/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkPictureData.h" #include "SkAutoMalloc.h" #include "SkImageGenerator.h" #include "SkMakeUnique.h" #include "SkPictureRecord.h" #include "SkPicturePriv.h" #include "SkReadBuffer.h" #include "SkTextBlobPriv.h" #include "SkTypeface.h" #include "SkWriteBuffer.h" #include "SkTo.h" #include #if SK_SUPPORT_GPU #include "GrContext.h" #endif template int SafeCount(const T* obj) { return obj ? obj->count() : 0; } SkPictureData::SkPictureData(const SkPictInfo& info) : fInfo(info) {} void SkPictureData::initForPlayback() const { // ensure that the paths bounds are pre-computed for (int i = 0; i < fPaths.count(); i++) { fPaths[i].updateBoundsCache(); } } SkPictureData::SkPictureData(const SkPictureRecord& record, const SkPictInfo& info) : fPictures(record.getPictures()) , fDrawables(record.getDrawables()) , fTextBlobs(record.getTextBlobs()) , fVertices(record.getVertices()) , fImages(record.getImages()) , fInfo(info) { fOpData = record.opData(); fPaints = record.fPaints; fPaths.reset(record.fPaths.count()); record.fPaths.foreach([this](const SkPath& path, int n) { // These indices are logically 1-based, but we need to serialize them // 0-based to keep the deserializing SkPictureData::getPath() working. fPaths[n-1] = path; }); this->initForPlayback(); } /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// #include "SkStream.h" static size_t compute_chunk_size(SkFlattenable::Factory* array, int count) { size_t size = 4; // for 'count' for (int i = 0; i < count; i++) { const char* name = SkFlattenable::FactoryToName(array[i]); if (nullptr == name || 0 == *name) { size += SkWStream::SizeOfPackedUInt(0); } else { size_t len = strlen(name); size += SkWStream::SizeOfPackedUInt(len); size += len; } } return size; } static void write_tag_size(SkWriteBuffer& buffer, uint32_t tag, size_t size) { buffer.writeUInt(tag); buffer.writeUInt(SkToU32(size)); } static void write_tag_size(SkWStream* stream, uint32_t tag, size_t size) { stream->write32(tag); stream->write32(SkToU32(size)); } void SkPictureData::WriteFactories(SkWStream* stream, const SkFactorySet& rec) { int count = rec.count(); SkAutoSTMalloc<16, SkFlattenable::Factory> storage(count); SkFlattenable::Factory* array = (SkFlattenable::Factory*)storage.get(); rec.copyToArray(array); size_t size = compute_chunk_size(array, count); // TODO: write_tag_size should really take a size_t write_tag_size(stream, SK_PICT_FACTORY_TAG, (uint32_t) size); SkDEBUGCODE(size_t start = stream->bytesWritten()); stream->write32(count); for (int i = 0; i < count; i++) { const char* name = SkFlattenable::FactoryToName(array[i]); if (nullptr == name || 0 == *name) { stream->writePackedUInt(0); } else { size_t len = strlen(name); stream->writePackedUInt(len); stream->write(name, len); } } SkASSERT(size == (stream->bytesWritten() - start)); } void SkPictureData::WriteTypefaces(SkWStream* stream, const SkRefCntSet& rec, const SkSerialProcs& procs) { int count = rec.count(); write_tag_size(stream, SK_PICT_TYPEFACE_TAG, count); SkAutoSTMalloc<16, SkTypeface*> storage(count); SkTypeface** array = (SkTypeface**)storage.get(); rec.copyToArray((SkRefCnt**)array); for (int i = 0; i < count; i++) { SkTypeface* tf = array[i]; if (procs.fTypefaceProc) { auto data = procs.fTypefaceProc(tf, procs.fTypefaceCtx); if (data) { stream->write(data->data(), data->size()); continue; } } array[i]->serialize(stream); } } void SkPictureData::flattenToBuffer(SkWriteBuffer& buffer) const { int i, n; if ((n = fPaints.count()) > 