/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrGrCCFillGeometry_DEFINED #define GrGrCCFillGeometry_DEFINED #include "SkGeometry.h" #include "SkNx.h" #include "SkPoint.h" #include "SkTArray.h" /** * This class chops device-space contours up into a series of segments that CCPR knows how to * fill. (See GrCCFillGeometry::Verb.) * * NOTE: This must be done in device space, since an affine transformation can change whether a * curve is monotonic. */ class GrCCFillGeometry { public: // These are the verbs that CCPR knows how to fill. If a path has any segments that don't map to // this list, then they are chopped into smaller ones that do. A list of these comprise a // compact representation of what can later be expanded into GPU instance data. enum class Verb : uint8_t { kBeginPath, // Included only for caller convenience. kBeginContour, kLineTo, kMonotonicQuadraticTo, // Monotonic relative to the vector between its endpoints [P2 - P0]. kMonotonicCubicTo, kMonotonicConicTo, kEndClosedContour, // endPt == startPt. kEndOpenContour // endPt != startPt. }; // These tallies track numbers of CCPR primitives that are required to draw a contour. struct PrimitiveTallies { int fTriangles; // Number of triangles in the contour's fan. int fWeightedTriangles; // Triangles (from the tessellator) whose winding magnitude > 1. int fQuadratics; int fCubics; int fConics; void operator+=(const PrimitiveTallies&); PrimitiveTallies operator-(const PrimitiveTallies&) const; bool operator==(const PrimitiveTallies&); }; GrCCFillGeometry(int numSkPoints = 0, int numSkVerbs = 0, int numConicWeights = 0) : fPoints(numSkPoints * 3) // Reserve for a 3x expansion in points and verbs. , fVerbs(numSkVerbs * 3) , fConicWeights(numConicWeights * 3/2) {} const SkTArray& points() const { SkASSERT(!fBuildingContour); return fPoints; } const SkTArray& verbs() const { SkASSERT(!fBuildingContour); return fVerbs; } float getConicWeight(int idx) const { SkASSERT(!fBuildingContour); return fConicWeights[idx]; } void reset() { SkASSERT(!fBuildingContour); fPoints.reset(); fVerbs.reset(); } void beginPath(); void beginContour(const SkPoint&); void lineTo(const SkPoint P[2]); void quadraticTo(const SkPoint[3]); // We pass through inflection points and loop intersections using a line and quadratic(s) // respectively. 'inflectPad' and 'loopIntersectPad' specify how close (in pixels) cubic // segments are allowed to get to these points. For normal rendering you will want to use the // default values, but these can be overridden for testing purposes. // // NOTE: loops do appear to require two full pixels of padding around the intersection point. // With just one pixel-width of pad, we start to see bad pixels. Ultimately this has a // minimal effect on the total amount of segments produced. Most sections that pass // through the loop intersection can be approximated with a single quadratic anyway, // regardless of whether we are use one pixel of pad or two (1.622 avg. quads per loop // intersection vs. 1.489 on the tiger). void cubicTo(const SkPoint[4], float inflectPad = 0.55f, float loopIntersectPad = 2); void conicTo(const SkPoint[3], float w); PrimitiveTallies endContour(); // Returns the numbers of primitives needed to draw the contour. private: inline void appendLine(const Sk2f& p0, const Sk2f& p1); inline void appendQuadratics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2); inline void appendMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2); enum class AppendCubicMode : bool { kLiteral, kApproximate }; void appendCubics(AppendCubicMode, const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3, const float chops[], int numChops, float localT0 = 0, float localT1 = 1); void appendCubics(AppendCubicMode, const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3, int maxSubdivisions = 2); void chopAndAppendCubicAtMidTangent(AppendCubicMode, const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3, const Sk2f& tan0, const Sk2f& tan1, int maxFutureSubdivisions); void appendMonotonicConic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, float w); // Transient state used while building a contour. SkPoint fCurrAnchorPoint; PrimitiveTallies fCurrContourTallies; SkCubicType fCurrCubicType; SkDEBUGCODE(bool fBuildingContour = false); SkSTArray<128, SkPoint, true> fPoints; SkSTArray<128, Verb, true> fVerbs; SkSTArray<32, float, true> fConicWeights; }; inline void GrCCFillGeometry::PrimitiveTallies::operator+=(const PrimitiveTallies& b) { fTriangles += b.fTriangles; fWeightedTriangles += b.fWeightedTriangles; fQuadratics += b.fQuadratics; fCubics += b.fCubics; fConics += b.fConics; } GrCCFillGeometry::PrimitiveTallies inline GrCCFillGeometry::PrimitiveTallies::operator-(const PrimitiveTallies& b) const { return {fTriangles - b.fTriangles, fWeightedTriangles - b.fWeightedTriangles, fQuadratics - b.fQuadratics, fCubics - b.fCubics, fConics - b.fConics}; } inline bool GrCCFillGeometry::PrimitiveTallies::operator==(const PrimitiveTallies& b) { return fTriangles == b.fTriangles && fWeightedTriangles == b.fWeightedTriangles && fQuadratics == b.fQuadratics && fCubics == b.fCubics && fConics == b.fConics; } #endif