/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkGpuDevice.h" #include "../private/SkShadowFlags.h" #include "GrBitmapTextureMaker.h" #include "GrBlurUtils.h" #include "GrContext.h" #include "GrContextPriv.h" #include "GrGpu.h" #include "GrImageTextureMaker.h" #include "GrRenderTargetContextPriv.h" #include "GrShape.h" #include "GrStyle.h" #include "GrSurfaceProxyPriv.h" #include "GrTextureAdjuster.h" #include "GrTracing.h" #include "SkCanvasPriv.h" #include "SkDraw.h" #include "SkGr.h" #include "SkImageFilter.h" #include "SkImageFilterCache.h" #include "SkImageInfoPriv.h" #include "SkImage_Base.h" #include "SkLatticeIter.h" #include "SkMakeUnique.h" #include "SkPathEffect.h" #include "SkPicture.h" #include "SkPictureData.h" #include "SkRRectPriv.h" #include "SkRasterClip.h" #include "SkReadPixelsRec.h" #include "SkRecord.h" #include "SkSpecialImage.h" #include "SkStroke.h" #include "SkSurface.h" #include "SkSurface_Gpu.h" #include "SkTLazy.h" #include "SkTo.h" #include "SkUTF.h" #include "SkVertState.h" #include "SkVertices.h" #include "SkWritePixelsRec.h" #include "effects/GrBicubicEffect.h" #include "effects/GrTextureDomain.h" #include "text/GrTextTarget.h" #define ASSERT_SINGLE_OWNER \ SkDEBUGCODE(GrSingleOwner::AutoEnforce debug_SingleOwner(fContext->priv().singleOwner());) /////////////////////////////////////////////////////////////////////////////// /** Checks that the alpha type is legal and gets constructor flags. Returns false if device creation should fail. */ bool SkGpuDevice::CheckAlphaTypeAndGetFlags( const SkImageInfo* info, SkGpuDevice::InitContents init, unsigned* flags) { *flags = 0; if (info) { switch (info->alphaType()) { case kPremul_SkAlphaType: break; case kOpaque_SkAlphaType: *flags |= SkGpuDevice::kIsOpaque_Flag; break; default: // If it is unpremul or unknown don't try to render return false; } } if (kClear_InitContents == init) { *flags |= kNeedClear_Flag; } return true; } sk_sp SkGpuDevice::Make(GrContext* context, sk_sp renderTargetContext, int width, int height, InitContents init) { if (!renderTargetContext || context->priv().abandoned()) { return nullptr; } unsigned flags; if (!CheckAlphaTypeAndGetFlags(nullptr, init, &flags)) { return nullptr; } return sk_sp(new SkGpuDevice(context, std::move(renderTargetContext), width, height, flags)); } sk_sp SkGpuDevice::Make(GrContext* context, SkBudgeted budgeted, const SkImageInfo& info, int sampleCount, GrSurfaceOrigin origin, const SkSurfaceProps* props, GrMipMapped mipMapped, InitContents init) { unsigned flags; if (!CheckAlphaTypeAndGetFlags(&info, init, &flags)) { return nullptr; } sk_sp renderTargetContext(MakeRenderTargetContext(context, budgeted, info, sampleCount, origin, props, mipMapped)); if (!renderTargetContext) { return nullptr; } return sk_sp(new SkGpuDevice(context, std::move(renderTargetContext), info.width(), info.height(), flags)); } static SkImageInfo make_info(GrRenderTargetContext* context, int w, int h, bool opaque) { SkColorType colorType; if (!GrPixelConfigToColorType(context->colorSpaceInfo().config(), &colorType)) { colorType = kUnknown_SkColorType; } return SkImageInfo::Make(w, h, colorType, opaque ? kOpaque_SkAlphaType : kPremul_SkAlphaType, context->colorSpaceInfo().refColorSpace()); } SkGpuDevice::SkGpuDevice(GrContext* context, sk_sp renderTargetContext, int width, int height, unsigned flags) : INHERITED(make_info(renderTargetContext.get(), width, height, SkToBool(flags & kIsOpaque_Flag)), renderTargetContext->surfaceProps()) , fContext(SkRef(context)) , fRenderTargetContext(std::move(renderTargetContext)) { fSize.set(width, height); if (flags & kNeedClear_Flag) { this->clearAll(); } } sk_sp SkGpuDevice::MakeRenderTargetContext( GrContext* context, SkBudgeted budgeted, const SkImageInfo& origInfo, int sampleCount, GrSurfaceOrigin origin, const SkSurfaceProps* surfaceProps, GrMipMapped mipMapped) { if (kUnknown_SkColorType == origInfo.colorType() || origInfo.width() < 0 || origInfo.height() < 0) { return nullptr; } if (!context) { return nullptr; } GrPixelConfig config = SkImageInfo2GrPixelConfig(origInfo); if (kUnknown_GrPixelConfig == config) { return nullptr; } GrBackendFormat format = context->priv().caps()->getBackendFormatFromColorType(origInfo.colorType()); // This method is used to create SkGpuDevice's for SkSurface_Gpus. In this case // they need to be exact. return context->priv().makeDeferredRenderTargetContext( format, SkBackingFit::kExact, origInfo.width(), origInfo.height(), config, origInfo.refColorSpace(), sampleCount, mipMapped, origin, surfaceProps, budgeted); } sk_sp SkGpuDevice::filterTexture(SkSpecialImage* srcImg, int left, int top, SkIPoint* offset, const SkImageFilter* filter) { SkASSERT(srcImg->isTextureBacked()); SkASSERT(filter); SkMatrix matrix = this->ctm(); matrix.postTranslate(SkIntToScalar(-left), SkIntToScalar(-top)); const SkIRect clipBounds = this->devClipBounds().makeOffset(-left, -top); sk_sp cache(this->getImageFilterCache()); SkColorType colorType; if (!GrPixelConfigToColorType(fRenderTargetContext->colorSpaceInfo().config(), &colorType)) { colorType = kN32_SkColorType; } SkImageFilter::OutputProperties outputProperties( colorType, fRenderTargetContext->colorSpaceInfo().colorSpace()); SkImageFilter::Context ctx(matrix, clipBounds, cache.get(), outputProperties); return filter->filterImage(srcImg, ctx, offset); } /////////////////////////////////////////////////////////////////////////////// bool SkGpuDevice::onReadPixels(const SkPixmap& pm, int x, int y) { ASSERT_SINGLE_OWNER if (!SkImageInfoValidConversion(pm.info(), this->imageInfo())) { return false; } SkReadPixelsRec rec(pm, x, y); if (!rec.trim(this->width(), this->height())) { return false; } return fRenderTargetContext->readPixels(rec.fInfo, rec.fPixels, rec.fRowBytes, rec.fX, rec.fY); } bool SkGpuDevice::onWritePixels(const SkPixmap& pm, int x, int y) { ASSERT_SINGLE_OWNER if (!SkImageInfoValidConversion(this->imageInfo(), pm.info())) { return false; } SkWritePixelsRec rec(pm, x, y); if (!rec.trim(this->width(), this->height())) { return false; } return fRenderTargetContext->writePixels(rec.fInfo, rec.fPixels, rec.fRowBytes, rec.fX, rec.fY); } bool SkGpuDevice::onAccessPixels(SkPixmap* pmap) { ASSERT_SINGLE_OWNER return false; } GrRenderTargetContext* SkGpuDevice::accessRenderTargetContext() { ASSERT_SINGLE_OWNER return fRenderTargetContext.get(); } void SkGpuDevice::clearAll() { ASSERT_SINGLE_OWNER GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "clearAll", fContext.get()); SkIRect rect = SkIRect::MakeWH(this->width(), this->height()); fRenderTargetContext->clear(&rect, SK_PMColor4fTRANSPARENT, GrRenderTargetContext::CanClearFullscreen::kYes); } void