEV *S2 = SE.getSCEV(V2); const SCEV *P0 = SE.getAddExpr(S0, S0); const SCEV *P1 = SE.getAddExpr(S1, S1); const SCEV *P2 = SE.getAddExpr(S2, S2); const SCEVMulExpr *M0 = cast(P0); const SCEVMulExpr *M1 = cast(P1); const SCEVMulExpr *M2 = cast(P2); EXPECT_EQ(cast(M0->getOperand(0))->getValue()->getZExtValue(), 2u); EXPECT_EQ(cast(M1->getOperand(0))->getValue()->getZExtValue(), 2u); EXPECT_EQ(cast(M2->getOperand(0))->getValue()->getZExtValue(), 2u); // Before the RAUWs, these are all pointing to separate values. EXPECT_EQ(cast(M0->getOperand(1))->getValue(), V0); EXPECT_EQ(cast(M1->getOperand(1))->getValue(), V1); EXPECT_EQ(cast(M2->getOperand(1))->getValue(), V2); // Do some RAUWs. V2->replaceAllUsesWith(V1); V1->replaceAllUsesWith(V0); // After the RAUWs, these should all be pointing to V0. EXPECT_EQ(cast(M0->getOperand(1))->getValue(), V0); EXPECT_EQ(cast(M1->getOperand(1))->getValue(), V0); EXPECT_EQ(cast(M2->getOperand(1))->getValue(), V0); } TEST_F(ScalarEvolutionsTest, SCEVMultiplyAddRecs) { Type *Ty = Type::getInt32Ty(Context); SmallVector Types; Types.append(10, Ty); FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), Types, false); Function *F = cast(M.getOrInsertFunction("f", FTy)); BasicBlock *BB = BasicBlock::Create(Context, "entry", F); ReturnInst::Create(Context, nullptr, BB); ScalarEvolution SE = buildSE(*F); // It's possible to produce an empty loop through the default constructor, // but you can't add any blocks to it without a LoopInfo pass. Loop L; const_cast&>(L.getBlocks()).push_back(BB); Function::arg_iterator AI = F->arg_begin(); SmallVector A; A.push_back(SE.getSCEV(&*AI++)); A.push_back(SE.getSCEV(&*AI++)); A.push_back(SE.getSCEV(&*AI++)); A.push_back(SE.getSCEV(&*AI++)); A.push_back(SE.getSCEV(&*AI++)); const SCEV *A_rec = SE.getAddRecExpr(A, &L, SCEV::FlagAnyWrap); SmallVector B; B.push_back(SE.getSCEV(&*AI++)); B.push_back(SE.getSCEV(&*AI++)); B.push_back(SE.getSCEV(&*AI++)); B.push_back(SE.getSCEV(&*AI++)); B.push_back(SE.getSCEV(&*AI++)); const SCEV *B_rec = SE.getAddRecExpr(B, &L, SCEV::FlagAnyWrap); /* Spot check that we perform this transformation: {A0,+,A1,+,A2,+,A3,+,A4} * {B0,+,B1,+,B2,+,B3,+,B4} = {A0*B0,+, A1*B0 + A0*B1 + A1*B1,+, A2*B0 + 2A1*B1 + A0*B2 + 2A2*B1 + 2A1*B2 + A2*B2,+, A3*B0 + 3A2*B1 + 3A1*B2 + A0*B3 + 3A3*B1 + 6A2*B2 + 3A1*B3 + 3A3*B2 + 3A2*B3 + A3*B3,+, A4*B0 + 4A3*B1 + 6A2*B2 + 4A1*B3 + A0*B4 + 4A4*B1 + 12A3*B2 + 12A2*B3 + 4A1*B4 + 6A4*B2 + 12A3*B3 + 6A2*B4 + 4A4*B3 + 4A3*B4 + A4*B4,+, 5A4*B1 + 10A3*B2 + 10A2*B3 + 5A1*B4 + 20A4*B2 + 30A3*B3 + 20A2*B4 + 30A4*B3 + 30A3*B4 + 20A4*B4,+, 15A4*B2 + 20A3*B3 + 15A2*B4 + 60A4*B3 + 60A3*B4 + 90A4*B4,+, 35A4*B3 + 35A3*B4 + 140A4*B4,+, 70A4*B4} */ const SCEVAddRecExpr *Product = dyn_cast(SE.getMulExpr(A_rec, B_rec)); ASSERT_TRUE(Product); ASSERT_EQ(Product->getNumOperands(), 9u); SmallVector Sum; Sum.push_back(SE.getMulExpr(A[0], B[0])); EXPECT_EQ(Product->getOperand(0), SE.getAddExpr(Sum)); Sum.clear(); // SCEV produces different an equal but different expression for these. // Re-enable when PR11052 is fixed. #if 0 Sum.push_back(SE.getMulExpr(A[1], B[0])); Sum.push_back(SE.getMulExpr(A[0], B[1])); Sum.push_back(SE.getMulExpr(A[1], B[1])); EXPECT_EQ(Product->getOperand(1), SE.getAddExpr(Sum)); Sum.clear(); Sum.push_back(SE.getMulExpr(A[2], B[0])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 2), A[1], B[1])); Sum.push_back(SE.getMulExpr(A[0], B[2])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 2), A[2], B[1])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 2), A[1], B[2])); Sum.push_back(SE.getMulExpr(A[2], B[2])); EXPECT_EQ(Product->getOperand(2), SE.getAddExpr(Sum)); Sum.clear(); Sum.push_back(SE.getMulExpr(A[3], B[0])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 3), A[2], B[1])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 3), A[1], B[2])); Sum.push_back(SE.getMulExpr(A[0], B[3])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 3), A[3], B[1])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 6), A[2], B[2])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 