/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkSLCompiler.h" #include "SkSLCFGGenerator.h" #include "SkSLCPPCodeGenerator.h" #include "SkSLGLSLCodeGenerator.h" #include "SkSLHCodeGenerator.h" #include "SkSLIRGenerator.h" #include "SkSLMetalCodeGenerator.h" #include "SkSLPipelineStageCodeGenerator.h" #include "SkSLSPIRVCodeGenerator.h" #include "ir/SkSLEnum.h" #include "ir/SkSLExpression.h" #include "ir/SkSLExpressionStatement.h" #include "ir/SkSLFunctionCall.h" #include "ir/SkSLIntLiteral.h" #include "ir/SkSLModifiersDeclaration.h" #include "ir/SkSLNop.h" #include "ir/SkSLSymbolTable.h" #include "ir/SkSLTernaryExpression.h" #include "ir/SkSLUnresolvedFunction.h" #include "ir/SkSLVarDeclarations.h" #ifdef SK_ENABLE_SPIRV_VALIDATION #include "spirv-tools/libspirv.hpp" #endif // include the built-in shader symbols as static strings #define STRINGIFY(x) #x static const char* SKSL_INCLUDE = #include "sksl.inc" ; static const char* SKSL_VERT_INCLUDE = #include "sksl_vert.inc" ; static const char* SKSL_FRAG_INCLUDE = #include "sksl_frag.inc" ; static const char* SKSL_GEOM_INCLUDE = #include "sksl_geom.inc" ; static const char* SKSL_FP_INCLUDE = #include "sksl_enums.inc" #include "sksl_fp.inc" ; static const char* SKSL_PIPELINE_STAGE_INCLUDE = #include "sksl_pipeline.inc" ; namespace SkSL { Compiler::Compiler(Flags flags) : fFlags(flags) , fContext(new Context()) , fErrorCount(0) { auto types = std::shared_ptr(new SymbolTable(this)); auto symbols = std::shared_ptr(new SymbolTable(types, this)); fIRGenerator = new IRGenerator(fContext.get(), symbols, *this); fTypes = types; #define ADD_TYPE(t) types->addWithoutOwnership(fContext->f ## t ## _Type->fName, \ fContext->f ## t ## _Type.get()) ADD_TYPE(Void); ADD_TYPE(Float); ADD_TYPE(Float2); ADD_TYPE(Float3); ADD_TYPE(Float4); ADD_TYPE(Half); ADD_TYPE(Half2); ADD_TYPE(Half3); ADD_TYPE(Half4); ADD_TYPE(Double); ADD_TYPE(Double2); ADD_TYPE(Double3); ADD_TYPE(Double4); ADD_TYPE(Int); ADD_TYPE(Int2); ADD_TYPE(Int3); ADD_TYPE(Int4); ADD_TYPE(UInt); ADD_TYPE(UInt2); ADD_TYPE(UInt3); ADD_TYPE(UInt4); ADD_TYPE(Short); ADD_TYPE(Short2); ADD_TYPE(Short3); ADD_TYPE(Short4); ADD_TYPE(UShort); ADD_TYPE(UShort2); ADD_TYPE(UShort3); ADD_TYPE(UShort4); ADD_TYPE(Byte); ADD_TYPE(Byte2); ADD_TYPE(Byte3); ADD_TYPE(Byte4); ADD_TYPE(UByte); ADD_TYPE(UByte2); ADD_TYPE(UByte3); ADD_TYPE(UByte4); ADD_TYPE(Bool); ADD_TYPE(Bool2); ADD_TYPE(Bool3); ADD_TYPE(Bool4); ADD_TYPE(Float2x2); ADD_TYPE(Float2x3); ADD_TYPE(Float2x4); ADD_TYPE(Float3x2); ADD_TYPE(Float3x3); ADD_TYPE(Float3x4); ADD_TYPE(Float4x2); ADD_TYPE(Float4x3); ADD_TYPE(Float4x4); ADD_TYPE(Half2x2); ADD_TYPE(Half2x3); ADD_TYPE(Half2x4); ADD_TYPE(Half3x2); ADD_TYPE(Half3x3); ADD_TYPE(Half3x4); ADD_TYPE(Half4x2); ADD_TYPE(Half4x3); ADD_TYPE(Half4x4); ADD_TYPE(Double2x2); ADD_TYPE(Double2x3); ADD_TYPE(Double2x4); ADD_TYPE(Double3x2); ADD_TYPE(Double3x3); ADD_TYPE(Double3x4); ADD_TYPE(Double4x2); ADD_TYPE(Double4x3); ADD_TYPE(Double4x4); ADD_TYPE(GenType); ADD_TYPE(GenHType); ADD_TYPE(GenDType); ADD_TYPE(GenIType); ADD_TYPE(GenUType); ADD_TYPE(GenBType); ADD_TYPE(Mat); ADD_TYPE(Vec); ADD_TYPE(GVec); ADD_TYPE(GVec2); ADD_TYPE(GVec3); ADD_TYPE(GVec4); ADD_TYPE(HVec); ADD_TYPE(DVec); ADD_TYPE(IVec); ADD_TYPE(UVec); ADD_TYPE(SVec); ADD_TYPE(USVec); ADD_TYPE(ByteVec); ADD_TYPE(UByteVec); ADD_TYPE(BVec); ADD_TYPE(Sampler1D); ADD_TYPE(Sampler2D); ADD_TYPE(Sampler3D); ADD_TYPE(SamplerExternalOES); ADD_TYPE(SamplerCube); ADD_TYPE(Sampler2DRect); ADD_TYPE(Sampler1DArray); ADD_TYPE(Sampler2DArray); ADD_TYPE(SamplerCubeArray); ADD_TYPE(SamplerBuffer); ADD_TYPE(Sampler2DMS); ADD_TYPE(Sampler2DMSArray); ADD_TYPE(ISampler2D); ADD_TYPE(Image2D); ADD_TYPE(IImage2D); ADD_TYPE(SubpassInput); ADD_TYPE(SubpassInputMS); ADD_TYPE(GSampler1D); ADD_TYPE(GSampler2D); ADD_TYPE(GSampler3D); ADD_TYPE(GSamplerCube); ADD_TYPE(GSampler2DRect); ADD_TYPE(GSampler1DArray); ADD_TYPE(GSampler2DArray); ADD_TYPE(GSamplerCubeArray); ADD_TYPE(GSamplerBuffer); ADD_TYPE(GSampler2DMS); ADD_TYPE(GSampler2DMSArray); ADD_TYPE(Sampler1DShadow); ADD_TYPE(Sampler2DShadow); ADD_TYPE(SamplerCubeShadow); ADD_TYPE(Sampler2DRectShadow); ADD_TYPE(Sampler1DArrayShadow); ADD_TYPE(Sampler2DArrayShadow); ADD_TYPE(SamplerCubeArrayShadow); ADD_TYPE(GSampler2DArrayShadow); ADD_TYPE(GSamplerCubeArrayShadow); ADD_TYPE(FragmentProcessor); ADD_TYPE(SkRasterPipeline); StringFragment skCapsName("sk_Caps"); Variable* skCaps = new Variable(-1, Modifiers(), skCapsName, *fContext->fSkCaps_Type, Variable::kGlobal_Storage); fIRGenerator->fSymbolTable->add(skCapsName, std::unique_ptr(skCaps)); StringFragment skArgsName("sk_Args"); Variable* skArgs = new Variable(-1, Modifiers(), skArgsName, *fContext->fSkArgs_Type, Variable::kGlobal_Storage); fIRGenerator->fSymbolTable->add(skArgsName, std::unique_ptr(skArgs)); std::vector> ignored; fIRGenerator->convertProgram(Program::kFragment_Kind, SKSL_INCLUDE, strlen(SKSL_INCLUDE), *fTypes, &ignored); fIRGenerator->fSymbolTable->markAllFunctionsBuiltin(); if (fErrorCount) { printf("Unexpected errors: %s\n", fErrorText.c_str()); } SkASSERT(!fErrorCount); Program::Settings settings; fIRGenerator->start(&settings, nullptr); fIRGenerator->convertProgram(Program::kFragment_Kind, SKSL_VERT_INCLUDE, strlen(SKSL_VERT_INCLUDE), *fTypes, &fVertexInclude); fIRGenerator->fSymbolTable->markAllFunctionsBuiltin(); fVertexSymbolTable = fIRGenerator->fSymbolTable; fIRGenerator->start(&settings, nullptr); fIRGenerator->convertProgram(Program::kVertex_Kind, SKSL_FRAG_INCLUDE, strlen(SKSL_FRAG_INCLUDE), *fTypes, &fFragmentInclude); fIRGenerator->fSymbolTable->markAllFunctionsBuiltin(); fFragmentSymbolTable = fIRGenerator->fSymbolTable; fIRGenerator->start(&settings, nullptr); fIRGenerator->convertProgram(Program::kGeometry_Kind, SKSL_GEOM_INCLUDE, strlen(SKSL_GEOM_INCLUDE), *fTypes, &fGeometryInclude); fIRGenerator->fSymbolTable->markAllFunctionsBuiltin(); fGeometrySymbolTable = fIRGenerator->fSymbolTable; } Compiler::~Compiler() { delete fIRGenerator; } // add the definition created by assigning to the lvalue to the definition set void Compiler::addDefinition(const Expression* lvalue, std::unique_ptr* expr, DefinitionMap* definitions) { switch (lvalue->fKind) { case Expression::kVariableReference_Kind: { const Variable& var = ((VariableReference*) lvalue)->fVariable; if (var.fStorage == Variable::kLocal_Storage) { (*definitions)[&var] = expr; } break; } case Expression::kSwizzle_Kind: // We consider the variable written to as long as at least some of its components have // been written to. This will lead to some false negatives (we won't catch it if you // write to foo.x and then read foo.y), but being stricter could lead to false positives // (we write to foo.x, and then pass foo to a function which happens to only read foo.x, // but since we pass foo as a whole it is flagged as an error) unless we perform a much // more complicated whole-program analysis. This is probably good enough. this->addDefinition(((Swizzle*) lvalue)->fBase.get(), (std::unique_ptr*) &fContext->fDefined_Expression, definitions); break; case Expression::kIndex_Kind: // see comments in Swizzle this->addDefinition(((IndexExpression*) lvalue)->fBase.get(), (std::unique_ptr*) &fContext->fDefined_Expression, definitions); break; case Expression::kFieldAccess_Kind: // see comments in Swizzle this->addDefinition(((FieldAccess*) lvalue)->fBase.get(), (std::unique_ptr*) &fContext->fDefined_Expression, definitions); break; case Expression::kTernary_Kind: // To simplify analysis, we just pretend that we write to both sides of the ternary. // This allows for false positives (meaning we fail to detect that a variable might not // have been assigned), but is preferable to false negatives. this->addDefinition(((TernaryExpression*) lvalue)->fIfTrue.get(), (std::unique_ptr*) &fContext->fDefined_Expression, definitions); this->addDefinition(((TernaryExpression*) lvalue)->fIfFalse.get(), (std::unique_ptr*) &fContext->fDefined_Expression, definitions); break; default: // not an lvalue, can't happen SkASSERT(false); } } // add local variables defined by this node to the set void Compiler::addDefinitions(const BasicBlock::Node& node, DefinitionMap* definitions) { switch (node.fKind) { case BasicBlock::Node::kExpression_Kind: { SkASSERT(node.expression()); const Expression* expr = (Expression*) node.expression()->get(); switch (expr->fKind) { case Expression::kBinary_Kind: { BinaryExpression* b = (BinaryExpression*) expr; if (b->fOperator == Token::EQ) { this->addDefinition(b->fLeft.get(), &b->fRight, definitions); } else if (Compiler::IsAssignment(b->fOperator)) { this->addDefinition( b->fLeft.get(), (std::unique_ptr*) &fContext->fDefined_Expression, definitions); } break; } case Expression::kFunctionCall_Kind: { const FunctionCall& c = (const FunctionCall&) *expr; for (size_t i = 0; i < c.fFunction.fParameters.size(); ++i) { if (c.fFunction.fParameters[i]->fModifiers.fFlags & Modifiers::kOut_Flag) { this->addDefinition( c.fArguments[i].get(), (std::unique_ptr*) &fContext->fDefined_Expression, definitions); } } break; } case Expression::kPrefix_Kind: { const PrefixExpression* p = (PrefixExpression*) expr; if (p->fOperator == Token::MINUSMINUS || p->fOperator == Token::PLUSPLUS) { this->addDefinition( p->fOperand.get(), (std::unique_ptr*) &fContext->fDefined_Expression, definitions); } break; } case Expression::kPostfix_Kind: { const PostfixExpression* p = (PostfixExpression*) expr; if (p->fOperator == Token::MINUSMINUS || p->fOperator == Token::PLUSPLUS) { this->addDefinition( p->fOperand.get(), (std::unique_ptr*) &fContext->fDefined_Expression, definitions); } break; } case Expression::kVariableReference_Kind: { const VariableReference* v = (VariableReference*) expr; if (v->fRefKind != VariableReference::kRead_RefKind) { this->addDefinition( v, (std::unique_ptr*) &fContext->fDefined_Expression, definitions); } } default: break; } break; } case BasicBlock::Node::kStatement_Kind: { const Statement* stmt = (Statement*) node.statement()->get(); if (stmt->fKind == Statement::kVarDeclaration_Kind) { VarDeclaration& vd = (VarDeclaration&) *stmt; if (vd.fValue) { (*definitions)[vd.fVar] = &vd.fValue; } } break; } } } void Compiler::scanCFG(CFG* cfg, BlockId blockId, std::set* workList) { BasicBlock& block = cfg->fBlocks[blockId]; // compute definitions after this block DefinitionMap after = block.fBefore; for (const BasicBlock::Node& n : block.fNodes) { this->addDefinitions(n, &after); } // propagate definitions to exits for (BlockId exitId : block.fExits) { if (exitId == blockId) { continue; } BasicBlock& exit = cfg->fBlocks[exitId]; for (const auto& pair : after) { std::unique_ptr* e1 = pair.second; auto found = exit.fBefore.find(pair.first); if (found == exit.fBefore.end()) { // exit has no definition for it, just copy