/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SKSL_CONSTRUCTOR #define SKSL_CONSTRUCTOR #include "SkSLExpression.h" #include "SkSLFloatLiteral.h" #include "SkSLIntLiteral.h" #include "SkSLIRGenerator.h" namespace SkSL { /** * Represents the construction of a compound type, such as "float2(x, y)". * * Vector constructors will always consist of either exactly 1 scalar, or a collection of vectors * and scalars totalling exactly the right number of scalar components. * * Matrix constructors will always consist of either exactly 1 scalar, exactly 1 matrix, or a * collection of vectors and scalars totalling exactly the right number of scalar components. */ struct Constructor : public Expression { Constructor(int offset, const Type& type, std::vector> arguments) : INHERITED(offset, kConstructor_Kind, type) , fArguments(std::move(arguments)) {} std::unique_ptr constantPropagate(const IRGenerator& irGenerator, const DefinitionMap& definitions) override { if (fArguments.size() == 1 && fArguments[0]->fKind == Expression::kIntLiteral_Kind) { if (fType.isFloat()) { // promote float(1) to 1.0 int64_t intValue = ((IntLiteral&) *fArguments[0]).fValue; return std::unique_ptr(new FloatLiteral(irGenerator.fContext, fOffset, intValue)); } else if (fType.isInteger()) { // promote uint(1) to 1u int64_t intValue = ((IntLiteral&) *fArguments[0]).fValue; return std::unique_ptr(new IntLiteral(fOffset, intValue, &fType)); } } return nullptr; } bool hasSideEffects() const override { for (const auto& arg : fArguments) { if (arg->hasSideEffects()) { return true; } } return false; } std::unique_ptr clone() const override { std::vector> cloned; for (const auto& arg : fArguments) { cloned.push_back(arg->clone()); } return std::unique_ptr(new Constructor(fOffset, fType, std::move(cloned))); } String description() const override { String result = fType.description() + "("; String separator; for (size_t i = 0; i < fArguments.size(); i++) { result += separator; result += fArguments[i]->description(); separator = ", "; } result += ")"; return result; } bool isConstant() const override { for (size_t i = 0; i < fArguments.size(); i++) { if (!fArguments[i]->isConstant()) { return false; } } return true; } bool compareConstant(const Context& context, const Expression& other) const override { SkASSERT(other.fKind == Expression::kConstructor_Kind && other.fType == fType); Constructor& c = (Constructor&) other; if (c.fType.kind() == Type::kVector_Kind) { for (int i = 0; i < fType.columns(); i++) { if (!this->getVecComponent(i).compareConstant(context, c.getVecComponent(i))) { return false; } } return true; } // shouldn't be possible to have a constant constructor that isn't a vector or matrix; // a constant scalar constructor should have been collapsed down to the appropriate // literal SkASSERT(fType.kind() == Type::kMatrix_Kind); const FloatLiteral fzero(context, -1, 0); const IntLiteral izero(context, -1, 0); const Expression* zero; if (fType.componentType().isFloat()) { zero = &fzero; } else { SkASSERT(fType.componentType().isInteger()); zero = &izero; } for (int col = 0; col < fType.columns(); col++) { for (int row = 0; row < fType.rows(); row++) { const Expression* component1 = getMatComponent(col, row); const Expression* component2 = c.getMatComponent(col, row); if (!(component1 ? component1 : zero)->compareConstant( context, component2 ? *component2 : *zero)) { return false; } } } return true; } const Expression& getVecComponent(int index) const { SkASSERT(fType.kind() == Type::kVector_Kind); if (fArguments.size() == 1 && fArguments[0]->fType.kind() == Type::kScalar_Kind) { return *fArguments[0]; } int current = 0; for (const auto& arg : fArguments) { SkASSERT(current <= index); if (arg->fType.kind() == Type::kScalar_Kind) { if (index == current) { return *arg; } current++; } else { SkASSERT(arg->fType.kind() == Type::kVector_Kind); SkASSERT(arg->fKind == Expression::kConstructor_Kind); if (current + arg->fType.columns() > index) { return ((const Constructor&) *arg).getVecComponent(index - current); } current += arg->fType.columns(); } } ABORT("failed to find vector component %d in %s\n", index, description().c_str()); } double getFVecComponent(int index) const { return this->getVecComponent(index).getConstantFloat(); } int64_t getIVecComponent(int index) const { return this->getVecComponent(index).getConstantInt(); } // null return should be interpreted as zero const Expression* getMatComponent(int col, int row) const { SkASSERT(this->isConstant()); SkASSERT(fType.kind() == Type::kMatrix_Kind); SkASSERT(col < fType.columns() && row < fType.rows()); if (fArguments.size() == 1) { if (fArguments[0]->fType.kind() == Type::kScalar_Kind) { // single scalar argument, so matrix is of the form: // x 0 0 // 0 x 0 // 0 0 x // return x if col == row return col == row ? fArguments[0].get() : nullptr; } if (fArguments[0]->fType.kind() == Type::kMatrix_Kind) { SkASSERT(fArguments[0]->fKind == Expression::kConstructor_Kind); // single matrix argument. make sure we're within the argument's bounds. const Type& argType = ((Constructor&) *fArguments[0]).fType; if (col < argType.columns() && row < argType.rows()) { // within bounds, defer to argument return ((Constructor&) *fArguments[0]).getMatComponent(col, row); } // out of bounds, return 0 return nullptr; } } int currentIndex = 0; int targetIndex = col * fType.rows() + row; for (const auto& arg : fArguments) { SkASSERT(targetIndex >= currentIndex); SkASSERT(arg->fType.rows() == 1); if (currentIndex + arg->fType.columns() > targetIndex) { if (arg->fType.columns() == 1) { return arg.get(); } else { SkASSERT(arg->fType.kind() == Type::kVector_Kind); SkASSERT(arg->fKind == Expression::kConstructor_Kind); return &((Constructor&) *arg).getVecComponent(targetIndex - currentIndex); } } currentIndex += arg->fType.columns(); } ABORT("can't happen, matrix component out of bounds"); } std::vector> fArguments; typedef Expression INHERITED; }; } // namespace #endif