// Copyright 2016 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef _SYMBOL_TABLE_INCLUDED_ #define _SYMBOL_TABLE_INCLUDED_ // // Symbol table for parsing. Has these design characteristics: // // * Same symbol table can be used to compile many shaders, to preserve // effort of creating and loading with the large numbers of built-in // symbols. // // * Name mangling will be used to give each function a unique name // so that symbol table lookups are never ambiguous. This allows // a simpler symbol table structure. // // * Pushing and popping of scope, so symbol table will really be a stack // of symbol tables. Searched from the top, with new inserts going into // the top. // // * Constants: Compile time constant symbols will keep their values // in the symbol table. The parser can substitute constants at parse // time, including doing constant folding and constant propagation. // // * No temporaries: Temporaries made from operations (+, --, .xy, etc.) // are tracked in the intermediate representation, not the symbol table. // #if defined(__ANDROID__) && !defined(ANDROID_HOST_BUILD) #include "../../Common/DebugAndroid.hpp" #else #include #endif #include "InfoSink.h" #include "intermediate.h" #include // // Symbol base class. (Can build functions or variables out of these...) // class TSymbol { public: POOL_ALLOCATOR_NEW_DELETE(); TSymbol(const TString *n) : name(n) { } virtual ~TSymbol() { /* don't delete name, it's from the pool */ } const TString& getName() const { return *name; } virtual const TString& getMangledName() const { return getName(); } virtual bool isFunction() const { return false; } virtual bool isVariable() const { return false; } void setUniqueId(int id) { uniqueId = id; } int getUniqueId() const { return uniqueId; } TSymbol(const TSymbol&); protected: const TString *name; unsigned int uniqueId; // For real comparing during code generation }; // // Variable class, meaning a symbol that's not a function. // // There could be a separate class heirarchy for Constant variables; // Only one of int, bool, or float, (or none) is correct for // any particular use, but it's easy to do this way, and doesn't // seem worth having separate classes, and "getConst" can't simply return // different values for different types polymorphically, so this is // just simple and pragmatic. // class TVariable : public TSymbol { public: TVariable(const TString *name, const TType& t, bool uT = false ) : TSymbol(name), type(t), userType(uT), unionArray(0), arrayInformationType(0) { } virtual ~TVariable() { } virtual bool isVariable() const { return true; } TType& getType() { return type; } const TType& getType() const { return type; } bool isUserType() const { return userType; } void setQualifier(TQualifier qualifier) { type.setQualifier(qualifier); } void updateArrayInformationType(TType *t) { arrayInformationType = t; } TType* getArrayInformationType() { return arrayInformationType; } ConstantUnion* getConstPointer() { if (!unionArray) unionArray = new ConstantUnion[type.getObjectSize()]; return unionArray; } ConstantUnion* getConstPointer() const { return unionArray; } bool isConstant() const { return unionArray != nullptr; } void shareConstPointer( ConstantUnion *constArray) { if (unionArray == constArray) return; delete[] unionArray; unionArray = constArray; } protected: TType type; bool userType; // we are assuming that Pool Allocator will free the memory allocated to unionArray // when this object is destroyed ConstantUnion *unionArray; TType *arrayInformationType; // this is used for updating maxArraySize in all the references to a given symbol }; // // The function sub-class of symbols and the parser will need to // share this definition of a function parameter. // struct TParameter { TString *name; TType *type; }; // // The function sub-class of a symbol. // class TFunction : public TSymbol { public: TFunction(TOperator