it workList->insert(exitId); exit.fBefore[pair.first] = e1; } else { // exit has a (possibly different) value already defined std::unique_ptr* e2 = exit.fBefore[pair.first]; if (e1 != e2) { // definition has changed, merge and add exit block to worklist workList->insert(exitId); if (e1 && e2) { exit.fBefore[pair.first] = (std::unique_ptr*) &fContext->fDefined_Expression; } else { exit.fBefore[pair.first] = nullptr; } } } } } } // returns a map which maps all local variables in the function to null, indicating that their value // is initially unknown static DefinitionMap compute_start_state(const CFG& cfg) { DefinitionMap result; for (const auto& block : cfg.fBlocks) { for (const auto& node : block.fNodes) { if (node.fKind == BasicBlock::Node::kStatement_Kind) { SkASSERT(node.statement()); const Statement* s = node.statement()->get(); if (s->fKind == Statement::kVarDeclarations_Kind) { const VarDeclarationsStatement* vd = (const VarDeclarationsStatement*) s; for (const auto& decl : vd->fDeclaration->fVars) { if (decl->fKind == Statement::kVarDeclaration_Kind) { result[((VarDeclaration&) *decl).fVar] = nullptr; } } } } } } return result; } /** * Returns true if assigning to this lvalue has no effect. */ static bool is_dead(const Expression& lvalue) { switch (lvalue.fKind) { case Expression::kVariableReference_Kind: return ((VariableReference&) lvalue).fVariable.dead(); case Expression::kSwizzle_Kind: return is_dead(*((Swizzle&) lvalue).fBase); case Expression::kFieldAccess_Kind: return is_dead(*((FieldAccess&) lvalue).fBase); case Expression::kIndex_Kind: { const IndexExpression& idx = (IndexExpression&) lvalue; return is_dead(*idx.fBase) && !idx.fIndex->hasSideEffects(); } case Expression::kTernary_Kind: { const TernaryExpression& t = (TernaryExpression&) lvalue; return !t.fTest->hasSideEffects() && is_dead(*t.fIfTrue) && is_dead(*t.fIfFalse); } default: ABORT("invalid lvalue: %s\n", lvalue.description().c_str()); } } /** * Returns true if this is an assignment which can be collapsed down to just the right hand side due * to a dead target and lack of side effects on the left hand side. */ static bool dead_assignment(const BinaryExpression& b) { if (!Compiler::IsAssignment(b.fOperator)) { return false; } return is_dead(*b.fLeft); } void Compiler::computeDataFlow(CFG* cfg) { cfg->fBlocks[cfg->fStart].fBefore = compute_start_state(*cfg); std::set workList; for (BlockId i = 0; i < cfg->fBlocks.size(); i++) { workList.insert(i); } while (workList.size()) { BlockId next = *workList.begin(); workList.erase(workList.begin()); this->scanCFG(cfg, next, &workList); } } /** * Attempts to replace the expression pointed to by iter with a new one (in both the CFG and the * IR). If the expression can be cleanly removed, returns true and updates the iterator to point to * the newly-inserted element. Otherwise updates only the IR and returns false (and the CFG will * need to be regenerated). */ bool try_replace_expression(BasicBlock* b, std::vector::iterator* iter, std::unique_ptr* newExpression) { std::unique_ptr* target = (*iter)->expression(); if (!b->tryRemoveExpression(iter)) { *target = std::move(*newExpression); return false; } *target = std::move(*newExpression); return b->tryInsertExpression(iter, target); } /** * Returns true if the expression is a constant numeric literal with the specified value, or a * constant vector with all elements equal to the specified value. */ bool is_constant(const Expression& expr, double value) { switch (expr.fKind) { case Expression::kIntLiteral_Kind: return ((IntLiteral&) expr).fValue == value; case Expression::kFloatLiteral_Kind: return ((FloatLiteral&) expr).fValue == value; case Expression::kConstructor_Kind: { Constructor& c = (Constructor&) expr; if (c.fType.kind() == Type::kVector_Kind && c.isConstant()) { for (int i = 0; i < c.fType.columns(); ++i) { if (!is_constant(c.getVecComponent(i), value)) { return false; } } return true; } return false; } default: return false; } } /** * Collapses the binary expression pointed to by iter down to just the right side (in both the IR * and CFG structures). */ void delete_left(BasicBlock* b, std::vector::iterator* iter, bool* outUpdated, bool* outNeedsRescan) { *outUpdated = true; std::unique_ptr* target = (*iter)->expression(); SkASSERT((*target)->fKind == Expression::kBinary_Kind); BinaryExpression& bin = (BinaryExpression&) **target; SkASSERT(!bin.fLeft->hasSideEffects()); bool result; if (bin.fOperator == Token::EQ) { result = b->tryRemoveLValueBefore(iter, bin.fLeft.get()); } else { result = b->tryRemoveExpressionBefore(iter, bin.fLeft.get()); } *target = std::move(bin.fRight); if (!result) { *outNeedsRescan = true; return; } if (*iter == b->fNodes.begin()) { *outNeedsRescan = true; return; } --(*iter); if ((*iter)->fKind != BasicBlock::Node::kExpression_Kind || (*iter)->expression() != &bin.fRight) { *outNeedsRescan = true; return; } *iter = b->fNodes.erase(*iter); SkASSERT((*iter)->expression() == target); } /** * Collapses the binary expression pointed to by iter down to just the left side (in both the IR and * CFG structures). */ void delete_right(BasicBlock* b, std::vector::iterator* iter, bool* outUpdated, bool* outNeedsRescan) { *outUpdated = true; std::unique_ptr* target = (*iter)->expression(); SkASSERT((*target)->fKind == Expression::kBinary_Kind); BinaryExpression& bin = (BinaryExpression&) **target; SkASSERT(!bin.fRight->hasSideEffects()); if (!b->tryRemoveExpressionBefore(iter, bin.fRight.get())) { *target = std::move(bin.fLeft); *outNeedsRescan = true; return; } *target = std::move(bin.fLeft); if (*iter == b->fNodes.begin()) { *outNeedsRescan = true; return; } --(*iter); if (((*iter)->fKind != BasicBlock::Node::kExpression_Kind || (*iter)->expression() != &bin.fLeft)) { *outNeedsRescan = true; return; } *iter = b->fNodes.erase(*iter); SkASSERT((*iter)->expression() == target); } /** * Constructs the specified type using a single argument. */ static std::unique_ptr construct(const Type& type, std::unique_ptr v) { std::vector> args; args.push_back(std::move(v)); auto result = std::unique_ptr(new Constructor(-1, type, std::move(args))); return result; } /** * Used in the implementations of vectorize_left and vectorize_right. Given a vector type and an * expression x, deletes the expression pointed to by iter and replaces it with (x). */ static void vectorize(BasicBlock* b, std::vector::iterator* iter, const Type& type, std::unique_ptr* otherExpression, bool* outUpdated, bool* outNeedsRescan) { SkASSERT((*(*iter)->expression())->fKind == Expression::kBinary_Kind); SkASSERT(type.kind() == Type::kVector_Kind); SkASSERT((*otherExpression)->fType.kind() == Type::kScalar_Kind); *outUpdated = true; std::unique_ptr* target = (*iter)->expression(); if (!b->tryRemoveExpression(iter)) { *target = construct(type, std::move(*otherExpression)); *outNeedsRescan = true; } else { *target = construct(type, std::move(*otherExpression)); if (!b->tryInsertExpression(iter, target)) { *outNeedsRescan = true; } } } /** * Given a binary expression of the form x vec(y), deletes the right side and vectorizes the * left to yield vec(x). */ static void vectorize_left(BasicBlock* b, std::vector::iterator* iter, bool* outUpdated, bool* outNeedsRescan) { BinaryExpression& bin = (BinaryExpression&) **(*iter)->expression(); vectorize(b, iter, bin.fRight->fType, &bin.fLeft, outUpdated, outNeedsRescan); } /** * Given a binary expression of the form vec(x) y, deletes the left side and vectorizes the * right to yield vec(y). */ static void vectorize_right(BasicBlock* b, std::vector::iterator* iter, bool* outUpdated, bool* outNeedsRescan) { BinaryExpression& bin = (BinaryExpression&) **(*iter)->expression(); vectorize(b, iter, bin.fLeft->fType, &bin.fRight, outUpdated, outNeedsRescan); } // Mark that an expression which we were writing to is no longer being written to void clear_write(const Expression& expr) { switch (expr.fKind) { case Expression::kVariableReference_Kind: { ((VariableReference&) expr).setRefKind(VariableReference::kRead_RefKind); break; } case Expression::kFieldAccess_Kind: clear_write(*((FieldAccess&) expr).fBase); break; case Expression::kSwizzle_Kind: clear_write(*((Swizzle&) expr).fBase); break; case Expression::kIndex_Kind: clear_write(*((IndexExpression&) expr).fBase); break; default: ABORT("shouldn't be writing to this kind of expression\n"); break; } } void Compiler::simplifyExpression(DefinitionMap& definitions, BasicBlock& b, std::vector::iterator* iter, std::unordered_set* undefinedVariables, bool* outUpdated, bool* outNeedsRescan) { Expression* expr = (*iter)->expression()->get(); SkASSERT(expr); if ((*iter)->fConstantPropagation) { std::unique_ptr optimized = expr->constantPropagate(*fIRGenerator, definitions); if (optimized) { *outUpdated = true; if (!try_replace_expression(&b, iter, &optimized)) { *outNeedsRescan = true; return; } SkASSERT((*iter)->fKind == BasicBlock::Node::kExpression_Kind); expr = (*iter)->expression()->get(); } } switch (expr->fKind) { case Expression::kVariableReference_Kind: { const VariableReference& ref = (VariableReference&) *expr; const Variable& var = ref.fVariable; if (ref.refKind() != VariableReference::kWrite_RefKind && ref.refKind() != VariableReference::kPointer_RefKind && var.fStorage == Variable::kLocal_Storage && !definitions[&var] && (*undefinedVariables).find(&var) == (*undefinedVariables).end()) { (*undefinedVariables).insert(&var); this->error(expr->fOffset, "'" + var.fName + "' has not been assigned"); } break; } case Expression::kTernary_Kind: { TernaryExpression* t = (TernaryExpression*) expr; if (t->fTest->fKind == Expression::kBoolLiteral_Kind) { // ternary has a constant test, replace it with either the true or // false branch if (((BoolLiteral&) *t->fTest).fValue) { (*iter)->setExpression(std::move(t->fIfTrue)); } else { (*iter)->setExpression(std::move(t->fIfFalse)); } *outUpdated = true; *outNeedsRescan = true; } break; } case Expression::kBinary_Kind: { BinaryExpression* bin = (BinaryExpression*) expr; if (dead_assignment(*bin)) { delete_left(&b, iter, outUpdated, outNeedsRescan); break; } // collapse useless expressions like x * 1 or x + 0 if (((bin->fLeft->fType.kind() != Type::kScalar_Kind) && (bin->fLeft->fType.kind() != Type::kVector_Kind)) || ((bin->fRight->fType.kind() != Type::kScalar_Kind) && (bin->fRight->fType.kind() != Type::kVector_Kind))) { break; } switch (bin->fOperator) { case Token::STAR: if (is_constant(*bin->fLeft, 1)) { if (bin->fLeft->fType.kind() == Type::kVector_Kind && bin->fRight->fType.kind() == Type::kScalar_Kind) { // float4(1) * x -> float4(x) vectorize_right(&b, iter, outUpdated, outNeedsRescan); } else { // 1 * x -> x // 1 * float4(x) -> float4(x) // float4(1) * float4(x) -> float4(x) delete_left(&b, iter, outUpdated, outNeedsRescan); } } else