SkGpuDevice::replaceRenderTargetContext(bool shouldRetainContent) { ASSERT_SINGLE_OWNER SkBudgeted budgeted = fRenderTargetContext->priv().isBudgeted(); // This entry point is used by SkSurface_Gpu::onCopyOnWrite so it must create a // kExact-backed render target context. sk_sp newRTC(MakeRenderTargetContext( this->context(), budgeted, this->imageInfo(), fRenderTargetContext->numColorSamples(), fRenderTargetContext->origin(), &this->surfaceProps(), fRenderTargetContext->mipMapped())); if (!newRTC) { return; } SkASSERT(newRTC->asSurfaceProxy()->priv().isExact()); if (shouldRetainContent) { if (this->context()->abandoned()) { return; } newRTC->copy(fRenderTargetContext->asSurfaceProxy()); } fRenderTargetContext = newRTC; } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawPaint(const SkPaint& paint) { ASSERT_SINGLE_OWNER GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawPaint", fContext.get()); GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), fRenderTargetContext->colorSpaceInfo(), paint, this->ctm(), &grPaint)) { return; } fRenderTargetContext->drawPaint(this->clip(), std::move(grPaint), this->ctm()); } static inline GrPrimitiveType point_mode_to_primitive_type(SkCanvas::PointMode mode) { switch (mode) { case SkCanvas::kPoints_PointMode: return GrPrimitiveType::kPoints; case SkCanvas::kLines_PointMode: return GrPrimitiveType::kLines; case SkCanvas::kPolygon_PointMode: return GrPrimitiveType::kLineStrip; } SK_ABORT("Unexpected mode"); return GrPrimitiveType::kPoints; } void SkGpuDevice::drawPoints(SkCanvas::PointMode mode, size_t count, const SkPoint pts[], const SkPaint& paint) { ASSERT_SINGLE_OWNER GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawPoints", fContext.get()); SkScalar width = paint.getStrokeWidth(); if (width < 0) { return; } if (paint.getPathEffect() && 2 == count && SkCanvas::kLines_PointMode == mode) { GrStyle style(paint, SkPaint::kStroke_Style); GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), fRenderTargetContext->colorSpaceInfo(), paint, this->ctm(), &grPaint)) { return; } SkPath path; path.setIsVolatile(true); path.moveTo(pts[0]); path.lineTo(pts[1]); fRenderTargetContext->drawPath(this->clip(), std::move(grPaint), GrAA(paint.isAntiAlias()), this->ctm(), path, style); return; } SkScalar scales[2]; bool isHairline = (0 == width) || (1 == width && this->ctm().getMinMaxScales(scales) && SkScalarNearlyEqual(scales[0], 1.f) && SkScalarNearlyEqual(scales[1], 1.f)); // we only handle non-antialiased hairlines and paints without path effects or mask filters, // else we let the SkDraw call our drawPath() if (!isHairline || paint.getPathEffect() || paint.getMaskFilter() || paint.isAntiAlias()) { SkRasterClip rc(this->devClipBounds()); SkDraw draw; draw.fDst = SkPixmap(SkImageInfo::MakeUnknown(this->width(), this->height()), nullptr, 0); draw.fMatrix = &this->ctm(); draw.fRC = &rc; draw.drawPoints(mode, count, pts, paint, this); return; } GrPrimitiveType primitiveType = point_mode_to_primitive_type(mode); const SkMatrix* viewMatrix = &this->ctm(); #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK // This offsetting in device space matches the expectations of the Android framework for non-AA // points and lines. SkMatrix tempMatrix; if (GrIsPrimTypeLines(primitiveType) || GrPrimitiveType::kPoints == primitiveType) { tempMatrix = *viewMatrix; static const SkScalar kOffset = 0.063f; // Just greater than 1/16. tempMatrix.postTranslate(kOffset, kOffset); viewMatrix = &tempMatrix; } #endif GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), fRenderTargetContext->colorSpaceInfo(), paint, *viewMatrix, &grPaint)) { return; } static constexpr SkVertices::VertexMode kIgnoredMode = SkVertices::kTriangles_VertexMode; sk_sp vertices = SkVertices::MakeCopy(kIgnoredMode, SkToS32(count), pts, nullptr, nullptr); fRenderTargetContext->drawVertices(this->clip(), std::move(grPaint), *viewMatrix, std::move(vertices), nullptr, 0, &primitiveType); } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawRect(const SkRect& rect, const SkPaint& paint) { ASSERT_SINGLE_OWNER GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawRect", fContext.get()); GrStyle style(paint); // A couple reasons we might need to call drawPath. if (paint.getMaskFilter() || paint.getPathEffect()) { GrShape shape(rect, style); GrBlurUtils::drawShapeWithMaskFilter(fContext.get(), fRenderTargetContext.get(), this->clip(), paint, this->ctm(), shape); return; } GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), fRenderTargetContext->colorSpaceInfo(), paint, this->ctm(), &grPaint)) { return; } fRenderTargetContext->drawRect(this->clip(), std::move(grPaint), GrAA(paint.isAntiAlias()), this->ctm(), rect, &style); } void SkGpuDevice::drawEdgeAARect(const SkRect& r, SkCanvas::QuadAAFlags aa, SkColor color, SkBlendMode mode) { this->tmp_drawEdgeAAQuad(r, nullptr, 0, aa, color, mode); } void SkGpuDevice::tmp_drawEdgeAAQuad(const SkRect& rect, const SkPoint clip[], int clipCount, SkCanvas::QuadAAFlags aaFlags, SkColor color, SkBlendMode mode) { ASSERT_SINGLE_OWNER GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "tmp_drawEdgeAAQuad", fContext.get()); // Only no clip or a quad clip is currently supported SkASSERT(clipCount == 0 || clipCount == 4); SkASSERT(clipCount == 0 || clip); SkPMColor4f dstColor = SkColor4fPrepForDst(SkColor4f::FromColor(color), fRenderTargetContext->colorSpaceInfo(), *fContext->priv().caps()) .premul(); GrPaint grPaint; grPaint.setColor4f(dstColor); if (mode != SkBlendMode::kSrcOver) { grPaint.setXPFactory(SkBlendMode_AsXPFactory(mode)); } // This is exclusively meant for tiling operations, so keep AA enabled to handle MSAA seaming GrQuadAAFlags grAA = SkToGrQuadAAFlags(aaFlags); if (clipCount > 0) { // Use fillQuadWithEdgeAA fRenderTargetContext->fillQuadWithEdgeAA(this->clip(), std::move(grPaint), GrAA::kYes, grAA, this->ctm(), clip, nullptr); } else { // Use fillRectWithEdgeAA to preserve mathematical properties of dst being rectangular fRenderTargetContext->fillRectWithEdgeAA(this->clip(), std::move(grPaint), GrAA::kYes, grAA, this->ctm(), rect); } } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawRRect(const SkRRect& rrect, const SkPaint& paint) { ASSERT_SINGLE_OWNER GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawRRect", fContext.get()); SkMaskFilterBase* mf = as_MFB(paint.getMaskFilter()); if (mf) { if (mf->hasFragmentProcessor()) { mf = nullptr; // already handled in SkPaintToGrPaint } } GrStyle style(paint); if (mf || style.pathEffect()) { // A path effect will presumably transform this rrect into something else. GrShape