/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrVkCaps.h" #include "GrBackendSurface.h" #include "GrRenderTargetProxy.h" #include "GrRenderTarget.h" #include "GrShaderCaps.h" #include "GrVkInterface.h" #include "GrVkUtil.h" #include "SkGr.h" #include "vk/GrVkBackendContext.h" #include "vk/GrVkExtensions.h" GrVkCaps::GrVkCaps(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface, VkPhysicalDevice physDev, const VkPhysicalDeviceFeatures2& features, uint32_t instanceVersion, uint32_t physicalDeviceVersion, const GrVkExtensions& extensions) : INHERITED(contextOptions) { /************************************************************************** * GrCaps fields **************************************************************************/ fMipMapSupport = true; // always available in Vulkan fSRGBSupport = true; // always available in Vulkan fNPOTTextureTileSupport = true; // always available in Vulkan fDiscardRenderTargetSupport = true; fReuseScratchTextures = true; //TODO: figure this out fGpuTracingSupport = false; //TODO: figure this out fCompressedTexSubImageSupport = true; fOversizedStencilSupport = false; //TODO: figure this out fInstanceAttribSupport = true; fFenceSyncSupport = true; // always available in Vulkan fCrossContextTextureSupport = true; fHalfFloatVertexAttributeSupport = true; fMapBufferFlags = kNone_MapFlags; //TODO: figure this out fBufferMapThreshold = SK_MaxS32; //TODO: figure this out fMaxRenderTargetSize = 4096; // minimum required by spec fMaxTextureSize = 4096; // minimum required by spec fDynamicStateArrayGeometryProcessorTextureSupport = true; fShaderCaps.reset(new GrShaderCaps(contextOptions)); this->init(contextOptions, vkInterface, physDev, features, physicalDeviceVersion, extensions); } bool GrVkCaps::initDescForDstCopy(const GrRenderTargetProxy* src, GrSurfaceDesc* desc, GrSurfaceOrigin* origin, bool* rectsMustMatch, bool* disallowSubrect) const { // Vk doesn't use rectsMustMatch or disallowSubrect. Always return false. *rectsMustMatch = false; *disallowSubrect = false; // We can always succeed here with either a CopyImage (none msaa src) or ResolveImage (msaa). // For CopyImage we can make a simple texture, for ResolveImage we require the dst to be a // render target as well. *origin = src->origin(); desc->fConfig = src->config(); if (src->numColorSamples() > 1 || src->asTextureProxy()) { desc->fFlags = kRenderTarget_GrSurfaceFlag; } else { // Just going to use CopyImage here desc->fFlags = kNone_GrSurfaceFlags; } return true; } bool GrVkCaps::canCopyImage(GrPixelConfig dstConfig, int dstSampleCnt, GrSurfaceOrigin dstOrigin, GrPixelConfig srcConfig, int srcSampleCnt, GrSurfaceOrigin srcOrigin) const { if ((dstSampleCnt > 1 || srcSampleCnt > 1) && dstSampleCnt != srcSampleCnt) { return false; } // We require that all vulkan GrSurfaces have been created with transfer_dst and transfer_src // as image usage flags. if (srcOrigin != dstOrigin || GrBytesPerPixel(srcConfig) != GrBytesPerPixel(dstConfig)) { return false; } if (this->shaderCaps()->configOutputSwizzle(srcConfig) != this->shaderCaps()->configOutputSwizzle(dstConfig)) { return false; } return true; } bool GrVkCaps::canCopyAsBlit(GrPixelConfig dstConfig, int dstSampleCnt, bool dstIsLinear, GrPixelConfig srcConfig, int srcSampleCnt, bool srcIsLinear) const { // We require that all vulkan GrSurfaces have been created with transfer_dst and transfer_src // as image usage flags. if (!this->configCanBeDstofBlit(dstConfig, dstIsLinear) || !this->configCanBeSrcofBlit(srcConfig, srcIsLinear)) { return false; } if (this->shaderCaps()->configOutputSwizzle(srcConfig) != this->shaderCaps()->configOutputSwizzle(dstConfig)) { return false; } // We cannot blit images that are multisampled. Will need to figure out if we can blit the // resolved msaa though. if (dstSampleCnt > 1 || srcSampleCnt > 1) { return false; } return true; } bool GrVkCaps::canCopyAsResolve(GrPixelConfig dstConfig, int dstSampleCnt, GrSurfaceOrigin dstOrigin, GrPixelConfig srcConfig, int srcSampleCnt, GrSurfaceOrigin srcOrigin) const { // The src surface must be multisampled. if (srcSampleCnt <= 1) { return false; } // The dst must not be multisampled. if (dstSampleCnt > 1) { return false; } // Surfaces must have the same format. if (dstConfig != srcConfig) { return false; } // Surfaces must have the same origin. if (srcOrigin != dstOrigin) { return false; } return true; } bool GrVkCaps::canCopyAsDraw(GrPixelConfig dstConfig, bool dstIsRenderable, GrPixelConfig srcConfig, bool srcIsTextureable) const { // TODO: Make copySurfaceAsDraw handle the swizzle if (this->shaderCaps()->configOutputSwizzle(srcConfig) != this->shaderCaps()->configOutputSwizzle(dstConfig)) { return false; } // Make sure the dst is a render target and the src is a texture. if (!dstIsRenderable || !srcIsTextureable) { return false; } return true; } bool GrVkCaps::onCanCopySurface(const GrSurfaceProxy* dst, const GrSurfaceProxy* src, const SkIRect& srcRect, const SkIPoint& dstPoint) const { GrSurfaceOrigin dstOrigin = dst->origin(); GrSurfaceOrigin srcOrigin = src->origin(); GrPixelConfig dstConfig = dst->config(); GrPixelConfig srcConfig = src->config(); // TODO: Figure out a way to track if we've wrapped a linear texture in a proxy (e.g. // PromiseImage which won't get instantiated right away. Does this need a similar thing like the // tracking of external or rectangle textures in GL? For now we don't create linear textures // internally, and I don't believe anyone is wrapping them. bool srcIsLinear = false; bool dstIsLinear = false; int dstSampleCnt = 0; int srcSampleCnt = 0; if (const GrRenderTargetProxy* rtProxy = dst->asRenderTargetProxy()) { // Copying to or from render targets that wrap a secondary command buffer is not allowed // since they would require us to know the VkImage, which we don't have, as well as need us // to stop and start the VkRenderPass which we don't have access to. if (rtProxy->wrapsVkSecondaryCB()) { return false; } dstSampleCnt = rtProxy->numColorSamples(); } if (const GrRenderTargetProxy* rtProxy = src->asRenderTargetProxy()) { // Copying to or from render targets that wrap a secondary command buffer is not allowed // since they would require us to know the VkImage, which we don't have, as well as need us // to stop and start the VkRenderPass which we don't have access to. if (rtProxy->wrapsVkSecondaryCB()) { return false; } srcSampleCnt = rtProxy->numColorSamples(); } SkASSERT((dstSampleCnt > 0) == SkToBool(dst->asRenderTargetProxy())); SkASSERT((srcSampleCnt > 0) == SkToBool(src->asRenderTargetProxy())); return this->canCopyImage(dstConfig, dstSampleCnt, dstOrigin, srcConfig, srcSampleCnt, srcOrigin) || this->canCopyAsBlit(dstConfig, dstSampleCnt, dstIsLinear, srcConfig, srcSampleCnt, srcIsLinear) || this->canCopyAsResolve(dstConfig, dstSampleCnt, dstOrigin, srcConfig, srcSampleCnt, srcOrigin) || this->canCopyAsDraw(dstConfig, dstSampleCnt > 0, srcConfig, SkToBool(src->asTextureProxy())); } template T* get_extension_feature_struct(const VkPhysicalDeviceFeatures2& features, VkStructureType type) { // All Vulkan structs that could be part of the features chain