if (is_constant(*bin->fLeft, 0)) { if (bin->fLeft->fType.kind() == Type::kScalar_Kind && bin->fRight->fType.kind() == Type::kVector_Kind && !bin->fRight->hasSideEffects()) { // 0 * float4(x) -> float4(0) vectorize_left(&b, iter, outUpdated, outNeedsRescan); } else { // 0 * x -> 0 // float4(0) * x -> float4(0) // float4(0) * float4(x) -> float4(0) if (!bin->fRight->hasSideEffects()) { delete_right(&b, iter, outUpdated, outNeedsRescan); } } } else if (is_constant(*bin->fRight, 1)) { if (bin->fLeft->fType.kind() == Type::kScalar_Kind && bin->fRight->fType.kind() == Type::kVector_Kind) { // x * float4(1) -> float4(x) vectorize_left(&b, iter, outUpdated, outNeedsRescan); } else { // x * 1 -> x // float4(x) * 1 -> float4(x) // float4(x) * float4(1) -> float4(x) delete_right(&b, iter, outUpdated, outNeedsRescan); } } else if (is_constant(*bin->fRight, 0)) { if (bin->fLeft->fType.kind() == Type::kVector_Kind && bin->fRight->fType.kind() == Type::kScalar_Kind && !bin->fLeft->hasSideEffects()) { // float4(x) * 0 -> float4(0) vectorize_right(&b, iter, outUpdated, outNeedsRescan); } else { // x * 0 -> 0 // x * float4(0) -> float4(0) // float4(x) * float4(0) -> float4(0) if (!bin->fLeft->hasSideEffects()) { delete_left(&b, iter, outUpdated, outNeedsRescan); } } } break; case Token::PLUS: if (is_constant(*bin->fLeft, 0)) { if (bin->fLeft->fType.kind() == Type::kVector_Kind && bin->fRight->fType.kind() == Type::kScalar_Kind) { // float4(0) + x -> float4(x) vectorize_right(&b, iter, outUpdated, outNeedsRescan); } else { // 0 + x -> x // 0 + float4(x) -> float4(x) // float4(0) + float4(x) -> float4(x) delete_left(&b, iter, outUpdated, outNeedsRescan); } } else if (is_constant(*bin->fRight, 0)) { if (bin->fLeft->fType.kind() == Type::kScalar_Kind && bin->fRight->fType.kind() == Type::kVector_Kind) { // x + float4(0) -> float4(x) vectorize_left(&b, iter, outUpdated, outNeedsRescan); } else { // x + 0 -> x // float4(x) + 0 -> float4(x) // float4(x) + float4(0) -> float4(x) delete_right(&b, iter, outUpdated, outNeedsRescan); } } break; case Token::MINUS: if (is_constant(*bin->fRight, 0)) { if (bin->fLeft->fType.kind() == Type::kScalar_Kind && bin->fRight->fType.kind() == Type::kVector_Kind) { // x - float4(0) -> float4(x) vectorize_left(&b, iter, outUpdated, outNeedsRescan); } else { // x - 0 -> x // float4(x) - 0 -> float4(x) // float4(x) - float4(0) -> float4(x) delete_right(&b, iter, outUpdated, outNeedsRescan); } } break; case Token::SLASH: if (is_constant(*bin->fRight, 1)) { if (bin->fLeft->fType.kind() == Type::kScalar_Kind && bin->fRight->fType.kind() == Type::kVector_Kind) { // x / float4(1) -> float4(x) vectorize_left(&b, iter, outUpdated, outNeedsRescan); } else { // x / 1 -> x // float4(x) / 1 -> float4(x) // float4(x) / float4(1) -> float4(x) delete_right(&b, iter, outUpdated, outNeedsRescan); } } else if (is_constant(*bin->fLeft, 0)) { if (bin->fLeft->fType.kind() == Type::kScalar_Kind && bin->fRight->fType.kind() == Type::kVector_Kind && !bin->fRight->hasSideEffects()) { // 0 / float4(x) -> float4(0) vectorize_left(&b, iter, outUpdated, outNeedsRescan); } else { // 0 / x -> 0 // float4(0) / x -> float4(0) // float4(0) / float4(x) -> float4(0) if (!bin->fRight->hasSideEffects()) { delete_right(&b, iter, outUpdated, outNeedsRescan); } } } break; case Token::PLUSEQ: if (is_constant(*bin->fRight, 0)) { clear_write(*bin->fLeft); delete_right(&b, iter, outUpdated, outNeedsRescan); } break; case Token::MINUSEQ: if (is_constant(*bin->fRight, 0)) { clear_write(*bin->fLeft); delete_right(&b, iter, outUpdated, outNeedsRescan); } break; case Token::STAREQ: if (is_constant(*bin->fRight, 1)) { clear_write(*bin->fLeft); delete_right(&b, iter, outUpdated, outNeedsRescan); } break; case Token::SLASHEQ: if (is_constant(*bin->fRight, 1)) { clear_write(*bin->fLeft); delete_right(&b, iter, outUpdated, outNeedsRescan); } break; default: break; } } default: break; } } // returns true if this statement could potentially execute a break at the current level (we ignore // nested loops and switches, since any breaks inside of them will merely break the loop / switch) static bool contains_conditional_break(Statement& s, bool inConditional) { switch (s.fKind) { case Statement::kBlock_Kind: for (const auto& sub : ((Block&) s).fStatements) { if (contains_conditional_break(*sub, inConditional)) { return true; } } return false; case Statement::kBreak_Kind: return inConditional; case Statement::kIf_Kind: { const IfStatement& i = (IfStatement&) s; return contains_conditional_break(*i.fIfTrue, true) || (i.fIfFalse && contains_conditional_break(*i.fIfFalse, true)); } default: return false; } } // returns true if this statement definitely executes a break at the current level (we ignore // nested loops and switches, since any breaks inside of them will merely break the loop / switch) static bool contains_unconditional_break(Statement& s) { switch (s.fKind) { case Statement::kBlock_Kind: for (const auto& sub : ((Block&) s).fStatements) { if (contains_unconditional_break(*sub)) { return true; } } return false; case Statement::kBreak_Kind: return true; default: return false; } } // Returns a block containing all of the statements that will be run if the given case matches // (which, owing to the statements being owned by unique_ptrs, means the switch itself will be // broken by this call and must then be discarded). // Returns