/* * Copyright 2018 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /************************************************************************************************** *** This file was autogenerated from GrConfigConversionEffect.fp; do not modify. **************************************************************************************************/ #ifndef GrConfigConversionEffect_DEFINED #define GrConfigConversionEffect_DEFINED #include "SkTypes.h" #include "GrClip.h" #include "GrContext.h" #include "GrContextPriv.h" #include "GrProxyProvider.h" #include "GrRenderTargetContext.h" #include "GrFragmentProcessor.h" #include "GrCoordTransform.h" class GrConfigConversionEffect : public GrFragmentProcessor { public: static bool TestForPreservingPMConversions(GrContext* context) { static constexpr int kSize = 256; static constexpr GrPixelConfig kConfig = kRGBA_8888_GrPixelConfig; static constexpr SkColorType kColorType = kRGBA_8888_SkColorType; const GrBackendFormat format = context->contextPriv().caps()->getBackendFormatFromColorType(kColorType); SkAutoTMalloc data(kSize * kSize * 3); uint32_t* srcData = data.get(); uint32_t* firstRead = data.get() + kSize * kSize; uint32_t* secondRead = data.get() + 2 * kSize * kSize; // Fill with every possible premultiplied A, color channel value. There will be 256-y // duplicate values in row y. We set r, g, and b to the same value since they are handled // identically. for (int y = 0; y < kSize; ++y) { for (int x = 0; x < kSize; ++x) { uint8_t* color = reinterpret_cast(&srcData[kSize * y + x]); color[3] = y; color[2] = SkTMin(x, y); color[1] = SkTMin(x, y); color[0] = SkTMin(x, y); } } memset(firstRead, 0, kSize * kSize * sizeof(uint32_t)); memset(secondRead, 0, kSize * kSize * sizeof(uint32_t)); const SkImageInfo ii = SkImageInfo::Make(kSize, kSize, kRGBA_8888_SkColorType, kPremul_SkAlphaType); sk_sp readRTC(context->contextPriv().makeDeferredRenderTargetContext( format, SkBackingFit::kExact, kSize, kSize, kConfig, nullptr)); sk_sp tempRTC(context->contextPriv().makeDeferredRenderTargetContext( format, SkBackingFit::kExact, kSize, kSize, kConfig, nullptr)); if (!readRTC || !readRTC->asTextureProxy() || !tempRTC) { return false; } // Adding discard to appease vulkan validation warning about loading uninitialized data on // draw readRTC->discard(); GrProxyProvider* proxyProvider = context->contextPriv().proxyProvider(); SkPixmap pixmap(ii, srcData, 4 * kSize); // This function is only ever called if we are in a GrContext that has a GrGpu since we are // calling read pixels here. Thus the pixel data will be uploaded immediately and we don't // need to keep the pixel data alive in the proxy. Therefore the ReleaseProc is nullptr. sk_sp image = SkImage::MakeFromRaster(pixmap, nullptr, nullptr); sk_sp dataProxy = proxyProvider->createTextureProxy( std::move(image), kNone_GrSurfaceFlags, 1, SkBudgeted::kYes, SkBackingFit::kExact); if (!dataProxy) { return false; } static const SkRect kRect = SkRect::MakeIWH(kSize, kSize); // We do a PM->UPM draw from dataTex to readTex and read the data. Then we do a UPM->PM draw // from readTex to tempTex followed by a PM->UPM draw to readTex and finally read the data. // We then verify that two reads produced the same values. GrPaint paint1; GrPaint paint2; GrPaint paint3; std::unique_ptr pmToUPM( new GrConfigConversionEffect(PMConversion::kToUnpremul)); std::unique_ptr upmToPM( new GrConfigConversionEffect(PMConversion::kToPremul)); paint1.addColorTextureProcessor(dataProxy, SkMatrix::I()); paint1.addColorFragmentProcessor(pmToUPM->clone()); paint1.setPorterDuffXPFactory(SkBlendMode::kSrc); readRTC->fillRectToRect(GrNoClip(), std::move(paint1), GrAA::kNo, SkMatrix::I(), kRect, kRect); if (!readRTC->readPixels(ii, firstRead, 0, 0, 0)) { return false; } // Adding discard to appease vulkan validation warning about loading uninitialized data on // draw tempRTC->discard(); paint2.addColorTextureProcessor(readRTC->asTextureProxyRef(), SkMatrix::I()); paint2.addColorFragmentProcessor(std::move(upmToPM)); paint2.setPorterDuffXPFactory(SkBlendMode::kSrc); tempRTC->fillRectToRect(GrNoClip(), std::move(paint2), GrAA::kNo, SkMatrix::I(), kRect, kRect); paint3.addColorTextureProcessor(tempRTC->asTextureProxyRef(), SkMatrix::I()); paint3.addColorFragmentProcessor(std::move(pmToUPM)); paint3.setPorterDuffXPFactory(SkBlendMode::kSrc); readRTC->fillRectToRect(GrNoClip(), std::move(paint3), GrAA::kNo, SkMatrix::I(), kRect, kRect); if (!readRTC->readPixels(ii, secondRead, 0, 0, 0)) { return false; } for (int y = 0; y < kSize; ++y) { for (int x = 0; x <= y; ++x) { if (firstRead[kSize * y + x] != secondRead[kSize * y + x]) { return false; } } } return true; } const PMConversion& pmConversion() const { return fPmConversion; } static std::unique_ptr Make(std::unique_ptr fp, PMConversion pmConversion) { if (!fp) { return nullptr; } std::unique_ptr ccFP(new GrConfigConversionEffect(pmConversion)); std::unique_ptr fpPipeline[] = {std::move(fp), std::move(ccFP)}; return GrFragmentProcessor::RunInSeries(fpPipeline, 2); } GrConfigConversionEffect(const GrConfigConversionEffect& src); std::unique_ptr clone() const override; const char* name() const override { return "ConfigConversionEffect"; } private: GrConfigConversionEffect(PMConversion pmConversion) : INHERITED(kGrConfigConversionEffect_ClassID, kNone_OptimizationFlags) , fPmConversion(pmConversion) {} GrGLSLFragmentProcessor* onCreateGLSLInstance() const override; void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override; bool onIsEqual(const GrFragmentProcessor&) const override; GR_DECLARE_FRAGMENT_PROCESSOR_TEST PMConversion fPmConversion; typedef GrFragmentProcessor INHERITED; }; #endif