will start with the // structure type followed by the pNext pointer. We cast to the CommonVulkanHeader // so we can get access to the pNext for the next struct. struct CommonVulkanHeader { VkStructureType sType; void* pNext; }; void* pNext = features.pNext; while (pNext) { CommonVulkanHeader* header = static_cast(pNext); if (header->sType == type) { return static_cast(pNext); } pNext = header->pNext; } return nullptr; } void GrVkCaps::init(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface, VkPhysicalDevice physDev, const VkPhysicalDeviceFeatures2& features, uint32_t physicalDeviceVersion, const GrVkExtensions& extensions) { VkPhysicalDeviceProperties properties; GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties(physDev, &properties)); VkPhysicalDeviceMemoryProperties memoryProperties; GR_VK_CALL(vkInterface, GetPhysicalDeviceMemoryProperties(physDev, &memoryProperties)); SkASSERT(physicalDeviceVersion <= properties.apiVersion); if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || extensions.hasExtension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 1)) { fSupportsPhysicalDeviceProperties2 = true; } if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || extensions.hasExtension(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME, 1)) { fSupportsMemoryRequirements2 = true; } if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || extensions.hasExtension(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME, 1)) { fSupportsBindMemory2 = true; } if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || extensions.hasExtension(VK_KHR_MAINTENANCE1_EXTENSION_NAME, 1)) { fSupportsMaintenance1 = true; } if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || extensions.hasExtension(VK_KHR_MAINTENANCE2_EXTENSION_NAME, 1)) { fSupportsMaintenance2 = true; } if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || extensions.hasExtension(VK_KHR_MAINTENANCE3_EXTENSION_NAME, 1)) { fSupportsMaintenance3 = true; } if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || (extensions.hasExtension(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME, 1) && this->supportsMemoryRequirements2())) { fSupportsDedicatedAllocation = true; } if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || (extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME, 1) && this->supportsPhysicalDeviceProperties2() && extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME, 1) && this->supportsDedicatedAllocation())) { fSupportsExternalMemory = true; } #ifdef SK_BUILD_FOR_ANDROID // Currently Adreno devices are not supporting the QUEUE_FAMILY_FOREIGN_EXTENSION, so until they // do we don't explicitly require it here even the spec says it is required. if (extensions.hasExtension( VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME, 2) && /* extensions.hasExtension(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME, 1) &&*/ this->supportsExternalMemory() && this->supportsBindMemory2()) { fSupportsAndroidHWBExternalMemory = true; fSupportsAHardwareBufferImages = true; } #endif auto ycbcrFeatures = get_extension_feature_struct( features, VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES); if (ycbcrFeatures && ycbcrFeatures->samplerYcbcrConversion && fSupportsAndroidHWBExternalMemory && (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || (extensions.hasExtension(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME, 1) && this->supportsMaintenance1() && this->supportsBindMemory2() && this->supportsMemoryRequirements2() && this->supportsPhysicalDeviceProperties2()))) { fSupportsYcbcrConversion = true; } // We always push back the default GrVkYcbcrConversionInfo so that the case of no conversion // will return a key of 0. fYcbcrInfos.push_back(GrVkYcbcrConversionInfo()); this->initGrCaps(vkInterface, physDev, properties, memoryProperties, features, extensions); this->initShaderCaps(properties, features); if (!contextOptions.fDisableDriverCorrectnessWorkarounds) { #if defined(SK_CPU_X86) // We need to do this before initing the config table since it uses fSRGBSupport if (kImagination_VkVendor == properties.vendorID) { fSRGBSupport = false; } #endif } if (kQualcomm_VkVendor == properties.vendorID) { // A "clear" load for the CCPR atlas runs faster on QC than a "discard" load followed by a // scissored clear. // On NVIDIA and Intel, the discard load followed by clear is faster. // TODO: Evaluate on ARM, Imagination, and ATI. fPreferFullscreenClears = true; } this->initConfigTable(vkInterface, physDev, properties); this->initStencilFormat(vkInterface, physDev); if (!contextOptions.fDisableDriverCorrectnessWorkarounds) { this->applyDriverCorrectnessWorkarounds(properties); } // On nexus player we disable suballocating VkImage memory since we've seen large slow downs on // bot run times. if (kImagination_VkVendor == properties.vendorID) { fShouldAlwaysUseDedicatedImageMemory = true; } this->applyOptionsOverrides(contextOptions); fShaderCaps->applyOptionsOverrides(contextOptions); } void GrVkCaps::applyDriverCorrectnessWorkarounds(const VkPhysicalDeviceProperties& properties) { if (kQualcomm_VkVendor == properties.vendorID) { fMustDoCopiesFromOrigin = true; } #if defined(SK_BUILD_FOR_WIN) if (kNvidia_VkVendor == properties.vendorID || kIntel_VkVendor == properties.vendorID) { fMustSleepOnTearDown = true; } #elif defined(SK_BUILD_FOR_ANDROID) if (kImagination_VkVendor == properties.vendorID) { fMustSleepOnTearDown = true; } #endif // AMD seems to have issues binding new VkPipelines inside a secondary command buffer. // Current workaround is to use a different secondary command buffer for each new VkPipeline. if (kAMD_VkVendor == properties.vendorID) { fNewCBOnPipelineChange = true; } // On Mali galaxy s7 we see lots of rendering issues when we suballocate VkImages. if (kARM_VkVendor == properties.vendorID) { fShouldAlwaysUseDedicatedImageMemory = true; } //////////////////////////////////////////////////////////////////////////// // GrCaps workarounds //////////////////////////////////////////////////////////////////////////// if (kARM_VkVendor == properties.vendorID) { fInstanceAttribSupport = false; fAvoidWritePixelsFastPath = true; // bugs.skia.org/8064 } // AMD advertises support for MAX_UINT vertex input attributes, but in reality only supports 32. if (kAMD_VkVendor == properties.vendorID) { fMaxVertexAttributes = SkTMin(fMaxVertexAttributes, 32); } //////////////////////////////////////////////////////////////////////////// // GrShaderCaps workarounds //////////////////////////////////////////////////////////////////////////// if (kImagination_VkVendor == properties.vendorID) { fShaderCaps->fAtan2ImplementedAsAtanYOverX = true; } } int get_max_sample_count(VkSampleCountFlags flags) { SkASSERT(flags & VK_SAMPLE_COUNT_1_BIT); if (!(flags & VK_SAMPLE_COUNT_2_BIT)) { return 0; } if (!(flags & VK_SAMPLE_COUNT_4_BIT)) { return 2; } if (!(flags & VK_SAMPLE_COUNT_8_BIT)) { return 4; } if (!(flags & VK_SAMPLE_COUNT_16_BIT)) { return 8; } if (!(flags & VK_SAMPLE_COUNT_32_BIT)) { return 16; } if (!