null (and leaves the switch unmodified) if no such simple reduction is possible, such as // when break statements appear inside conditionals. static std::unique_ptr block_for_case(SwitchStatement* s, SwitchCase* c) { bool capturing = false; std::vector*> statementPtrs; for (const auto& current : s->fCases) { if (current.get() == c) { capturing = true; } if (capturing) { for (auto& stmt : current->fStatements) { if (contains_conditional_break(*stmt, s->fKind == Statement::kIf_Kind)) { return nullptr; } if (contains_unconditional_break(*stmt)) { capturing = false; break; } statementPtrs.push_back(&stmt); } if (!capturing) { break; } } } std::vector> statements; for (const auto& s : statementPtrs) { statements.push_back(std::move(*s)); } return std::unique_ptr(new Block(-1, std::move(statements), s->fSymbols)); } void Compiler::simplifyStatement(DefinitionMap& definitions, BasicBlock& b, std::vector::iterator* iter, std::unordered_set* undefinedVariables, bool* outUpdated, bool* outNeedsRescan) { Statement* stmt = (*iter)->statement()->get(); switch (stmt->fKind) { case Statement::kVarDeclaration_Kind: { const auto& varDecl = (VarDeclaration&) *stmt; if (varDecl.fVar->dead() && (!varDecl.fValue || !varDecl.fValue->hasSideEffects())) { if (varDecl.fValue) { SkASSERT((*iter)->statement()->get() == stmt); if (!b.tryRemoveExpressionBefore(iter, varDecl.fValue.get())) { *outNeedsRescan = true; } } (*iter)->setStatement(std::unique_ptr(new Nop())); *outUpdated = true; } break; } case Statement::kIf_Kind: { IfStatement& i = (IfStatement&) *stmt; if (i.fTest->fKind == Expression::kBoolLiteral_Kind) { // constant if, collapse down to a single branch if (((BoolLiteral&) *i.fTest).fValue) { SkASSERT(i.fIfTrue); (*iter)->setStatement(std::move(i.fIfTrue)); } else { if (i.fIfFalse) { (*iter)->setStatement(std::move(i.fIfFalse)); } else { (*iter)->setStatement(std::unique_ptr(new Nop())); } } *outUpdated = true; *outNeedsRescan = true; break; } if (i.fIfFalse && i.fIfFalse->isEmpty()) { // else block doesn't do anything, remove it i.fIfFalse.reset(); *outUpdated = true; *outNeedsRescan = true; } if (!i.fIfFalse && i.fIfTrue->isEmpty()) { // if block doesn't do anything, no else block if (i.fTest->hasSideEffects()) { // test has side effects, keep it (*iter)->setStatement(std::unique_ptr( new ExpressionStatement(std::move(i.fTest)))); } else { // no if, no else, no test side effects, kill the whole if // statement (*iter)->setStatement(std::unique_ptr(new Nop())); } *outUpdated = true; *outNeedsRescan = true; } break; } case Statement::kSwitch_Kind: { SwitchStatement& s = (SwitchStatement&) *stmt; if (s.fValue->isConstant()) { // switch is constant, replace it with the case that matches bool found = false; SwitchCase* defaultCase = nullptr; for (const auto& c : s.fCases) { if (!c->fValue) { defaultCase = c.get(); continue; } SkASSERT(c->fValue->fKind == s.fValue->fKind); found = c->fValue->compareConstant(*fContext, *s.fValue); if (found) { std::unique_ptr newBlock = block_for_case(&s, c.get()); if (newBlock) { (*iter)->setStatement(std::move(newBlock)); break; } else { if (s.fIsStatic && !(fFlags & kPermitInvalidStaticTests_Flag)) { this->error(s.fOffset, "static switch contains non-static conditional break"); s.fIsStatic = false; } return; // can't simplify } } } if (!found) { // no matching case. use default if it exists, or kill the whole thing if (defaultCase) { std::unique_ptr newBlock = block_for_case(&s, defaultCase); if (newBlock) { (*iter)->setStatement(std::move(newBlock)); } else { if (s.fIsStatic && !(fFlags & kPermitInvalidStaticTests_Flag)) { this->error(s.fOffset, "static switch contains non-static conditional break"); s.fIsStatic = false; } return; // can't simplify } } else { (*iter)->setStatement(std::unique_ptr(new Nop())); } } *outUpdated = true; *outNeedsRescan = true; } break; } case Statement::kExpression_Kind: { ExpressionStatement& e = (ExpressionStatement&) *stmt; SkASSERT((*iter)->statement()->get() == &e); if (!e.fExpression->hasSideEffects()) { // Expression statement with no side effects, kill it if (!b.tryRemoveExpressionBefore(iter, e.fExpression.get())) { *outNeedsRescan = true; } SkASSERT((*iter)->statement()->get() == stmt); (*iter)->setStatement(std::unique_ptr(new Nop())); *outUpdated = true; } break; } default: break; } } void Compiler::scanCFG(FunctionDefinition& f) { CFG cfg = CFGGenerator().getCFG(f); this->computeDataFlow(&cfg); // check for unreachable code for (size_t i = 0; i < cfg.fBlocks.size(); i++) { if (i != cfg.fStart && !cfg.fBlocks[i].fEntrances.size() && cfg.fBlocks[i].fNodes.size()) { int offset; switch (cfg.fBlocks[i].fNodes[0].fKind) { case BasicBlock::Node::kStatement_Kind: offset = (*cfg.fBlocks[i].fNodes[0].statement())->fOffset; break; case BasicBlock::Node::kExpression_Kind: offset = (*cfg.fBlocks[i].fNodes[0].expression())->fOffset; break; } this->error(offset, String("unreachable")); } } if (fErrorCount) { return; } // check for dead code & undefined variables, perform constant propagation std::unordered_set undefinedVariables; bool updated; bool needsRescan = false; do { if (needsRescan) { cfg = CFGGenerator().getCFG(f); this->computeDataFlow(&cfg); needsRescan = false; } updated = false; for (BasicBlock& b : cfg.fBlocks) { DefinitionMap definitions = b.fBefore; for (auto iter = b.fNodes.begin(); iter != b.fNodes.end() && !needsRescan; ++iter) { if (iter->fKind == BasicBlock::Node::kExpression_Kind) { this->simplifyExpression(definitions, b, &iter, &undefinedVariables, &updated, &needsRescan); } else { this->simplifyStatement(definitions, b, &iter, &undefinedVariables, &updated, &needsRescan); } if (needsRescan) { break; } this->addDefinitions(*iter, &definitions); } } } while (updated); SkASSERT(!needsRescan); // verify static ifs & switches, clean up dead variable decls for (BasicBlock& b : cfg.fBlocks) { DefinitionMap definitions = b.fBefore; for (auto iter = b.fNodes.begin(); iter != b.fNodes.end() && !needsRescan;) { if (iter->fKind == BasicBlock::Node::kStatement_Kind) { const Statement& s = **iter->statement(); switch (s.fKind) { case Statement::kIf_Kind: if (((const IfStatement&) s).fIsStatic && !