shape(rrect, style); GrBlurUtils::drawShapeWithMaskFilter(fContext.get(), fRenderTargetContext.get(), this->clip(), paint, this->ctm(), shape); return; } SkASSERT(!style.pathEffect()); GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), fRenderTargetContext->colorSpaceInfo(), paint, this->ctm(), &grPaint)) { return; } fRenderTargetContext->drawRRect(this->clip(), std::move(grPaint), GrAA(paint.isAntiAlias()), this->ctm(), rrect, style); } void SkGpuDevice::drawDRRect(const SkRRect& outer, const SkRRect& inner, const SkPaint& paint) { ASSERT_SINGLE_OWNER GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawDRRect", fContext.get()); if (outer.isEmpty()) { return; } if (inner.isEmpty()) { return this->drawRRect(outer, paint); } SkStrokeRec stroke(paint); if (stroke.isFillStyle() && !paint.getMaskFilter() && !paint.getPathEffect()) { GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), fRenderTargetContext->colorSpaceInfo(), paint, this->ctm(), &grPaint)) { return; } fRenderTargetContext->drawDRRect(this->clip(), std::move(grPaint), GrAA(paint.isAntiAlias()), this->ctm(), outer, inner); return; } SkPath path; path.setIsVolatile(true); path.addRRect(outer); path.addRRect(inner); path.setFillType(SkPath::kEvenOdd_FillType); // TODO: We are losing the possible mutability of the path here but this should probably be // fixed by upgrading GrShape to handle DRRects. GrShape shape(path, paint); GrBlurUtils::drawShapeWithMaskFilter(fContext.get(), fRenderTargetContext.get(), this->clip(), paint, this->ctm(), shape); } ///////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawRegion(const SkRegion& region, const SkPaint& paint) { if (paint.getMaskFilter()) { SkPath path; region.getBoundaryPath(&path); path.setIsVolatile(true); return this->drawPath(path, paint, true); } GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), fRenderTargetContext->colorSpaceInfo(), paint, this->ctm(), &grPaint)) { return; } fRenderTargetContext->drawRegion(this->clip(), std::move(grPaint), GrAA(paint.isAntiAlias()), this->ctm(), region, GrStyle(paint)); } void SkGpuDevice::drawOval(const SkRect& oval, const SkPaint& paint) { ASSERT_SINGLE_OWNER GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawOval", fContext.get()); if (paint.getMaskFilter()) { // The RRect path can handle special case blurring SkRRect rr = SkRRect::MakeOval(oval); return this->drawRRect(rr, paint); } GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), fRenderTargetContext->colorSpaceInfo(), paint, this->ctm(), &grPaint)) { return; } fRenderTargetContext->drawOval(this->clip(), std::move(grPaint), GrAA(paint.isAntiAlias()), this->ctm(), oval, GrStyle(paint)); } void SkGpuDevice::drawArc(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle, bool useCenter, const SkPaint& paint) { ASSERT_SINGLE_OWNER GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawArc", fContext.get()); if (paint.getMaskFilter()) { this->INHERITED::drawArc(oval, startAngle, sweepAngle, useCenter, paint); return; } GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), fRenderTargetContext->colorSpaceInfo(), paint, this->ctm(), &grPaint)) { return; } fRenderTargetContext->drawArc(this->clip(), std::move(grPaint), GrAA(paint.isAntiAlias()), this->ctm(), oval, startAngle, sweepAngle, useCenter, GrStyle(paint)); } #include "SkMaskFilter.h" /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawStrokedLine(const SkPoint points[2], const SkPaint& origPaint) { ASSERT_SINGLE_OWNER GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawStrokedLine", fContext.get()); // Adding support for round capping would require a // GrRenderTargetContext::fillRRectWithLocalMatrix entry point SkASSERT(SkPaint::kRound_Cap != origPaint.getStrokeCap()); SkASSERT(SkPaint::kStroke_Style == origPaint.getStyle()); SkASSERT(!origPaint.getPathEffect()); SkASSERT(!origPaint.getMaskFilter()); const SkScalar halfWidth = 0.5f * origPaint.getStrokeWidth(); SkASSERT(halfWidth > 0); SkVector v = points[1] - points[0]; SkScalar length = SkPoint::Normalize(&v); if (!length) { v.fX = 1.0f; v.fY = 0.0f; } SkPaint newPaint(origPaint); newPaint.setStyle(SkPaint::kFill_Style); SkScalar xtraLength = 0.0f; if (SkPaint::kButt_Cap != origPaint.getStrokeCap()) { xtraLength = halfWidth; } SkPoint mid = points[0] + points[1]; mid.scale(0.5f); SkRect rect = SkRect::MakeLTRB(mid.fX-halfWidth, mid.fY - 0.5f*length - xtraLength, mid.fX+halfWidth, mid.fY + 0.5f*length + xtraLength); SkMatrix m; m.setSinCos(v.fX, -v.fY, mid.fX, mid.fY); SkMatrix local = m; m.postConcat(this->ctm()); GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), fRenderTargetContext->colorSpaceInfo(), newPaint, m, &grPaint)) { return; } fRenderTargetContext->fillRectWithLocalMatrix( this->clip(), std::move(grPaint), GrAA(newPaint.isAntiAlias()), m, rect, local); } void SkGpuDevice::drawPath(const SkPath& origSrcPath, const SkPaint& paint, bool pathIsMutable) { ASSERT_SINGLE_OWNER if (!origSrcPath.isInverseFillType() && !paint.getPathEffect()) { SkPoint points[2]; if (SkPaint::kStroke_Style == paint.getStyle() && paint.getStrokeWidth() > 0 && !paint.getMaskFilter() && SkPaint::kRound_Cap != paint.getStrokeCap() && this->ctm().preservesRightAngles() && origSrcPath.isLine(points)) { // Path-based stroking looks better for thin rects SkScalar strokeWidth = this->ctm().getMaxScale() * paint.getStrokeWidth(); if (strokeWidth >= 1.0f) { // Round capping support is currently disabled b.c. it would require a RRect // GrDrawOp that takes a localMatrix. this->drawStrokedLine(points, paint); return; } } } GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawPath", fContext.get()); if (!paint.getMaskFilter()) { GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), fRenderTargetContext->colorSpaceInfo(), paint, this->ctm(), &grPaint)) { return; } fRenderTargetContext->drawPath(this->clip(), std::move(grPaint), GrAA(paint.isAntiAlias()), this->ctm(), origSrcPath, GrStyle(paint)); return; } // TODO: losing possible mutability of 'origSrcPath' here GrShape shape(origSrcPath, paint); GrBlurUtils::drawShapeWithMaskFilter(fContext.get(), fRenderTargetContext.get(), this->clip(), paint, this->ctm(), shape); } static const int kBmpSmallTileSize = 1 << 10; static inline int get_tile_count(const SkIRect& srcRect, int tileSize) { int tilesX = (srcRect.fRight / tileSize) - (srcRect.fLeft / tileSize) + 1; int tilesY = (srcRect.fBottom / tileSize) - (srcRect.fTop / tileSize) + 1; return tilesX * tilesY; } static int determine_tile_size(const SkIRect& src, int maxTileSize) { if (maxTileSize <= kBmpSmallTileSize) { return maxTileSize; } size_t maxTileTotalTileSize = get_tile_count(src, maxTileSize); size_t smallTotalTileSize = get_tile_count(src, kBmpSmallTileSize); maxTileTotalTileSize *= maxTileSize * maxTileSize; smallTotalTileSize *= kBmpSmallTileSize * kBmpSmallTileSize; if (maxTileTotalTileSize > 2 * smallTotalTileSize) { return kBmpSmallTileSize; } else { return maxTileSize; } } // Given a bitmap, an optional src rect, and a context with a clip and matrix determine what // pixels from the bitmap are necessary. static void determine_clipped_src_rect(int width, int height, const GrClip& clip, const SkMatrix& viewMatrix, const SkMatrix& srcToDstRect, const SkISize& imageSize, const SkRect* srcRectPtr, SkIRect* clippedSrcIRect) { clip.getConservativeBounds(width, height, clippedSrcIRect, nullptr); SkMatrix inv = SkMatrix::Concat(viewMatrix, srcToDstRect); if (!inv.invert(&inv)) { clippedSrcIRect->setEmpty(); return; } SkRect clippedSrcRect = SkRect::Make(*clippedSrcIRect); inv.mapRect(&clippedSrcRect); if (srcRectPtr) { if (!clippedSrcRect.intersect(*srcRectPtr)) { clippedSrcIRect->setEmpty(); return; } } clippedSrcRect.roundOut(clippedSrcIRect); SkIRect bmpBounds = SkIRect::MakeSize(imageSize); if (!clippedSrcIRect->intersect(bmpBounds)) { clippedSrcIRect->setEmpty(); } } const GrCaps* SkGpuDevice::caps() const { return fContext->priv().caps(); } bool SkGpuDevice::shouldTileImageID(uint32_t imageID, const SkIRect& imageRect, const SkMatrix& viewMatrix, const SkMatrix& srcToDstRect, const GrSamplerState& params, const SkRect* srcRectPtr, int maxTileSize, int* tileSize, SkIRect* clippedSubset) const { ASSERT_SINGLE_OWNER // if it's larger than the max tile size, then we have no choice but tiling. if (imageRect.width() > maxTileSize || imageRect.height() > maxTileSize) { determine_clipped_src_rect(fRenderTargetContext->width(), fRenderTargetContext->height(), this->clip(), viewMatrix, srcToDstRect, imageRect.size(), srcRectPtr, clippedSubset); *tileSize = determine_tile_size(*clippedSubset, maxTileSize); return true; } // If the image would only produce 4 tiles of the smaller size, don't bother tiling it. const size_t area = imageRect.width() * imageRect.height(); if (area < 4 * kBmpSmallTileSize * kBmpSmallTileSize) { return false; } // At this point we know we could do the draw by uploading the entire bitmap // as a texture. However, if the texture would be large compared to the // cache size and we don't require most of it for this draw then tile to // reduce the amount of upload and cache spill. // assumption here is that sw bitmap size is a good proxy for its size as // a texture size_t bmpSize = area * sizeof(SkPMColor); // assume 32bit pixels size_t cacheSize; fContext->getResourceCacheLimits(nullptr, &cacheSize); if (bmpSize < cacheSize / 2) { return false; } // Figure out how much of the src we will need based on the src rect and clipping. Reject if // tiling memory savings would be < 50%. determine_clipped_src_rect(fRenderTargetContext->width(), fRenderTargetContext->height(), this->clip(), viewMatrix, srcToDstRect, imageRect.size(), srcRectPtr, clippedSubset); *tileSize = kBmpSmallTileSize; // already know whole bitmap fits in one max sized tile. size_t usedTileBytes = get_tile_count(*clippedSubset, kBmpSmallTileSize) * kBmpSmallTileSize * kBmpSmallTileSize * sizeof(SkPMColor); // assume 32bit pixels; return usedTileBytes * 2 < bmpSize; } bool SkGpuDevice::shouldTileImage(const SkImage* image, const SkRect* srcRectPtr, SkCanvas::SrcRectConstraint constraint, SkFilterQuality quality, const SkMatrix& viewMatrix, const SkMatrix& srcToDstRect) const { ASSERT_SINGLE_OWNER // If image is explicitly texture backed then we shouldn't get here. SkASSERT(!image->isTextureBacked()); GrSamplerState samplerState; bool doBicubic; GrSamplerState::Filter textureFilterMode = GrSkFilterQualityToGrFilterMode( quality, viewMatrix, srcToDstRect, fContext->priv().options().fSharpenMipmappedTextures, &doBicubic); int tileFilterPad; if (doBicubic) { tileFilterPad = GrBicubicEffect::kFilterTexelPad; } else if (GrSamplerState::Filter::kNearest == textureFilterMode) { tileFilterPad = 0; } else { tileFilterPad = 1; } samplerState.setFilterMode(textureFilterMode); int maxTileSize = this->caps()->maxTileSize() - 2 * tileFilterPad; // these are output, which we safely ignore, as we just want to know the predicate int outTileSize; SkIRect outClippedSrcRect; return this->shouldTileImageID(image->unique(), image->bounds(), viewMatrix, srcToDstRect, samplerState, srcRectPtr, maxTileSize, &outTileSize, &outClippedSrcRect); } // This method outsets 'iRect' by 'outset' all around and then clamps its extents to // 'clamp'. 'offset' is adjusted to remain positioned over the top-left corner // of 'iRect' for all possible outsets/clamps. static inline void clamped_outset_with_offset(SkIRect* iRect, int outset, SkPoint* offset, const SkIRect& clamp) { iRect->outset(outset, outset); int leftClampDelta = clamp.fLeft - iRect->fLeft; if (leftClampDelta > 0) { offset->fX -= outset - leftClampDelta; iRect->fLeft = clamp.fLeft; } else { offset->fX -= outset; } int topClampDelta = clamp.fTop - iRect->fTop; if (topClampDelta > 0) { offset->fY -= outset - topClampDelta; iRect->fTop = clamp.fTop; } else { offset->fY -= outset; } if (iRect->fRight > clamp.fRight) { iRect->fRight = clamp.fRight; } if (iRect->fBottom > clamp.fBottom) { iRect->fBottom = clamp.fBottom; } } // Break 'bitmap' into several tiles to draw it since it has already // been determined to be too large to fit in VRAM void SkGpuDevice::drawTiledBitmap(const SkBitmap& bitmap, const SkMatrix& viewMatrix, const SkMatrix& dstMatrix, const SkRect& srcRect, const SkIRect& clippedSrcIRect, const GrSamplerState& params, const SkPaint& origPaint, SkCanvas::SrcRectConstraint constraint, int tileSize, bool bicubic) { ASSERT_SINGLE_OWNER // This is the funnel for all paths that draw tiled bitmaps/images. Log histogram entries. SK_HISTOGRAM_BOOLEAN("DrawTiled", true); LogDrawScaleFactor(viewMatrix, SkMatrix::I(), origPaint.getFilterQuality()); const SkPaint* paint = &origPaint; SkPaint tempPaint; if (origPaint.isAntiAlias() && GrFSAAType::kUnifiedMSAA != fRenderTargetContext->fsaaType()) { // Drop antialiasing to avoid seams at tile boundaries. tempPaint = origPaint; tempPaint.setAntiAlias(false); paint = &tempPaint; } SkRect clippedSrcRect = SkRect::Make(clippedSrcIRect); int nx = bitmap.width() / tileSize; int ny = bitmap.height() / tileSize; for (int x = 0; x <= nx; x++) { for (int y = 0; y <= ny; y++) { SkRect tileR; tileR.set(SkIntToScalar(x * tileSize), SkIntToScalar(y * tileSize), SkIntToScalar((x + 1) * tileSize), SkIntToScalar((y + 1) * tileSize)); if (!SkRect::Intersects(tileR, clippedSrcRect)) { continue; } if (!tileR.intersect(srcRect)) { continue; } SkIRect iTileR; tileR.roundOut(&iTileR); SkVector offset = SkPoint::Make(SkIntToScalar(iTileR.fLeft), SkIntToScalar(iTileR.fTop)); SkRect rectToDraw = tileR; dstMatrix.mapRect(&rectToDraw); if (GrSamplerState::Filter::kNearest != params.filter() || bicubic) { SkIRect iClampRect; if (SkCanvas::kFast_SrcRectConstraint == constraint) { // In bleed mode we want to always expand the tile on all edges // but stay within the bitmap bounds iClampRect = SkIRect::MakeWH(bitmap.width(), bitmap.height()); } else { // In texture-domain/clamp mode we only want to expand the // tile on edges interior to "srcRect" (i.e., we want to // not bleed across the original clamped edges) srcRect.roundOut(&iClampRect); } int outset = bicubic ? GrBicubicEffect::kFilterTexelPad : 1; clamped_outset_with_offset(&iTileR, outset, &offset, iClampRect); } SkBitmap tmpB; if (bitmap.extractSubset(&tmpB, iTileR)) { // now offset it to make it "local" to our tmp bitmap tileR.offset(-offset.fX, -offset.fY); // de-optimized this determination bool needsTextureDomain = true; this->drawBitmapTile(tmpB, viewMatrix, rectToDraw, tileR, params, *paint, constraint, bicubic, needsTextureDomain); } } } } void SkGpuDevice::drawBitmapTile(const SkBitmap& bitmap, const SkMatrix& viewMatrix, const SkRect& dstRect, const SkRect& srcRect, const GrSamplerState& samplerState, const SkPaint& paint, SkCanvas::SrcRectConstraint constraint, bool bicubic, bool needsTextureDomain) { // We should have already handled bitmaps larger than the max texture size. SkASSERT(bitmap.width() <= this->caps()->maxTextureSize() && bitmap.height() <= this->caps()->maxTextureSize()); // We should be respecting the max tile size by the time we get here. SkASSERT(bitmap.width() <= this->caps()->maxTileSize() && bitmap.height() <= this->caps()->maxTileSize()); SkASSERT(!samplerState.isRepeated()); SkScalar scales[2] = {1.f, 1.f}; sk_sp proxy = GrRefCachedBitmapTextureProxy(fContext.get(), bitmap, samplerState, scales); if (!proxy) { return; } // Compute a matrix that maps the rect we will draw to the src rect. SkMatrix texMatrix = SkMatrix::MakeRectToRect(dstRect, srcRect, SkMatrix::kFill_ScaleToFit); texMatrix.postScale(scales[0], scales[1]); // Construct a GrPaint by setting the bitmap texture as the first effect and then configuring // the rest from the SkPaint. std::unique_ptr fp; if (needsTextureDomain && (SkCanvas::kStrict_SrcRectConstraint == constraint)) { // Use a constrained texture domain to avoid color bleeding SkRect domain; if (srcRect.width() > SK_Scalar1) { domain.fLeft = srcRect.fLeft + 0.5f; domain.fRight = srcRect.fRight - 0.5f; } else { domain.fLeft = domain.fRight = srcRect.centerX(); } if (srcRect.height() > SK_Scalar1) { domain.fTop = srcRect.fTop + 0.5f; domain.fBottom = srcRect.fBottom - 0.5f; } else { domain.fTop = domain.fBottom = srcRect.centerY(); } if (bicubic) { fp = GrBicubicEffect::Make(std::move(proxy), texMatrix, domain); } else { fp = GrTextureDomainEffect::Make(std::move(proxy), texMatrix, domain, GrTextureDomain::kClamp_Mode, samplerState.filter()); } } else if (bicubic) { SkASSERT(GrSamplerState::Filter::kNearest == samplerState.filter()); GrSamplerState::WrapMode wrapMode[2] = {samplerState.wrapModeX(), samplerState.wrapModeY()}; fp = GrBicubicEffect::Make(std::move(proxy), texMatrix, wrapMode); } else { fp = GrSimpleTextureEffect::Make(std::move(proxy), texMatrix, samplerState); } fp = GrColorSpaceXformEffect::Make(std::move(fp), bitmap.colorSpace(), bitmap.alphaType(), fRenderTargetContext->colorSpaceInfo().colorSpace()); GrPaint grPaint; if (!SkPaintToGrPaintWithTexture(this->context(), fRenderTargetContext->colorSpaceInfo(), paint, viewMatrix, std::move(fp), kAlpha_8_SkColorType == bitmap.colorType(), &grPaint)) { return; } // Coverage-based AA would cause seams between tiles. GrAA aa = GrAA(paint.isAntiAlias() && GrFSAAType::kNone != fRenderTargetContext->fsaaType()); fRenderTargetContext->drawRect(this->clip(), std::move(grPaint), aa, viewMatrix, dstRect); } void SkGpuDevice::drawSprite(const SkBitmap& bitmap, int left, int top, const SkPaint& paint) { ASSERT_SINGLE_OWNER GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawSprite", fContext.get()); if (fContext->priv().abandoned()) { return; } sk_sp srcImg = this->makeSpecial(bitmap); if (!srcImg) { return; } this->drawSpecial(srcImg.get(), left, top, paint, nullptr, SkMatrix::I()); } void SkGpuDevice::drawSpecial(SkSpecialImage* special, int left, int top, const SkPaint& paint, SkImage* clipImage, const SkMatrix& clipMatrix) { ASSERT_SINGLE_OWNER GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawSpecial", fContext.get()); // TODO: clipImage support. sk_sp result; if (paint.getImageFilter()) { SkIPoint offset = { 0, 0 }; result = this->filterTexture(special, left, top, &offset, paint.getImageFilter()); if (!result) { return; } left += offset.fX; top += offset.fY; } else { result = sk_ref_sp(special); } SkASSERT(result->isTextureBacked()); sk_sp proxy = result->asTextureProxyRef(this->context()); if (!proxy) { return; } const GrPixelConfig config = proxy->config(); SkPaint tmpUnfiltered(paint); if (tmpUnfiltered.getMaskFilter()) { SkMatrix ctm = this->ctm(); ctm.postTranslate(-SkIntToScalar(left), -SkIntToScalar(top)); tmpUnfiltered.setMaskFilter(tmpUnfiltered.getMaskFilter()->makeWithMatrix(ctm)); } tmpUnfiltered.setImageFilter(nullptr); auto fp = GrSimpleTextureEffect::Make(std::move(proxy), SkMatrix::I()); fp = GrColorSpaceXformEffect::Make(std::move(fp), result->getColorSpace(), result->alphaType(), fRenderTargetContext->colorSpaceInfo().colorSpace()); if (GrPixelConfigIsAlphaOnly(config)) { fp = GrFragmentProcessor::MakeInputPremulAndMulByOutput(std::move(fp)); } else { if (paint.getColor4f().isOpaque()) { fp = GrFragmentProcessor::OverrideInput(std::move(fp), SK_PMColor4fWHITE, false); } else { fp = GrFragmentProcessor::MulChildByInputAlpha(std::move(fp)); } } GrPaint grPaint; if (!SkPaintToGrPaintReplaceShader(this->context(), fRenderTargetContext->colorSpaceInfo(), tmpUnfiltered, std::move(fp), &grPaint)) { return; } const SkIRect& subset = result->subset(); fRenderTargetContext->fillRectToRect( this->clip(), std::move(grPaint), GrAA(tmpUnfiltered.isAntiAlias()), SkMatrix::I(), SkRect::Make(SkIRect::MakeXYWH(left, top, subset.width(), subset.height())), SkRect::Make(subset)); } void SkGpuDevice::drawBitmapRect(const SkBitmap& bitmap, const SkRect* src, const SkRect& origDst, const SkPaint& paint, SkCanvas::SrcRectConstraint constraint) { ASSERT_SINGLE_OWNER // The src rect is inferred to be the