3), A[1], B[3])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 3), A[3], B[2])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 3), A[2], B[3])); Sum.push_back(SE.getMulExpr(A[3], B[3])); EXPECT_EQ(Product->getOperand(3), SE.getAddExpr(Sum)); Sum.clear(); Sum.push_back(SE.getMulExpr(A[4], B[0])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 4), A[3], B[1])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 6), A[2], B[2])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 4), A[1], B[3])); Sum.push_back(SE.getMulExpr(A[0], B[4])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 4), A[4], B[1])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 12), A[3], B[2])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 12), A[2], B[3])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 4), A[1], B[4])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 6), A[4], B[2])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 12), A[3], B[3])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 6), A[2], B[4])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 4), A[4], B[3])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 4), A[3], B[4])); Sum.push_back(SE.getMulExpr(A[4], B[4])); EXPECT_EQ(Product->getOperand(4), SE.getAddExpr(Sum)); Sum.clear(); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 5), A[4], B[1])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 10), A[3], B[2])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 10), A[2], B[3])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 5), A[1], B[4])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 20), A[4], B[2])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 30), A[3], B[3])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 20), A[2], B[4])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 30), A[4], B[3])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 30), A[3], B[4])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 20), A[4], B[4])); EXPECT_EQ(Product->getOperand(5), SE.getAddExpr(Sum)); Sum.clear(); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 15), A[4], B[2])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 20), A[3], B[3])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 15), A[2], B[4])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 60), A[4], B[3])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 60), A[3], B[4])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 90), A[4], B[4])); EXPECT_EQ(Product->getOperand(6), SE.getAddExpr(Sum)); Sum.clear(); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 35), A[4], B[3])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 35), A[3], B[4])); Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 140), A[4], B[4])); EXPECT_EQ(Product->getOperand(7), SE.getAddExpr(Sum)); Sum.clear(); #endif Sum.push_back(SE.getMulExpr(SE.getConstant(Ty, 70), A[4], B[4])); EXPECT_EQ(Product->getOperand(8), SE.getAddExpr(Sum)); } TEST_F(ScalarEvolutionsTest, SimplifiedPHI) { FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), std::vector(), false); Function *F = cast(M.getOrInsertFunction("f", FTy)); BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); BasicBlock *LoopBB = BasicBlock::Create(Context, "loop", F); BasicBlock *ExitBB = BasicBlock::Create(Context, "exit", F); BranchInst::Create(LoopBB, EntryBB); BranchInst::Create(LoopBB, ExitBB, UndefValue::get(Type::getInt1Ty(Context)), LoopBB); ReturnInst::Create(Context, nullptr, ExitBB); auto *Ty = Type::getInt32Ty(Context); auto *PN = PHINode::Create(Ty, 2, "", &*LoopBB->begin()); PN->addIncoming(Constant::getNullValue(Ty), EntryBB); PN->addIncoming(UndefValue::get(Ty), LoopBB); ScalarEvolution SE = buildSE(*F); auto *S1 = SE.getSCEV(PN); auto *S2 = SE.getSCEV(PN); auto *ZeroConst = SE.getConstant(Ty, 0); // At some point, only the first call to getSCEV returned the simplified // SCEVConstant and later calls just returned a SCEVUnknown referencing the // PHI node. EXPECT_EQ(S1, ZeroConst); EXPECT_EQ(S1, S2); } } // end anonymous namespace } // end namespace llvm