o) : TSymbol(0), returnType(TType(EbtVoid, EbpUndefined)), op(o), defined(false), prototypeDeclaration(false) { } TFunction(const TString *name, const TType& retType, TOperator tOp = EOpNull, const char *ext = "") : TSymbol(name), returnType(retType), mangledName(TFunction::mangleName(*name)), op(tOp), extension(ext), defined(false), prototypeDeclaration(false) { } virtual ~TFunction(); virtual bool isFunction() const { return true; } static TString mangleName(const TString& name) { return name + '('; } static TString unmangleName(const TString& mangledName) { return TString(mangledName.c_str(), mangledName.find_first_of('(')); } void addParameter(TParameter& p) { parameters.push_back(p); mangledName = mangledName + p.type->getMangledName(); } const TString& getMangledName() const { return mangledName; } const TType& getReturnType() const { return returnType; } TOperator getBuiltInOp() const { return op; } const TString& getExtension() const { return extension; } void setDefined() { defined = true; } bool isDefined() { return defined; } void setHasPrototypeDeclaration() { prototypeDeclaration = true; } bool hasPrototypeDeclaration() const { return prototypeDeclaration; } size_t getParamCount() const { return parameters.size(); } const TParameter& getParam(int i) const { return parameters[i]; } protected: typedef TVector TParamList; TParamList parameters; TType returnType; TString mangledName; TOperator op; TString extension; bool defined; bool prototypeDeclaration; }; class TSymbolTableLevel { public: typedef TMap tLevel; typedef tLevel::const_iterator const_iterator; typedef const tLevel::value_type tLevelPair; typedef std::pair tInsertResult; POOL_ALLOCATOR_NEW_DELETE(); TSymbolTableLevel() { } ~TSymbolTableLevel(); bool insert(TSymbol *symbol); // Insert a function using its unmangled name as the key. bool insertUnmangled(TFunction *function); TSymbol *find(const TString &name) const; static int nextUniqueId() { return ++uniqueId; } protected: tLevel level; static int uniqueId; // for unique identification in code generation }; enum ESymbolLevel { COMMON_BUILTINS, ESSL1_BUILTINS, ESSL3_BUILTINS, LAST_BUILTIN_LEVEL = ESSL3_BUILTINS, GLOBAL_LEVEL }; inline bool IsGenType(const TType *type) { if(type) { TBasicType basicType = type->getBasicType(); return basicType == EbtGenType || basicType == EbtGenIType || basicType == EbtGenUType || basicType == EbtGenBType; } return false; } inline bool IsVecType(const TType *type) { if(type) { TBasicType basicType = type->getBasicType(); return basicType == EbtVec || basicType == EbtIVec || basicType == EbtUVec || basicType == EbtBVec; } return false; } inline TType *GenType(TType *type, int size) { ASSERT(size >= 1 && size <= 4); if(!type) { return nullptr; } ASSERT(!IsVecType(type)); switch(type->getBasicType()) { case EbtGenType: return new TType(EbtFloat, size); case EbtGenIType: return new TType(EbtInt, size); case EbtGenUType: return new TType(EbtUInt, size); case EbtGenBType: return new TType(EbtBool, size); default: return type; } } inline TType *VecType(TType *type, int size) { ASSERT(size >= 2 && size <= 4); if(!type) { return nullptr; } ASSERT(!IsGenType(type)); switch(type->getBasicType()) { case EbtVec: return new TType(EbtFloat, size); case EbtIVec: return new TType(EbtInt, size); case EbtUVec: return new TType(EbtUInt, size); case EbtBVec: return new TType(EbtBool, size); default: return type; } } class TSymbolTable { public: TSymbolTable() : mGlobalInvariant(false) { // // The symbol table cannot be used until push() is called, but // the lack of an initial call to push() can be used to detect // that the symbol table has not been preloaded with built-ins. // } ~TSymbolTable() { while(currentLevel() > LAST_BUILTIN_LEVEL) { pop(); } } bool isEmpty() { return table.empty(); } bool atBuiltInLevel() { return currentLevel() <= LAST_BUILTIN_LEVEL; } bool atGlobalLevel() { return currentLevel() <= GLOBAL_LEVEL; } void push() { table.push_back(new