0) { write_tag_size(buffer, SK_PICT_PAINT_BUFFER_TAG, n); for (i = 0; i < n; i++) { buffer.writePaint(fPaints[i]); } } if ((n = fPaths.count()) > 0) { write_tag_size(buffer, SK_PICT_PATH_BUFFER_TAG, n); buffer.writeInt(n); for (int i = 0; i < n; i++) { buffer.writePath(fPaths[i]); } } if (!fTextBlobs.empty()) { write_tag_size(buffer, SK_PICT_TEXTBLOB_BUFFER_TAG, fTextBlobs.count()); for (const auto& blob : fTextBlobs) { SkTextBlobPriv::Flatten(*blob, buffer); } } if (!fVertices.empty()) { write_tag_size(buffer, SK_PICT_VERTICES_BUFFER_TAG, fVertices.count()); for (const auto& vert : fVertices) { buffer.writeDataAsByteArray(vert->encode().get()); } } if (!fImages.empty()) { write_tag_size(buffer, SK_PICT_IMAGE_BUFFER_TAG, fImages.count()); for (const auto& img : fImages) { buffer.writeImage(img.get()); } } } // SkPictureData::serialize() will write out paints, and then write out an array of typefaces // (unique set). However, paint's serializer will respect SerialProcs, which can cause us to // call that custom typefaceproc on *every* typeface, not just on the unique ones. To avoid this, // we ignore the custom proc (here) when we serialize the paints, and then do respect it when // we serialize the typefaces. static SkSerialProcs skip_typeface_proc(const SkSerialProcs& procs) { SkSerialProcs newProcs = procs; newProcs.fTypefaceProc = nullptr; newProcs.fTypefaceCtx = nullptr; return newProcs; } void SkPictureData::serialize(SkWStream* stream, const SkSerialProcs& procs, SkRefCntSet* topLevelTypeFaceSet) const { // This can happen at pretty much any time, so might as well do it first. write_tag_size(stream, SK_PICT_READER_TAG, fOpData->size()); stream->write(fOpData->bytes(), fOpData->size()); // We serialize all typefaces into the typeface section of the top-level picture. SkRefCntSet localTypefaceSet; SkRefCntSet* typefaceSet = topLevelTypeFaceSet ? topLevelTypeFaceSet : &localTypefaceSet; // We delay serializing the bulk of our data until after we've serialized // factories and typefaces by first serializing to an in-memory write buffer. SkFactorySet factSet; // buffer refs factSet, so factSet must come first. SkBinaryWriteBuffer buffer; buffer.setFactoryRecorder(sk_ref_sp(&factSet)); buffer.setSerialProcs(skip_typeface_proc(procs)); buffer.setTypefaceRecorder(sk_ref_sp(typefaceSet)); this->flattenToBuffer(buffer); // Dummy serialize our sub-pictures for the side effect of filling // typefaceSet with typefaces from sub-pictures. struct DevNull: public SkWStream { DevNull() : fBytesWritten(0) {} size_t fBytesWritten; bool write(const void*, size_t size) override { fBytesWritten += size; return true; } size_t bytesWritten() const override { return fBytesWritten; } } devnull; for (const auto& pic : fPictures) { pic->serialize(&devnull, nullptr, typefaceSet); } // We need to write factories before we write the buffer. // We need to write typefaces before we write the buffer or any sub-picture. WriteFactories(stream, factSet); if (typefaceSet == &localTypefaceSet) { // Pass the original typefaceproc (if any) now that we're ready to actually serialize the // typefaces. We skipped this proc before, when we were serializing paints, so that the // paints would just write indices into our typeface set. WriteTypefaces(stream, *typefaceSet, procs); } // Write the buffer. write_tag_size(stream, SK_PICT_BUFFER_SIZE_TAG, buffer.bytesWritten()); buffer.writeToStream(stream); // Write sub-pictures by calling serialize again. if (!fPictures.empty()) { write_tag_size(stream, SK_PICT_PICTURE_TAG, fPictures.count()); for (const auto& pic : fPictures) { pic->serialize(stream, &procs, typefaceSet); } } stream->write32(SK_PICT_EOF_TAG); } void SkPictureData::flatten(SkWriteBuffer& buffer) const { write_tag_size(buffer, SK_PICT_READER_TAG, fOpData->size()); buffer.writeByteArray(fOpData->bytes(), fOpData->size()); if (!fPictures.empty()) { write_tag_size(buffer, SK_PICT_PICTURE_TAG, fPictures.count()); for (const auto& pic : fPictures) { SkPicturePriv::Flatten(pic, buffer); } } if (!fDrawables.empty()) { write_tag_size(buffer, SK_PICT_DRAWABLE_TAG, fDrawables.count()); for (const auto& draw : fDrawables) { buffer.writeFlattenable(draw.get()); } } // Write this picture playback's data into a writebuffer this->flattenToBuffer(buffer); buffer.write32(SK_PICT_EOF_TAG); } /////////////////////////////////////////////////////////////////////////////// bool SkPictureData::parseStreamTag(SkStream* stream, uint32_t tag, uint32_t size, const SkDeserialProcs& procs, SkTypefacePlayback* topLevelTFPlayback) { switch (tag) { case SK_PICT_READER_TAG: SkASSERT(nullptr == fOpData); fOpData = SkData::MakeFromStream(stream, size); if (!fOpData) { return false; } break; case SK_PICT_FACTORY_TAG: { if (!stream->readU32(&size)) { return false; } fFactoryPlayback = skstd::make_unique(size); for (size_t i = 0; i < size; i++) { SkString str; size_t len; if (!stream->readPackedUInt(&len)) { return false; } str.resize(len); if (stream->read(str.writable_str(), len) != len) { return false; } fFactoryPlayback->base()[i] = SkFlattenable::NameToFactory(str.c_str()); } } break; case SK_PICT_TYPEFACE_TAG: { fTFPlayback.setCount(size); for (uint32_t i = 0; i < size; ++i) { sk_sp tf(SkTypeface::MakeDeserialize(stream)); if (!tf.get()) { // failed to deserialize // fTFPlayback asserts it never has a null, so we plop in // the default here. tf = SkTypeface::MakeDefault(); } fTFPlayback[i] = std::move(tf); } } break; case SK_PICT_PICTURE_TAG: { SkASSERT(fPictures.empty()); fPictures.reserve(SkToInt(size)); for (uint32_t i = 0; i < size; i++) { auto pic = SkPicture::MakeFromStream(stream, &procs, topLevelTFPlayback); if (!pic) { return false; } fPictures.push_back(std::move(pic)); } } break; case SK_PICT_BUFFER_SIZE_TAG: { SkAutoMalloc storage(size); if (stream->read(storage.get(), size) != size) { return false; } SkReadBuffer buffer(storage.get(), size); buffer.setVersion(fInfo.getVersion()); if (!fFactoryPlayback) { return false; } fFactoryPlayback->setupBuffer(buffer); buffer.setDeserialProcs(procs); if (fTFPlayback.count() > 0) { // .skp files <= v43 have typefaces serialized with each sub picture. fTFPlayback.setupBuffer(buffer); } else { // Newer .skp files serialize all typefaces with the top picture. topLevelTFPlayback->setupBuffer(buffer); } while (!buffer.eof() && buffer.isValid()) { tag = buffer.readUInt(); size = buffer.readUInt(); this->parseBufferTag(buffer, tag, size); } if (!buffer.isValid()) { return false; } } break; } return true; // success } static sk_sp create_image_from_buffer(SkReadBuffer& buffer) { return buffer.readImage(); } static sk_sp create_vertices_from_buffer(SkReadBuffer& buffer) { auto data = buffer.readByteArrayAsData(); return data ? SkVertices::Decode(data->data(), data->size()) : nullptr; } static sk_sp create_drawable_from_buffer(SkReadBuffer& buffer) { return sk_sp((SkDrawable*)buffer.readFlattenable(SkFlattenable::kSkDrawable_Type)); } // We need two types 'cause SkDrawable is const-variant. template bool new_array_from_buffer(SkReadBuffer& buffer, uint32_t inCount, SkTArray>& array, sk_sp (*factory)(SkReadBuffer&)) { if (!buffer.validate(array.empty() && SkTFitsIn(inCount))) { return false; } if (0 == inCount) { return true; } for (uint32_t i = 0; i < inCount; ++i) { auto obj = factory(buffer); if (!buffer.validate(obj != nullptr)) { array.reset(); return false; } array.push_back(std::move(obj)); } return true; } void SkPictureData::parseBufferTag(SkReadBuffer& buffer, uint32_t tag, uint32_t size) { switch (tag) { case SK_PICT_PAINT_BUFFER_TAG: { if (!buffer.validate(SkTFitsIn(size))) { return; } const int count = SkToInt(size); for (int i = 0; i < count; ++i) { // Do we need to keep an array of fFonts for legacy draws? if (!buffer.readPaint(&fPaints.push_back(), nullptr)) { return; } } } break; case SK_PICT_PATH_BUFFER_TAG: if (size > 0) { const int count = buffer.readInt(); if (!buffer.validate(count >= 0)) { return; } for (int i = 0; i < count; i++) { buffer.readPath(&fPaths.push_back()); if (!buffer.isValid()) { return; } } } break; case SK_PICT_TEXTBLOB_BUFFER_TAG: new_array_from_buffer(buffer, size, fTextBlobs, SkTextBlobPriv::MakeFromBuffer); break; case SK_PICT_VERTICES_BUFFER_TAG: new_array_from_buffer(buffer, size, fVertices, create_vertices_from_buffer); break; case SK_PICT_IMAGE_BUFFER_TAG: new_array_from_buffer(buffer, size, fImages, create_image_from_buffer); break; case SK_PICT_READER_TAG: { // Preflight check that we can initialize all data from the buffer // before allocating it. if (!buffer.validateCanReadN(size)) { return; } auto data(SkData::MakeUninitialized(size)); if (!buffer.readByteArray(data->writable_data(), size) || !buffer.validate(nullptr == fOpData)) { return; } SkASSERT(nullptr == fOpData); fOpData = std::move(data); } break; case SK_PICT_PICTURE_TAG: new_array_from_buffer(buffer, size, fPictures, SkPicturePriv::MakeFromBuffer); break; case SK_PICT_DRAWABLE_TAG: new_array_from_buffer(buffer, size, fDrawables, create_drawable_from_buffer); break; default: buffer.validate(false); // The tag was invalid. break; } } SkPictureData* SkPictureData::CreateFromStream(SkStream* stream, const SkPictInfo& info, const SkDeserialProcs& procs, SkTypefacePlayback* topLevelTFPlayback) { std::unique_ptr data(new SkPictureData(info)); if (!topLevelTFPlayback) { topLevelTFPlayback = &data->fTFPlayback; } if (!data->parseStream(stream, procs, topLevelTFPlayback)) { return nullptr; } return data.release(); } SkPictureData* SkPictureData::CreateFromBuffer(SkReadBuffer& buffer, const SkPictInfo& info) { std::unique_ptr data(new SkPictureData(info)); buffer.setVersion(info.getVersion()); if (!data->parseBuffer(buffer)) { return nullptr; } return data.release(); } bool SkPictureData::parseStream(SkStream* stream, const SkDeserialProcs& procs, SkTypefacePlayback* topLevelTFPlayback) { for (;;) { uint32_t tag; if (!stream->readU32(&tag)) { return false; } if (SK_PICT_EOF_TAG == tag) { break; } uint32_t size; if (!stream->readU32(&size)) { return false; } if (!this->parseStreamTag(stream, tag, size, procs, topLevelTFPlayback)) { return false; // we're invalid } } return true; } bool SkPictureData::parseBuffer(SkReadBuffer& buffer) { while (buffer.isValid()) { uint32_t tag = buffer.readUInt(); if (SK_PICT_EOF_TAG == tag) { break; } this->parseBufferTag(buffer, tag, buffer.readUInt()); } // Check that we encountered required tags if (!buffer.validate(this->opData() != nullptr)) { // If we didn't build any opData, we are invalid. Even an EmptyPicture allocates the // SkData for the ops (though its length may be zero). return false; } return true; }