bmp bounds if not provided. Otherwise, the src rect must // be clipped to the bmp bounds. To determine tiling parameters we need the filter mode which // in turn requires knowing the src-to-dst mapping. If the src was clipped to the bmp bounds // then we use the src-to-dst mapping to compute a new clipped dst rect. const SkRect* dst = &origDst; const SkRect bmpBounds = SkRect::MakeIWH(bitmap.width(), bitmap.height()); // Compute matrix from the two rectangles if (!src) { src = &bmpBounds; } SkMatrix srcToDstMatrix; if (!srcToDstMatrix.setRectToRect(*src, *dst, SkMatrix::kFill_ScaleToFit)) { return; } SkRect tmpSrc, tmpDst; if (src != &bmpBounds) { if (!bmpBounds.contains(*src)) { tmpSrc = *src; if (!tmpSrc.intersect(bmpBounds)) { return; // nothing to draw } src = &tmpSrc; srcToDstMatrix.mapRect(&tmpDst, *src); dst = &tmpDst; } } int maxTileSize = this->caps()->maxTileSize(); // The tile code path doesn't currently support AA, so if the paint asked for aa and we could // draw untiled, then we bypass checking for tiling purely for optimization reasons. bool useCoverageAA = GrFSAAType::kUnifiedMSAA != fRenderTargetContext->fsaaType() && paint.isAntiAlias() && bitmap.width() <= maxTileSize && bitmap.height() <= maxTileSize; bool skipTileCheck = useCoverageAA || paint.getMaskFilter(); if (!skipTileCheck) { int tileSize; SkIRect clippedSrcRect; GrSamplerState sampleState; bool doBicubic; GrSamplerState::Filter textureFilterMode = GrSkFilterQualityToGrFilterMode( paint.getFilterQuality(), this->ctm(), srcToDstMatrix, fContext->priv().options().fSharpenMipmappedTextures, &doBicubic); int tileFilterPad; if (doBicubic) { tileFilterPad = GrBicubicEffect::kFilterTexelPad; } else if (GrSamplerState::Filter::kNearest == textureFilterMode) { tileFilterPad = 0; } else { tileFilterPad = 1; } sampleState.setFilterMode(textureFilterMode); int maxTileSizeForFilter = this->caps()->maxTileSize() - 2 * tileFilterPad; if (this->shouldTileImageID(bitmap.getGenerationID(), bitmap.getSubset(), this->ctm(), srcToDstMatrix, sampleState, src, maxTileSizeForFilter, &tileSize, &clippedSrcRect)) { this->drawTiledBitmap(bitmap, this->ctm(), srcToDstMatrix, *src, clippedSrcRect, sampleState, paint, constraint, tileSize, doBicubic); return; } } GrBitmapTextureMaker maker(fContext.get(), bitmap); this->drawTextureProducer(&maker, src, dst, constraint, this->ctm(), paint, true); } sk_sp SkGpuDevice::makeSpecial(const SkBitmap& bitmap) { // TODO: this makes a tight copy of 'bitmap' but it doesn't have to be (given SkSpecialImage's // semantics). Since this is cached we would have to bake the fit into the cache key though. sk_sp proxy = GrMakeCachedBitmapProxy(fContext->priv().proxyProvider(), bitmap); if (!proxy) { return nullptr; } const SkIRect rect = SkIRect::MakeWH(proxy->width(), proxy->height()); // GrMakeCachedBitmapProxy creates a tight copy of 'bitmap' so we don't have to subset // the special image return SkSpecialImage::MakeDeferredFromGpu(fContext.get(), rect, bitmap.getGenerationID(), std::move(proxy), bitmap.refColorSpace(), &this->surfaceProps()); } sk_sp SkGpuDevice::makeSpecial(const SkImage* image) { SkPixmap pm; if (image->isTextureBacked()) { sk_sp proxy = as_IB(image)->asTextureProxyRef(this->context()); return SkSpecialImage::MakeDeferredFromGpu(fContext.get(), SkIRect::MakeWH(image->width(), image->height()), image->uniqueID(), std::move(proxy), as_IB(image)->onImageInfo().refColorSpace(), &this->surfaceProps()); } else if (image->peekPixels(&pm)) { SkBitmap bm; bm.installPixels(pm); return this->makeSpecial(bm); } else { return nullptr; } } sk_sp SkGpuDevice::snapSpecial() { // If we are wrapping a vulkan secondary command buffer, then we can't snap off a special image // since it would require us to make a copy of the underlying VkImage which we don't have access // to. Additionaly we can't stop and start the render pass that is used with the secondary // command buffer. if (this->accessRenderTargetContext()->wrapsVkSecondaryCB()) { return nullptr; } sk_sp proxy(this->accessRenderTargetContext()->asTextureProxyRef()); if (!proxy) { // When the device doesn't have a texture, we create a temporary texture. // TODO: we should actually only copy the portion of the source needed to apply the image // filter proxy = GrSurfaceProxy::Copy(fContext.get(), this->accessRenderTargetContext()->asSurfaceProxy(), GrMipMapped::kNo, SkBackingFit::kApprox, SkBudgeted::kYes); if (!proxy) { return nullptr; } } const SkImageInfo ii = this->imageInfo(); const SkIRect srcRect = SkIRect::MakeWH(ii.width(), ii.height()); return SkSpecialImage::MakeDeferredFromGpu(fContext.get(), srcRect, kNeedNewImageUniqueID_SpecialImage, std::move(proxy), ii.refColorSpace(), &this->surfaceProps()); } sk_sp SkGpuDevice::snapBackImage(const SkIRect& subset) { GrRenderTargetContext* rtc = this->accessRenderTargetContext(); // If we are wrapping a vulkan secondary command buffer, then we can't snap off a special image // since it would require us to make a copy of the underlying VkImage which we don't have access // to. Additionaly we can't stop and start the render pass that is used with the secondary // command buffer. if (rtc->wrapsVkSecondaryCB()) { return nullptr; } GrContext* ctx = this->context(); SkASSERT(rtc->asSurfaceProxy()); auto srcProxy = GrSurfaceProxy::Copy(ctx, rtc->asSurfaceProxy(), rtc->mipMapped(), subset, SkBackingFit::kApprox, rtc->asSurfaceProxy()->isBudgeted()); if (!srcProxy) { return nullptr; } // Note, can't move srcProxy since we also refer to this in the 2nd parameter return SkSpecialImage::MakeDeferredFromGpu(fContext.get(), SkIRect::MakeSize(srcProxy->isize()), kNeedNewImageUniqueID_SpecialImage, srcProxy, this->imageInfo().refColorSpace(), &this->surfaceProps()); } void SkGpuDevice::drawDevice(SkBaseDevice* device, int left, int top, const SkPaint& paint) { SkASSERT(!paint.getImageFilter()); ASSERT_SINGLE_OWNER // clear of the source device must occur before CHECK_SHOULD_DRAW GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawDevice", fContext.get()); // drawDevice is defined to be in device coords. SkGpuDevice* dev = static_cast(device); sk_sp srcImg(dev->snapSpecial()); if (!srcImg) { return; } this->drawSpecial(srcImg.get(), left, top, paint, nullptr, SkMatrix::I()); } void SkGpuDevice::drawImageRect(const SkImage* image, const SkRect* src, const SkRect& dst, const SkPaint& paint, SkCanvas::SrcRectConstraint constraint) { ASSERT_SINGLE_OWNER GrQuadAAFlags aaFlags = paint.isAntiAlias() ? GrQuadAAFlags::kAll : GrQuadAAFlags::kNone; this->drawImageQuad(image, src, &dst, nullptr, GrAA(paint.isAntiAlias()), aaFlags, nullptr, paint, constraint); } // When