(flags & VK_SAMPLE_COUNT_64_BIT)) { return 32; } return 64; } void GrVkCaps::initGrCaps(const GrVkInterface* vkInterface, VkPhysicalDevice physDev, const VkPhysicalDeviceProperties& properties, const VkPhysicalDeviceMemoryProperties& memoryProperties, const VkPhysicalDeviceFeatures2& features, const GrVkExtensions& extensions) { // So GPUs, like AMD, are reporting MAX_INT support vertex attributes. In general, there is no // need for us ever to support that amount, and it makes tests which tests all the vertex // attribs timeout looping over that many. For now, we'll cap this at 64 max and can raise it if // we ever find that need. static const uint32_t kMaxVertexAttributes = 64; fMaxVertexAttributes = SkTMin(properties.limits.maxVertexInputAttributes, kMaxVertexAttributes); // We could actually query and get a max size for each config, however maxImageDimension2D will // give the minimum max size across all configs. So for simplicity we will use that for now. fMaxRenderTargetSize = SkTMin(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX); fMaxTextureSize = SkTMin(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX); if (fDriverBugWorkarounds.max_texture_size_limit_4096) { fMaxTextureSize = SkTMin(fMaxTextureSize, 4096); } // Our render targets are always created with textures as the color // attachment, hence this min: fMaxRenderTargetSize = SkTMin(fMaxTextureSize, fMaxRenderTargetSize); // TODO: check if RT's larger than 4k incur a performance cost on ARM. fMaxPreferredRenderTargetSize = fMaxRenderTargetSize; // Assuming since we will always map in the end to upload the data we might as well just map // from the get go. There is no hard data to suggest this is faster or slower. fBufferMapThreshold = 0; fMapBufferFlags = kCanMap_MapFlag | kSubset_MapFlag; fOversizedStencilSupport = true; if (extensions.hasExtension(VK_EXT_BLEND_OPERATION_ADVANCED_EXTENSION_NAME, 2) && this->supportsPhysicalDeviceProperties2()) { VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT blendProps; blendProps.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_PROPERTIES_EXT; blendProps.pNext = nullptr; VkPhysicalDeviceProperties2 props; props.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2; props.pNext = &blendProps; GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties2(physDev, &props)); if (blendProps.advancedBlendAllOperations == VK_TRUE) { fShaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kAutomatic_AdvBlendEqInteraction; auto blendFeatures = get_extension_feature_struct( features, VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_FEATURES_EXT); if (blendFeatures && blendFeatures->advancedBlendCoherentOperations == VK_TRUE) { fBlendEquationSupport = kAdvancedCoherent_BlendEquationSupport; } else { // TODO: Currently non coherent blends are not supported in our vulkan backend. They // require us to support self dependencies in our render passes. // fBlendEquationSupport = kAdvanced_BlendEquationSupport; } } } } void GrVkCaps::initShaderCaps(const VkPhysicalDeviceProperties& properties, const VkPhysicalDeviceFeatures2& features) { GrShaderCaps* shaderCaps = fShaderCaps.get(); shaderCaps->fVersionDeclString = "#version 330\n"; // fConfigOutputSwizzle will default to RGBA so we only need to set it for alpha only config. for (int i = 0; i < kGrPixelConfigCnt; ++i) { GrPixelConfig config = static_cast(i); // Vulkan doesn't support a single channel format stored in alpha. if (GrPixelConfigIsAlphaOnly(config) && kAlpha_8_as_Alpha_GrPixelConfig != config) { shaderCaps->fConfigTextureSwizzle[i] = GrSwizzle::RRRR(); shaderCaps->fConfigOutputSwizzle[i] = GrSwizzle::AAAA(); } else { if (kGray_8_GrPixelConfig == config || kGray_8_as_Red_GrPixelConfig == config) { shaderCaps->fConfigTextureSwizzle[i] = GrSwizzle::RRRA(); } else if (kRGBA_4444_GrPixelConfig == config) { // The vulkan spec does not require R4G4B4A4 to be supported for texturing so we // store the data in a B4G4R4A4 texture and then swizzle it when doing texture reads // or writing to outputs. Since we're not actually changing the data at all, the // only extra work is the swizzle in the shader for all operations. shaderCaps->fConfigTextureSwizzle[i] = GrSwizzle::BGRA(); shaderCaps->fConfigOutputSwizzle[i] = GrSwizzle::BGRA(); } else { shaderCaps->fConfigTextureSwizzle[i] = GrSwizzle::RGBA(); } } } // Vulkan is based off ES 3.0 so the following should all be supported shaderCaps->fUsesPrecisionModifiers = true; shaderCaps->fFlatInterpolationSupport = true; // Flat interpolation appears to be slow on Qualcomm GPUs. This was tested in GL and is assumed // to be true with Vulkan as well. shaderCaps->fPreferFlatInterpolation = kQualcomm_VkVendor != properties.vendorID; // GrShaderCaps shaderCaps->fShaderDerivativeSupport = true; // FIXME: http://skbug.com/7733: Disable geometry shaders until Intel/Radeon GMs draw correctly. // shaderCaps->fGeometryShaderSupport = // shaderCaps->fGSInvocationsSupport = features.features.geometryShader; shaderCaps->fDualSourceBlendingSupport = features.features.dualSrcBlend; shaderCaps->fIntegerSupport = true; shaderCaps->fVertexIDSupport = true; shaderCaps->fFPManipulationSupport = true; // Assume the minimum precisions mandated by the SPIR-V spec. shaderCaps->fFloatIs32Bits = true; shaderCaps->fHalfIs32Bits = false; // SPIR-V supports unsigned integers. shaderCaps->fUnsignedSupport = true; shaderCaps->fMaxFragmentSamplers = SkTMin( SkTMin(properties.limits.maxPerStageDescriptorSampledImages, properties.limits.maxPerStageDescriptorSamplers), (uint32_t)INT_MAX); } bool stencil_format_supported(const GrVkInterface* interface, VkPhysicalDevice physDev, VkFormat format) { VkFormatProperties props; memset(&props, 0, sizeof(VkFormatProperties)); GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props)); return SkToBool(VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT & props.optimalTilingFeatures); } void GrVkCaps::initStencilFormat(const GrVkInterface* interface, VkPhysicalDevice physDev) { // List of legal stencil formats (though perhaps not supported on // the particular gpu/driver) from most preferred to least. We are guaranteed to have either // VK_FORMAT_D24_UNORM_S8_UINT or VK_FORMAT_D32_SFLOAT_S8_UINT. VK_FORMAT_D32_SFLOAT_S8_UINT // can optionally have 24 unused bits at the end so we assume the total bits is 64. static const StencilFormat // internal Format stencil bits total bits packed? gS8 = { VK_FORMAT_S8_UINT, 8, 8, false }, gD24S8 = { VK_FORMAT_D24_UNORM_S8_UINT, 8, 32, true }, gD32S8 = { VK_FORMAT_D32_SFLOAT_S8_UINT, 8, 64, true }; if (stencil_format_supported(interface, physDev, VK_FORMAT_S8_UINT)) { fPreferredStencilFormat = gS8; } else if (stencil_format_supported(interface, physDev, VK_FORMAT_D24_UNORM_S8_UINT)) { fPreferredStencilFormat = gD24S8; } else { SkASSERT(stencil_format_supported(interface, physDev, VK_FORMAT_D32_SFLOAT_S8_UINT)); fPreferredStencilFormat = gD32S8; } } void GrVkCaps::initConfigTable(const GrVkInterface* interface, VkPhysicalDevice physDev, const VkPhysicalDeviceProperties& properties) { for (int i = 0; i < kGrPixelConfigCnt; ++i) { VkFormat format; if (GrPixelConfigToVkFormat(static_cast(i), &format)) { if (!GrPixelConfigIsSRGB(static_cast(i)) || fSRGBSupport) { fConfigTable[i].init(interface, physDev, properties, format); } } } } void GrVkCaps::ConfigInfo::InitConfigFlags(VkFormatFeatureFlags vkFlags, uint16_t* flags) { if (SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT & vkFlags) && SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT & vkFlags)) { *flags = *flags | kTextureable_Flag; // Ganesh assumes that all renderable surfaces are also texturable if (SkToBool(VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT & vkFlags)) { *flags = *flags | kRenderable_Flag; } } if (SkToBool(VK_FORMAT_FEATURE_BLIT_SRC_BIT & vkFlags)) { *flags = *flags | kBlitSrc_Flag; } if (SkToBool(VK_FORMAT_FEATURE_BLIT_DST_BIT & vkFlags)) { *flags = *flags | kBlitDst_Flag; } } void GrVkCaps::ConfigInfo::initSampleCounts(const GrVkInterface* interface, VkPhysicalDevice physDev, const VkPhysicalDeviceProperties& physProps, VkFormat format) { VkImageUsageFlags usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; VkImageFormatProperties properties; GR_VK_CALL(interface, GetPhysicalDeviceImageFormatProperties(physDev, format, VK_IMAGE_TYPE_2D, VK_IMAGE_TILING_OPTIMAL, usage, 0, // createFlags &properties)); VkSampleCountFlags flags = properties.sampleCounts; if (flags & VK_SAMPLE_COUNT_1_BIT) { fColorSampleCounts.push_back(1); } if (kImagination_VkVendor == physProps.vendorID) { // MSAA does not work on imagination return; } if (flags & VK_SAMPLE_COUNT_2_BIT) { fColorSampleCounts.push_back(2); } if (flags & VK_SAMPLE_COUNT_4_BIT) { fColorSampleCounts.push_back(4); } if (flags & VK_SAMPLE_COUNT_8_BIT) { fColorSampleCounts.push_back(8); } if (flags & VK_SAMPLE_COUNT_16_BIT) { fColorSampleCounts.push_back(16); } if (flags & VK_SAMPLE_COUNT_32_BIT) { fColorSampleCounts.push_back(32); } if (flags & VK_SAMPLE_COUNT_64_BIT) { fColorSampleCounts.push_back(64); } } void GrVkCaps::ConfigInfo::init(const GrVkInterface* interface, VkPhysicalDevice physDev, const VkPhysicalDeviceProperties& properties, VkFormat format) { VkFormatProperties props; memset(&props, 0, sizeof(VkFormatProperties)); GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props)); InitConfigFlags(props.linearTilingFeatures, &fLinearFlags); InitConfigFlags(props.optimalTilingFeatures, &fOptimalFlags); if (fOptimalFlags & kRenderable_Flag) { this->initSampleCounts(interface, physDev, properties, format); } } int GrVkCaps::getRenderTargetSampleCount(int requestedCount, GrPixelConfig config) const { requestedCount = SkTMax(1, requestedCount); int count = fConfigTable[config].fColorSampleCounts.count(); if (!count) { return 0; } if (1 == requestedCount) { SkASSERT(fConfigTable[config].fColorSampleCounts.count() && fConfigTable[config].fColorSampleCounts[0] == 1); return 1; } for (int i = 0; i < count; ++i) { if (fConfigTable[config].fColorSampleCounts[i] >= requestedCount) { return fConfigTable[config].fColorSampleCounts[i]; } } return 0; } int GrVkCaps::maxRenderTargetSampleCount(GrPixelConfig config) const { const auto& table = fConfigTable[config].fColorSampleCounts; if (!table.count()) { return 0; } return table[table.count() - 1]; } bool GrVkCaps::onSurfaceSupportsWritePixels(const GrSurface* surface) const { if (auto rt = surface->asRenderTarget()) { return rt->numColorSamples() <= 1 && SkToBool(surface->asTexture()); } return true; } GrPixelConfig validate_image_info(VkFormat format, SkColorType ct, bool hasYcbcrConversion) { if (format == VK_FORMAT_UNDEFINED) { // If the format is undefined then it is only valid as an external image which requires that // we have a valid VkYcbcrConversion. if (hasYcbcrConversion) { // We don't actually care what the color type or config are since we won't use those // values for external textures, but since our code requires setting a config here // just default it to RGBA. return kRGBA_8888_GrPixelConfig; } else { return kUnknown_GrPixelConfig; } } if (hasYcbcrConversion) { // We only support having a ycbcr conversion for external images. return kUnknown_GrPixelConfig; } switch (ct) { case kUnknown_SkColorType: break; case kAlpha_8_SkColorType: if (VK_FORMAT_R8_UNORM == format) { return kAlpha_8_as_Red_GrPixelConfig; } break; case kRGB_565_SkColorType: if (VK_FORMAT_R5G6B5_UNORM_PACK16 == format) { return kRGB_565_GrPixelConfig; } break; case kARGB_4444_SkColorType: if (VK_FORMAT_B4G4R4A4_UNORM_PACK16 == format) { return kRGBA_4444_GrPixelConfig; } break; case kRGBA_8888_SkColorType: if (VK_FORMAT_R8G8B8A8_UNORM == format) { return kRGBA_8888_GrPixelConfig; } else if (VK_FORMAT_R8G8B8A8_SRGB == format) { return kSRGBA_8888_GrPixelConfig; } break; case kRGB_888x_SkColorType: if (VK_FORMAT_R8G8B8_UNORM == format) { return kRGB_888_GrPixelConfig; } break; case kBGRA_8888_SkColorType: if (VK_FORMAT_B8G8R8A8_UNORM == format) { return kBGRA_8888_GrPixelConfig; } else if (VK_FORMAT_B8G8R8A8_SRGB == format) { return kSBGRA_8888_GrPixelConfig; } break; case kRGBA_1010102_SkColorType: if (VK_FORMAT_A2B10G10R10_UNORM_PACK32 == format) { return kRGBA_1010102_GrPixelConfig; } break; case kRGB_101010x_SkColorType: return kUnknown_GrPixelConfig; case kGray_8_SkColorType: if (VK_FORMAT_R8_UNORM == format) { return kGray_8_as_Red_GrPixelConfig; } break; case kRGBA_F16_SkColorType: if (VK_FORMAT_R16G16B16A16_SFLOAT == format) { return kRGBA_half_GrPixelConfig; } break; case kRGBA_F32_SkColorType: if (VK_FORMAT_R32G32B32A32_SFLOAT == format) { return kRGBA_float_GrPixelConfig; } break; } return kUnknown_GrPixelConfig; } GrPixelConfig GrVkCaps::validateBackendRenderTarget(const GrBackendRenderTarget& rt, SkColorType ct) const { GrVkImageInfo imageInfo; if (!rt.getVkImageInfo(&imageInfo)) { return kUnknown_GrPixelConfig; } return validate_image_info(imageInfo.fFormat, ct, imageInfo.fYcbcrConversionInfo.isValid()); } GrPixelConfig GrVkCaps::getConfigFromBackendFormat(const GrBackendFormat& format, SkColorType ct) const { const VkFormat* vkFormat = format.getVkFormat(); const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo(); if (!vkFormat || !ycbcrInfo) { return kUnknown_GrPixelConfig; } return validate_image_info(*vkFormat, ct, ycbcrInfo->isValid()); } static GrPixelConfig get_yuva_config(VkFormat vkFormat) { switch (vkFormat) { case VK_FORMAT_R8_UNORM: return kAlpha_8_as_Red_GrPixelConfig; case VK_FORMAT_R8G8B8A8_UNORM: return kRGBA_8888_GrPixelConfig; case VK_FORMAT_R8G8B8_UNORM: return kRGB_888_GrPixelConfig; case VK_FORMAT_R8G8_UNORM: return kRG_88_GrPixelConfig; case VK_FORMAT_B8G8R8A8_UNORM: return kBGRA_8888_GrPixelConfig; default: return kUnknown_GrPixelConfig; } } GrPixelConfig GrVkCaps::getYUVAConfigFromBackendFormat(const GrBackendFormat& format) const { const VkFormat* vkFormat = format.getVkFormat(); if (!vkFormat) { return kUnknown_GrPixelConfig; } return get_yuva_config(*vkFormat); } GrBackendFormat GrVkCaps::getBackendFormatFromGrColorType(GrColorType ct, GrSRGBEncoded srgbEncoded) const { GrPixelConfig config = GrColorTypeToPixelConfig(ct, srgbEncoded); if (config == kUnknown_GrPixelConfig) { return GrBackendFormat(); } VkFormat format; if (!GrPixelConfigToVkFormat(config, &format)) { return GrBackendFormat(); } return GrBackendFormat::MakeVk(format); }