(fFlags & kPermitInvalidStaticTests_Flag)) { this->error(s.fOffset, "static if has non-static test"); } ++iter; break; case Statement::kSwitch_Kind: if (((const SwitchStatement&) s).fIsStatic && !(fFlags & kPermitInvalidStaticTests_Flag)) { this->error(s.fOffset, "static switch has non-static test"); } ++iter; break; case Statement::kVarDeclarations_Kind: { VarDeclarations& decls = *((VarDeclarationsStatement&) s).fDeclaration; for (auto varIter = decls.fVars.begin(); varIter != decls.fVars.end();) { if ((*varIter)->fKind == Statement::kNop_Kind) { varIter = decls.fVars.erase(varIter); } else { ++varIter; } } if (!decls.fVars.size()) { iter = b.fNodes.erase(iter); } else { ++iter; } break; } default: ++iter; break; } } else { ++iter; } } } // check for missing return if (f.fDeclaration.fReturnType != *fContext->fVoid_Type) { if (cfg.fBlocks[cfg.fExit].fEntrances.size()) { this->error(f.fOffset, String("function can exit without returning a value")); } } } std::unique_ptr Compiler::convertProgram(Program::Kind kind, String text, const Program::Settings& settings) { fErrorText = ""; fErrorCount = 0; std::vector>* inherited; std::vector> elements; switch (kind) { case Program::kVertex_Kind: inherited = &fVertexInclude; fIRGenerator->fSymbolTable = fVertexSymbolTable; fIRGenerator->start(&settings, inherited); break; case Program::kFragment_Kind: inherited = &fFragmentInclude; fIRGenerator->fSymbolTable = fFragmentSymbolTable; fIRGenerator->start(&settings, inherited); break; case Program::kGeometry_Kind: inherited = &fGeometryInclude; fIRGenerator->fSymbolTable = fGeometrySymbolTable; fIRGenerator->start(&settings, inherited); break; case Program::kFragmentProcessor_Kind: inherited = nullptr; fIRGenerator->start(&settings, nullptr); fIRGenerator->convertProgram(kind, SKSL_FP_INCLUDE, strlen(SKSL_FP_INCLUDE), *fTypes, &elements); fIRGenerator->fSymbolTable->markAllFunctionsBuiltin(); break; case Program::kPipelineStage_Kind: inherited = nullptr; fIRGenerator->start(&settings, nullptr); fIRGenerator->convertProgram(kind, SKSL_PIPELINE_STAGE_INCLUDE, strlen(SKSL_PIPELINE_STAGE_INCLUDE), *fTypes, &elements); fIRGenerator->fSymbolTable->markAllFunctionsBuiltin(); break; } for (auto& element : elements) { if (element->fKind == ProgramElement::kEnum_Kind) { ((Enum&) *element).fBuiltin = true; } } std::unique_ptr textPtr(new String(std::move(text))); fSource = textPtr.get(); fIRGenerator->convertProgram(kind, textPtr->c_str(), textPtr->size(), *fTypes, &elements); auto result = std::unique_ptr(new Program(kind, std::move(textPtr), settings, fContext, inherited, std::move(elements), fIRGenerator->fSymbolTable, fIRGenerator->fInputs)); if (fErrorCount) { return nullptr; } return result; } bool Compiler::optimize(Program& program) { SkASSERT(!fErrorCount); if (!program.fIsOptimized) { program.fIsOptimized = true; fIRGenerator->fKind = program.fKind; fIRGenerator->fSettings = &program.fSettings; for (auto& element : program) { if (element.fKind == ProgramElement::kFunction_Kind) { this->scanCFG((FunctionDefinition&) element); } } if (program.fKind != Program::kFragmentProcessor_Kind) { for (auto iter = program.fElements.begin(); iter != program.fElements.end();) { if ((*iter)->fKind == ProgramElement::kVar_Kind) { VarDeclarations& vars = (VarDeclarations&) **iter; for (auto varIter = vars.fVars.begin(); varIter != vars.fVars.end();) { const Variable& var = *((VarDeclaration&) **varIter).fVar; if (var.dead()) { varIter = vars.fVars.erase(varIter); } else { ++varIter; } } if (vars.fVars.size() == 0) { iter = program.fElements.erase(iter); continue; } } ++iter; } } fSource = nullptr; } return fErrorCount == 0; } std::unique_ptr Compiler::specialize( Program& program, const std::unordered_map& inputs) { std::vector> elements; for (const auto& e : program) { elements.push_back(e.clone()); } Program::Settings settings; settings.fCaps = program.fSettings.fCaps; for (auto iter = inputs.begin(); iter != inputs.end(); ++iter) { settings.fArgs.insert(*iter); } std::unique_ptr result(new Program(program.fKind, nullptr, settings, program.fContext, program.fInheritedElements, std::move(elements), program.fSymbols, program.fInputs)); return result; } bool Compiler::toSPIRV(Program& program, OutputStream& out) { if (!this->optimize(program)) { return false; } #ifdef SK_ENABLE_SPIRV_VALIDATION StringStream buffer; fSource = program.fSource.get(); SPIRVCodeGenerator cg(fContext.get(), &program, this, &buffer); bool result = cg.generateCode(); fSource = nullptr; if (result) { spvtools::SpirvTools tools(SPV_ENV_VULKAN_1_0); const String& data = buffer.str(); SkASSERT(0 == data.size() % 4); auto dumpmsg = [](spv_message_level_t, const char*, const spv_position_t&, const char* m) { SkDebugf("SPIR-V validation error: %s\n", m); }; tools.SetMessageConsumer(dumpmsg); // Verify that the SPIR-V we produced is valid. If this SkASSERT fails, check the logs prior // to the failure to see the validation errors. SkAssertResult(tools.Validate((const uint32_t*) data.c_str(), data.size() / 4)); out.write(data.c_str(), data.size()); } #else fSource = program.fSource.get(); SPIRVCodeGenerator cg(fContext.get(), &program, this, &out); bool result = cg.generateCode(); fSource = nullptr; #endif return result; } bool Compiler::toSPIRV(Program& program, String* out) { StringStream buffer; bool result = this->toSPIRV(program, buffer); if (result) { *out = buffer.str(); } return result; } bool Compiler::toGLSL(Program& program, OutputStream& out) { if (!this->optimize(program)) { return false; } fSource = program.fSource.get(); GLSLCodeGenerator cg(fContext.get(), &program, this, &out); bool result = cg.generateCode(); fSource = nullptr; return result; } bool Compiler::toGLSL(Program& program, String* out) { StringStream buffer; bool result = this->toGLSL(program, buffer); if (result) { *out = buffer.str(); } return result; } bool Compiler::toMetal(Program& program, OutputStream& out) { if (!this->optimize(program)) { return false; } MetalCodeGenerator cg(fContext.get(), &program, this, &out); bool result = cg.generateCode(); return result; } bool Compiler::toMetal(Program& program, String* out) { if (!this->optimize(program)) { return false; } StringStream buffer; bool result = this->toMetal(program, buffer); if (result) { *out = buffer.str(); } return result; } bool Compiler::toCPP(Program& program, String name, OutputStream& out) { if (!this->optimize(program)) { return false; } fSource = program.fSource.get(); CPPCodeGenerator cg(fContext.get(), &program, this, name, &out); bool result = cg.generateCode(); fSource = nullptr; return result; } bool Compiler::toH(Program& program, String name, OutputStream& out) { if (!this->optimize(program)) { return false; } fSource = program.fSource.get(); HCodeGenerator cg(fContext.get(), &program, this, name, &out); bool result = cg.generateCode(); fSource = nullptr; return result; } bool Compiler::toPipelineStage(const Program& program, String* out, std::vector* outFormatArgs) { SkASSERT(program.fIsOptimized); fSource = program.fSource.get(); StringStream buffer; PipelineStageCodeGenerator cg(fContext.get(), &program, this, &buffer, outFormatArgs); bool result = cg.generateCode(); fSource = nullptr; if (result) { *out = buffer.str(); } return result; } const char* Compiler::OperatorName(Token::Kind kind) { switch (kind) { case Token::PLUS: return "+"; case Token::MINUS: return "-"; case Token::STAR: return "*"; case Token::SLASH: return "/"; case Token::PERCENT: return "%"; case Token::SHL: return "<<"; case Token::SHR: return ">>"; case Token::LOGICALNOT: return "!"; case Token::LOGICALAND: return "&&"; case Token::LOGICALOR: return "||"; case Token::LOGICALXOR: return "^^"; case Token::BITWISENOT: return "~"; case Token::BITWISEAND: return "&"; case Token::BITWISEOR: return "|"; case Token::BITWISEXOR: return "^"; case Token::EQ: return "="; case Token::EQEQ: return "=="; case Token::NEQ: return "!="; case Token::LT: return "<"; case Token::GT: return ">"; case Token::LTEQ: return "<="; case Token::GTEQ: return ">="; case Token::PLUSEQ: return "+="; case Token::MINUSEQ: return "-="; case Token::STAREQ: return "*="; case Token::SLASHEQ: return "/="; case Token::PERCENTEQ: return "%="; case Token::SHLEQ: return "<<="; case Token::SHREQ: return ">>="; case Token::LOGICALANDEQ: return "&&="; case Token::LOGICALOREQ: return "||="; case Token::LOGICALXOREQ: return "^^="; case Token::BITWISEANDEQ: return "&="; case Token::BITWISEOREQ: return "|="; case Token::BITWISEXOREQ: return "^="; case Token::PLUSPLUS: return "++"; case Token::MINUSMINUS: return "--"; case Token::COMMA: return ","; default: ABORT("unsupported operator: %d\n", kind); } } bool Compiler::IsAssignment(Token::Kind op) { switch (op) { case Token::EQ: // fall through case Token::PLUSEQ: // fall through case Token::MINUSEQ: // fall through case Token::STAREQ: // fall through case Token::SLASHEQ: // fall through case Token::PERCENTEQ: // fall through case Token::SHLEQ: // fall through case Token::SHREQ: // fall through case Token::BITWISEOREQ: // fall through case Token::BITWISEXOREQ: // fall through case Token::BITWISEANDEQ: // fall through case Token::LOGICALOREQ: // fall through case Token::LOGICALXOREQ: // fall through case Token::LOGICALANDEQ: return true; default: return false; } } Position Compiler::position(int offset) { SkASSERT(fSource); int line = 1; int column = 1; for (int i = 0; i < offset; i++) { if ((*fSource)[i] == '\n') { ++line; column = 1; } else { ++column; } } return Position(line, column); } void Compiler::error(int offset, String msg) { fErrorCount++; Position pos = this->position(offset); fErrorText += "error: " + to_string(pos.fLine) + ": " + msg.c_str() + "\n"; } String Compiler::errorText() { this->writeErrorCount(); fErrorCount = 0; String result = fErrorText; return result; } void Compiler::writeErrorCount() { if (fErrorCount) { fErrorText += to_string(fErrorCount) + " error"; if (fErrorCount > 1) { fErrorText += "s"; } fErrorText += "\n"; } } } // namespace