drawing nine-patches or n-patches, cap the filter quality at kBilerp. static GrSamplerState::Filter compute_lattice_filter_mode(const SkPaint& paint) { if (paint.getFilterQuality() == kNone_SkFilterQuality) { return GrSamplerState::Filter::kNearest; } return GrSamplerState::Filter::kBilerp; } void SkGpuDevice::drawImageNine(const SkImage* image, const SkIRect& center, const SkRect& dst, const SkPaint& paint) { ASSERT_SINGLE_OWNER uint32_t pinnedUniqueID; auto iter = skstd::make_unique(image->width(), image->height(), center, dst); if (sk_sp proxy = as_IB(image)->refPinnedTextureProxy(this->context(), &pinnedUniqueID)) { GrTextureAdjuster adjuster(this->context(), std::move(proxy), image->alphaType(), pinnedUniqueID, as_IB(image)->onImageInfo().colorSpace()); this->drawProducerLattice(&adjuster, std::move(iter), dst, paint); } else { SkBitmap bm; if (image->isLazyGenerated()) { GrImageTextureMaker maker(fContext.get(), image, SkImage::kAllow_CachingHint); this->drawProducerLattice(&maker, std::move(iter), dst, paint); } else if (as_IB(image)->getROPixels(&bm)) { GrBitmapTextureMaker maker(fContext.get(), bm); this->drawProducerLattice(&maker, std::move(iter), dst, paint); } } } void SkGpuDevice::drawBitmapNine(const SkBitmap& bitmap, const SkIRect& center, const SkRect& dst, const SkPaint& paint) { ASSERT_SINGLE_OWNER auto iter = skstd::make_unique(bitmap.width(), bitmap.height(), center, dst); GrBitmapTextureMaker maker(fContext.get(), bitmap); this->drawProducerLattice(&maker, std::move(iter), dst, paint); } void SkGpuDevice::drawProducerLattice(GrTextureProducer* producer, std::unique_ptr iter, const SkRect& dst, const SkPaint& origPaint) { GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawProducerLattice", fContext.get()); SkTCopyOnFirstWrite paint(&origPaint); if (!producer->isAlphaOnly() && (paint->getColor() & 0x00FFFFFF) != 0x00FFFFFF) { paint.writable()->setColor(SkColorSetARGB(origPaint.getAlpha(), 0xFF, 0xFF, 0xFF)); } GrPaint grPaint; if (!SkPaintToGrPaintWithPrimitiveColor(this->context(), fRenderTargetContext->colorSpaceInfo(), *paint, &grPaint)) { return; } auto dstColorSpace = fRenderTargetContext->colorSpaceInfo().colorSpace(); const GrSamplerState::Filter filter = compute_lattice_filter_mode(*paint); auto proxy = producer->refTextureProxyForParams(&filter, nullptr); if (!proxy) { return; } auto csxf = GrColorSpaceXform::Make(producer->colorSpace(), producer->alphaType(), dstColorSpace, kPremul_SkAlphaType); fRenderTargetContext->drawImageLattice(this->clip(), std::move(grPaint), this->ctm(), std::move(proxy), std::move(csxf), filter, std::move(iter), dst); } void SkGpuDevice::drawImageLattice(const SkImage* image, const SkCanvas::Lattice& lattice, const SkRect& dst, const SkPaint& paint) { ASSERT_SINGLE_OWNER uint32_t pinnedUniqueID; auto iter = skstd::make_unique(lattice, dst); if (sk_sp proxy = as_IB(image)->refPinnedTextureProxy(this->context(), &pinnedUniqueID)) { GrTextureAdjuster adjuster(this->context(), std::move(proxy), image->alphaType(), pinnedUniqueID, as_IB(image)->onImageInfo().colorSpace()); this->drawProducerLattice(&adjuster, std::move(iter), dst, paint); } else { SkBitmap bm; if (image->isLazyGenerated()) { GrImageTextureMaker maker(fContext.get(), image, SkImage::kAllow_CachingHint); this->drawProducerLattice(&maker, std::move(iter), dst, paint); } else if (as_IB(image)->getROPixels(&bm)) { GrBitmapTextureMaker maker(fContext.get(), bm); this->drawProducerLattice(&maker, std::move(iter), dst, paint); } } } void SkGpuDevice::drawBitmapLattice(const SkBitmap& bitmap, const SkCanvas::Lattice& lattice, const SkRect& dst, const SkPaint& paint) { ASSERT_SINGLE_OWNER auto iter = skstd::make_unique(lattice, dst); GrBitmapTextureMaker maker(fContext.get(), bitmap); this->drawProducerLattice(&maker, std::move(iter), dst, paint); } void SkGpuDevice::drawImageSet(const SkCanvas::ImageSetEntry set[], int count, SkFilterQuality filterQuality, SkBlendMode mode) { SkPaint paint; paint.setBlendMode(mode); paint.setFilterQuality(filterQuality); paint.setAntiAlias(true); this->tmp_drawImageSetV3(set, nullptr, nullptr, count, nullptr, nullptr, paint, SkCanvas::kFast_SrcRectConstraint); } static bool init_vertices_paint(GrContext* context, const GrColorSpaceInfo& colorSpaceInfo, const SkPaint& skPaint, const SkMatrix& matrix, SkBlendMode bmode, bool hasTexs, bool hasColors, GrPaint* grPaint) { if (hasTexs && skPaint.getShader()) { if (hasColors) { // When there are texs and colors the shader and colors are combined using bmode. return SkPaintToGrPaintWithXfermode(context, colorSpaceInfo, skPaint, matrix, bmode, grPaint); } else { // We have a shader, but no colors to blend it against. return SkPaintToGrPaint(context, colorSpaceInfo, skPaint, matrix, grPaint); } } else { if (hasColors) { // We have colors, but either have no shader or no texture coords (which implies that // we should ignore the shader). return SkPaintToGrPaintWithPrimitiveColor(context, colorSpaceInfo, skPaint, grPaint); } else { // No colors and no shaders. Just draw with the paint color. return SkPaintToGrPaintNoShader(context, colorSpaceInfo, skPaint, grPaint); } } } void SkGpuDevice::wireframeVertices(SkVertices::VertexMode vmode, int vertexCount, const SkPoint vertices[], const SkVertices::Bone bones[], int boneCount, SkBlendMode bmode, const uint16_t indices[], int indexCount, const SkPaint& paint) { ASSERT_SINGLE_OWNER GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "wireframeVertices", fContext.get()); SkPaint copy(paint); copy.setStyle(SkPaint::kStroke_Style); copy.setStrokeWidth(0); GrPaint grPaint; // we ignore the shader since we have no texture coordinates. if (!SkPaintToGrPaintNoShader(this->context(), fRenderTargetContext->colorSpaceInfo(), copy, &grPaint)) { return; } int triangleCount = 0; int n = (nullptr == indices) ? vertexCount : indexCount; switch (vmode) { case SkVertices::kTriangles_VertexMode: triangleCount = n / 3; break; case SkVertices::kTriangleStrip_VertexMode: triangleCount = n - 2; break; case SkVertices::kTriangleFan_VertexMode: SK_ABORT("Unexpected triangle fan."); break; } VertState state(vertexCount, indices, indexCount); VertState::Proc vertProc = state.chooseProc(vmode); //number of indices for lines per triangle with kLines indexCount = triangleCount * 6; static constexpr SkVertices::VertexMode kIgnoredMode = SkVertices::kTriangles_VertexMode; SkVertices::Builder builder(kIgnoredMode, vertexCount, indexCount, 0); memcpy(builder.positions(), vertices, vertexCount * sizeof(SkPoint)); uint16_t* lineIndices = builder.indices(); int i = 0; while (vertProc(&state)) { lineIndices[i] = state.f0; lineIndices[i + 1] = state.f1; lineIndices[i + 2] = state.f1; lineIndices[i + 3] = state.f2; lineIndices[i + 4] = state.f2; lineIndices[i + 5] = state.f0; i += 6; } GrPrimitiveType primitiveType = GrPrimitiveType::kLines; fRenderTargetContext->drawVertices(this->clip(), std::move(grPaint), this->ctm(), builder.detach(), bones, boneCount, &primitiveType); } void SkGpuDevice::drawVertices(const SkVertices* vertices, const SkVertices::Bone bones[], int boneCount, SkBlendMode mode, const SkPaint& paint) { ASSERT_SINGLE_OWNER GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawVertices", fContext.get()); SkASSERT(vertices); GrPaint grPaint; bool hasColors = vertices->hasColors(); bool hasTexs = vertices->hasTexCoords(); if ((!hasTexs || !paint.getShader()) && !hasColors) { // The dreaded wireframe mode. Fallback to drawVertices and go so slooooooow. this->wireframeVertices(vertices->mode(), vertices->vertexCount(), vertices->positions(), bones, boneCount, mode, vertices->indices(), vertices->indexCount(), paint); return; } if (!init_vertices_paint(fContext.get(), fRenderTargetContext->colorSpaceInfo(), paint, this->ctm(), mode, hasTexs, hasColors, &grPaint)) { return; } fRenderTargetContext->drawVertices(this->clip(), std::move(grPaint), this->ctm(), sk_ref_sp(const_cast(vertices)), bones, boneCount); } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawShadow(const SkPath& path, const SkDrawShadowRec& rec) { ASSERT_SINGLE_OWNER GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawShadow", fContext.get()); if (!fRenderTargetContext->drawFastShadow(this->clip(), this->ctm(), path, rec)) { // failed to find an accelerated case this->INHERITED::drawShadow(path, rec); } } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawAtlas(const SkImage* atlas, const SkRSXform xform[], const SkRect texRect[], const SkColor colors[], int count, SkBlendMode mode, const SkPaint& paint) { ASSERT_SINGLE_OWNER if (paint.isAntiAlias()) { this->INHERITED::drawAtlas(atlas, xform, texRect, colors, count, mode, paint); return; } GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawText", fContext.get()); SkPaint p(paint); p.setShader(atlas->makeShader()); GrPaint grPaint; if (colors) { if (!SkPaintToGrPaintWithXfermode(this->context(), fRenderTargetContext->colorSpaceInfo(), p, this->ctm(), (SkBlendMode)mode, &grPaint)) { return; } } else { if (!SkPaintToGrPaint(this->context(), fRenderTargetContext->colorSpaceInfo(), p, this->ctm(), &grPaint)) { return; } } fRenderTargetContext->drawAtlas( this->clip(), std::move(grPaint), this->ctm(), count, xform, texRect, colors); } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawGlyphRunList(const SkGlyphRunList& glyphRunList) { ASSERT_SINGLE_OWNER GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawGlyphRunList", fContext.get()); // Check for valid input const SkMatrix& ctm = this->ctm(); if (!ctm.isFinite() || !glyphRunList.allFontsFinite()) { return; } fRenderTargetContext->drawGlyphRunList(this->clip(), ctm, glyphRunList); } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawDrawable(SkDrawable* drawable, const SkMatrix* matrix, SkCanvas* canvas) { GrBackendApi api = this->context()->backend(); if (GrBackendApi::kVulkan == api) { const SkMatrix& ctm = canvas->getTotalMatrix(); const SkMatrix& combinedMatrix = matrix ? SkMatrix::Concat(ctm, *matrix) : ctm; std::unique_ptr gpuDraw = drawable->snapGpuDrawHandler(api, combinedMatrix, canvas->getDeviceClipBounds(), this->imageInfo()); if (gpuDraw) { fRenderTargetContext->drawDrawable(std::move(gpuDraw), drawable->getBounds()); return; } } this->INHERITED::drawDrawable(drawable, matrix, canvas); } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::flush() { this->flush(SkSurface::BackendSurfaceAccess::kNoAccess, kNone_GrFlushFlags, 0, nullptr, nullptr, nullptr); } GrSemaphoresSubmitted SkGpuDevice::flush(SkSurface::BackendSurfaceAccess access, GrFlushFlags flags, int numSemaphores, GrBackendSemaphore signalSemaphores[], GrGpuFinishedProc finishedProc, GrGpuFinishedContext finishedContext) { ASSERT_SINGLE_OWNER return fRenderTargetContext->prepareForExternalIO(access, flags, numSemaphores, signalSemaphores, finishedProc, finishedContext); } bool SkGpuDevice::wait(int numSemaphores, const GrBackendSemaphore* waitSemaphores) { ASSERT_SINGLE_OWNER return fRenderTargetContext->waitOnSemaphores(numSemaphores, waitSemaphores); } /////////////////////////////////////////////////////////////////////////////// SkBaseDevice* SkGpuDevice::onCreateDevice(const CreateInfo& cinfo, const SkPaint*) { ASSERT_SINGLE_OWNER SkSurfaceProps props(this->surfaceProps().flags(), cinfo.fPixelGeometry); // layers are never drawn in repeat modes, so we can request an approx // match and ignore any padding. SkBackingFit fit = kNever_TileUsage == cinfo.fTileUsage ? SkBackingFit::kApprox : SkBackingFit::kExact; GrPixelConfig config = fRenderTargetContext->colorSpaceInfo().config(); const GrBackendFormat& origFormat = fRenderTargetContext->asSurfaceProxy()->backendFormat(); GrBackendFormat format = origFormat.makeTexture2D(); if (!format.isValid()) { return nullptr; } if (kRGBA_1010102_GrPixelConfig == config) { // If the original device is 1010102, fall back to 8888 so that we have a usable alpha // channel in the layer. config = kRGBA_8888_GrPixelConfig; format = fContext->priv().caps()->getBackendFormatFromColorType(kRGBA_8888_SkColorType); } sk_sp rtc(fContext->priv().makeDeferredRenderTargetContext( format, fit, cinfo.fInfo.width(), cinfo.fInfo.height(), config, fRenderTargetContext->colorSpaceInfo().refColorSpace(), fRenderTargetContext->numStencilSamples(), GrMipMapped::kNo, kBottomLeft_GrSurfaceOrigin, &props)); if (!rtc) { return nullptr; } // Skia's convention is to only clear a device if it is non-opaque. InitContents init = cinfo.fInfo.isOpaque() ? kUninit_InitContents : kClear_InitContents; return SkGpuDevice::Make(fContext.get(), std::move(rtc), cinfo.fInfo.width(), cinfo.fInfo.height(), init).release(); } sk_sp SkGpuDevice::makeSurface(const SkImageInfo& info, const SkSurfaceProps& props) { ASSERT_SINGLE_OWNER // TODO: Change the signature of newSurface to take a budgeted parameter. static const SkBudgeted kBudgeted = SkBudgeted::kNo; return SkSurface::MakeRenderTarget(fContext.get(), kBudgeted, info, fRenderTargetContext->numStencilSamples(), fRenderTargetContext->origin(), &props); } SkImageFilterCache* SkGpuDevice::getImageFilterCache() { ASSERT_SINGLE_OWNER // We always return a transient cache, so it is freed after each // filter traversal. return SkImageFilterCache::Create(SkImageFilterCache::kDefaultTransientSize); }