TSymbolTableLevel); precisionStack.push_back( PrecisionStackLevel() ); } void pop() { delete table[currentLevel()]; table.pop_back(); precisionStack.pop_back(); } bool declare(TSymbol *symbol) { return insert(currentLevel(), symbol); } bool insert(ESymbolLevel level, TSymbol *symbol) { return table[level]->insert(symbol); } bool insertConstInt(ESymbolLevel level, const char *name, int value) { TVariable *constant = new TVariable(NewPoolTString(name), TType(EbtInt, EbpUndefined, EvqConstExpr, 1)); constant->getConstPointer()->setIConst(value); return insert(level, constant); } void insertBuiltIn(ESymbolLevel level, TOperator op, const char *ext, TType *rvalue, const char *name, TType *ptype1, TType *ptype2 = 0, TType *ptype3 = 0, TType *ptype4 = 0, TType *ptype5 = 0) { if(ptype1->getBasicType() == EbtGSampler2D) { insertUnmangledBuiltIn(name); bool gvec4 = (rvalue->getBasicType() == EbtGVec4); insertBuiltIn(level, gvec4 ? new TType(EbtFloat, 4) : rvalue, name, new TType(EbtSampler2D), ptype2, ptype3, ptype4, ptype5); insertBuiltIn(level, gvec4 ? new TType(EbtInt, 4) : rvalue, name, new TType(EbtISampler2D), ptype2, ptype3, ptype4, ptype5); insertBuiltIn(level, gvec4 ? new TType(EbtUInt, 4) : rvalue, name, new TType(EbtUSampler2D), ptype2, ptype3, ptype4, ptype5); } else if(ptype1->getBasicType() == EbtGSampler3D) { insertUnmangledBuiltIn(name); bool gvec4 = (rvalue->getBasicType() == EbtGVec4); insertBuiltIn(level, gvec4 ? new TType(EbtFloat, 4) : rvalue, name, new TType(EbtSampler3D), ptype2, ptype3, ptype4, ptype5); insertBuiltIn(level, gvec4 ? new TType(EbtInt, 4) : rvalue, name, new TType(EbtISampler3D), ptype2, ptype3, ptype4, ptype5); insertBuiltIn(level, gvec4 ? new TType(EbtUInt, 4) : rvalue, name, new TType(EbtUSampler3D), ptype2, ptype3, ptype4, ptype5); } else if(ptype1->getBasicType() == EbtGSamplerCube) { insertUnmangledBuiltIn(name); bool gvec4 = (rvalue->getBasicType() == EbtGVec4); insertBuiltIn(level, gvec4 ? new TType(EbtFloat, 4) : rvalue, name, new TType(EbtSamplerCube), ptype2, ptype3, ptype4, ptype5); insertBuiltIn(level, gvec4 ? new TType(EbtInt, 4) : rvalue, name, new TType(EbtISamplerCube), ptype2, ptype3, ptype4, ptype5); insertBuiltIn(level, gvec4 ? new TType(EbtUInt, 4) : rvalue, name, new TType(EbtUSamplerCube), ptype2, ptype3, ptype4, ptype5); } else if(ptype1->getBasicType() == EbtGSampler2DArray) { insertUnmangledBuiltIn(name); bool gvec4 = (rvalue->getBasicType() == EbtGVec4); insertBuiltIn(level, gvec4 ? new TType(EbtFloat, 4) : rvalue, name, new TType(EbtSampler2DArray), ptype2, ptype3, ptype4, ptype5); insertBuiltIn(level, gvec4 ? new TType(EbtInt, 4) : rvalue, name, new TType(EbtISampler2DArray), ptype2, ptype3, ptype4, ptype5); insertBuiltIn(level, gvec4 ? new TType(EbtUInt, 4) : rvalue, name, new TType(EbtUSampler2DArray), ptype2, ptype3, ptype4, ptype5); } else if(IsGenType(rvalue) || IsGenType(ptype1) || IsGenType(ptype2) || IsGenType(ptype3)) { ASSERT(!ptype4); insertUnmangledBuiltIn(name); insertBuiltIn(level, op, ext, GenType(rvalue, 1), name, GenType(ptype1, 1), GenType(ptype2, 1), GenType(ptype3, 1)); insertBuiltIn(level, op, ext, GenType(rvalue, 2), name, GenType(ptype1, 2), GenType(ptype2, 2), GenType(ptype3, 2)); insertBuiltIn(level, op, ext, GenType(rvalue, 3), name, GenType(ptype1, 3), GenType(ptype2, 3), GenType(ptype3, 3)); insertBuiltIn(level, op, ext, GenType(rvalue, 4), name, GenType(ptype1, 4), GenType(ptype2, 4), GenType(ptype3, 4)); } else if(IsVecType(rvalue) || IsVecType(ptype1) || IsVecType(ptype2) || IsVecType(ptype3)) { ASSERT(!ptype4); insertUnmangledBuiltIn(name); insertBuiltIn(level, op, ext, VecType(rvalue, 2), name, VecType(ptype1, 2), VecType(ptype2, 2), VecType(ptype3, 2)); insertBuiltIn(level, op, ext, VecType(rvalue, 3), name, VecType(ptype1, 3), VecType(ptype2, 3), VecType(ptype3, 3)); insertBuiltIn(level, op, ext, VecType(rvalue, 4), name, VecType(ptype1, 4), VecType(ptype2, 4), VecType(ptype3, 4)); } else { TFunction *function = new TFunction(NewPoolTString(name), *rvalue, op, ext); TParameter param1 = {0, ptype1}; function->addParameter(param1); if(ptype2) { TParameter param2 = {0, ptype2}; function->addParameter(param2); } if(ptype3) { TParameter param3 = {0, ptype3}; function->addParameter(param3); } if(ptype4) { TParameter param4 = {0, ptype4}; function->addParameter(param4); } if(ptype5) { TParameter param5 = {0, ptype5}; function->addParameter(param5); } ASSERT(hasUnmangledBuiltIn(name)); insert(level, function); } } void insertBuiltIn(ESymbolLevel level, TOperator op, TType *rvalue, const char *name, TType *ptype1, TType *ptype2 = 0, TType *ptype3 = 0, TType *ptype4 = 0, TType *ptype5 = 0) { insertUnmangledBuiltIn(name); insertBuiltIn(level, op, "", rvalue, name, ptype1, ptype2, ptype3, ptype4, ptype5); } void insertBuiltIn(ESymbolLevel level, TType *rvalue, const char *name, TType *ptype1, TType *ptype2 = 0, TType *ptype3 = 0, TType *ptype4 = 0, TType *ptype5 = 0) { insertUnmangledBuiltIn(name); insertBuiltIn(level, EOpNull, rvalue, name, ptype1, ptype2, ptype3, ptype4, ptype5); } TSymbol *find(const TString &name, int shaderVersion, bool *builtIn = nullptr, bool *sameScope = nullptr) const; TSymbol *findBuiltIn(const TString &name, int shaderVersion) const; TSymbolTableLevel *getOuterLevel() const { assert(currentLevel() >= 1); return table[currentLevel() - 1]; } bool setDefaultPrecision(const TPublicType &type, TPrecision prec) { if (IsSampler(type.type)) return true; // Skip sampler types for the time being if (type.type != EbtFloat && type.type != EbtInt) return false; // Only set default precision for int/float if (type.primarySize > 1 || type.secondarySize > 1 || type.array) return false; // Not allowed to set for aggregate types int indexOfLastElement = static_cast(precisionStack.size()) - 1; precisionStack[indexOfLastElement][type.type] = prec; // Uses map operator [], overwrites the current value return true; } // Searches down the precisionStack for a precision qualifier for the specified TBasicType TPrecision getDefaultPrecision( TBasicType type) { // unsigned integers use the same precision as signed if (type == EbtUInt) type = EbtInt; if( type != EbtFloat && type != EbtInt ) return EbpUndefined; int level = static_cast(precisionStack.size()) - 1; assert( level >= 0); // Just to be safe. Should not happen. PrecisionStackLevel::iterator it; TPrecision prec = EbpUndefined; // If we dont find anything we return this. Should we error check this? while( level >= 0 ){ it = precisionStack[level].find( type ); if( it != precisionStack[level].end() ){ prec = (*it).second; break; } level--; } return prec; } // This records invariant varyings declared through // "invariant varying_name;". void addInvariantVarying(const std::string &originalName) { mInvariantVaryings.insert(originalName); } // If this returns false, the varying could still be invariant // if it is set as invariant during the varying variable // declaration - this piece of information is stored in the // variable's type, not here. bool isVaryingInvariant(const std::string &originalName) const { return (mGlobalInvariant || mInvariantVaryings.count(originalName) > 0); } void setGlobalInvariant() { mGlobalInvariant = true; } bool getGlobalInvariant() const { return mGlobalInvariant; } bool hasUnmangledBuiltIn(const char *name) { return mUnmangledBuiltinNames.count(std::string(name)) > 0; } private: // Used to insert unmangled functions to check redeclaration of built-ins in ESSL 3.00. void insertUnmangledBuiltIn(const char *name) { mUnmangledBuiltinNames.insert(std::string(name)); } protected: ESymbolLevel currentLevel() const { return static_cast(table.size() - 1); } std::vector table; typedef std::map< TBasicType, TPrecision > PrecisionStackLevel; std::vector< PrecisionStackLevel > precisionStack; std::set mUnmangledBuiltinNames; std::set mInvariantVaryings; bool mGlobalInvariant; }; #endif // _SYMBOL_TABLE_INCLUDED_