//===- DWARFAcceleratorTable.cpp ------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h" #include "llvm/ADT/SmallVector.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/DebugInfo/DWARF/DWARFRelocMap.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/DJB.h" #include "llvm/Support/Format.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/ScopedPrinter.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace llvm; namespace { struct Atom { unsigned Value; }; static raw_ostream &operator<<(raw_ostream &OS, const Atom &A) { StringRef Str = dwarf::AtomTypeString(A.Value); if (!Str.empty()) return OS << Str; return OS << "DW_ATOM_unknown_" << format("%x", A.Value); } } // namespace static Atom formatAtom(unsigned Atom) { return {Atom}; } DWARFAcceleratorTable::~DWARFAcceleratorTable() = default; llvm::Error AppleAcceleratorTable::extract() { uint32_t Offset = 0; // Check that we can at least read the header. if (!AccelSection.isValidOffset(offsetof(Header, HeaderDataLength)+4)) return make_error("Section too small: cannot read header.", inconvertibleErrorCode()); Hdr.Magic = AccelSection.getU32(&Offset); Hdr.Version = AccelSection.getU16(&Offset); Hdr.HashFunction = AccelSection.getU16(&Offset); Hdr.BucketCount = AccelSection.getU32(&Offset); Hdr.HashCount = AccelSection.getU32(&Offset); Hdr.HeaderDataLength = AccelSection.getU32(&Offset); // Check that we can read all the hashes and offsets from the // section (see SourceLevelDebugging.rst for the structure of the index). // We need to substract one because we're checking for an *offset* which is // equal to the size for an empty table and hence pointer after the section. if (!AccelSection.isValidOffset(sizeof(Hdr) + Hdr.HeaderDataLength + Hdr.BucketCount * 4 + Hdr.HashCount * 8 - 1)) return make_error( "Section too small: cannot read buckets and hashes.", inconvertibleErrorCode()); HdrData.DIEOffsetBase = AccelSection.getU32(&Offset); uint32_t NumAtoms = AccelSection.getU32(&Offset); for (unsigned i = 0; i < NumAtoms; ++i) { uint16_t AtomType = AccelSection.getU16(&Offset); auto AtomForm = static_cast(AccelSection.getU16(&Offset)); HdrData.Atoms.push_back(std::make_pair(AtomType, AtomForm)); } IsValid = true; return Error::success(); } uint32_t AppleAcceleratorTable::getNumBuckets() { return Hdr.BucketCount; } uint32_t AppleAcceleratorTable::getNumHashes() { return Hdr.HashCount; } uint32_t AppleAcceleratorTable::getSizeHdr() { return sizeof(Hdr); } uint32_t AppleAcceleratorTable::getHeaderDataLength() { return Hdr.HeaderDataLength; } ArrayRef> AppleAcceleratorTable::getAtomsDesc() { return HdrData.Atoms; } bool AppleAcceleratorTable::validateForms() { for (auto Atom : getAtomsDesc()) { DWARFFormValue FormValue(Atom.second); switch (Atom.first) { case dwarf::DW_ATOM_die_offset: case dwarf::DW_ATOM_die_tag: case dwarf::DW_ATOM_type_flags: if ((!FormValue.isFormClass(DWARFFormValue::FC_Constant) && !FormValue.isFormClass(DWARFFormValue::FC_Flag)) || FormValue.getForm() == dwarf::DW_FORM_sdata) return false; break; default: break; } } return true; } std::pair AppleAcceleratorTable::readAtoms(uint32_t &HashDataOffset) { uint32_t DieOffset = dwarf::DW_INVALID_OFFSET; dwarf::Tag DieTag = dwarf::DW_TAG_null; dwarf::FormParams FormParams = {Hdr.Version, 0, dwarf::DwarfFormat::DWARF32}; for (auto Atom : getAtomsDesc()) { DWARFFormValue FormValue(Atom.second); FormValue.extractValue(AccelSection, &HashDataOffset, FormParams); switch (Atom.first) { case dwarf::DW_ATOM_die_offset: DieOffset = *FormValue.getAsUnsignedConstant(); break; case dwarf::DW_ATOM_die_tag: DieTag = (dwarf::Tag)*FormValue.getAsUnsignedConstant(); break; default: break; } } return {DieOffset, DieTag}; } void AppleAcceleratorTable::Header::dump(ScopedPrinter &W) const { DictScope HeaderScope(W, "Header"); W.printHex("Magic", Magic); W.printHex("Version", Version); W.printHex("Hash function", HashFunction); W.printNumber("Bucket count", BucketCount); W.printNumber("Hashes count", HashCount); W.printNumber("HeaderData length", HeaderDataLength); } Optional AppleAcceleratorTable::HeaderData::extractOffset( Optional Value) const { if (!Value) return None; switch (Value->getForm()) { case dwarf::DW_FORM_ref1: case dwarf::DW_FORM_ref2: case dwarf::DW_FORM_ref4: case dwarf::DW_FORM_ref8: case dwarf::DW_FORM_ref_udata: return Value->getRawUValue() + DIEOffsetBase; default: return Value->getAsSectionOffset(); } } bool AppleAcceleratorTable::dumpName(ScopedPrinter &W, SmallVectorImpl &AtomForms, uint32_t *DataOffset) const { dwarf::FormParams FormParams = {Hdr.Version, 0, dwarf::DwarfFormat::DWARF32}; uint32_t NameOffset = *DataOffset; if (!AccelSection.isValidOffsetForDataOfSize(*DataOffset, 4)) { W.printString("Incorrectly terminated list."); return false; } unsigned StringOffset = AccelSection.getRelocatedValue(4, DataOffset); if (!StringOffset) return false; // End of list DictScope NameScope(W, ("Name@0x" + Twine::utohexstr(NameOffset)).str()); W.startLine() << format("String: 0x%08x", StringOffset); W.getOStream() << " \"" << StringSection.getCStr(&StringOffset) << "\"\n"; unsigned NumData = AccelSection.getU32(DataOffset); for (unsigned Data = 0; Data < NumData; ++Data) { ListScope DataScope(W, ("Data " + Twine(Data)).str()); unsigned i = 0; for (auto &Atom : AtomForms) { W.startLine() << format("Atom[%d]: ", i); if (Atom.extractValue(AccelSection, DataOffset, FormParams)) { Atom.dump(W.getOStream()); if (Optional Val = Atom.getAsUnsignedConstant()) { StringRef Str = dwarf::AtomValueString(HdrData.Atoms[i].first, *Val); if (!Str.empty()) W.getOStream() << " (" << Str << ")"; } } else W.getOStream() << "Error extracting the value"; W.getOStream() << "\n"; i++; } } return true; // more entries follow } LLVM_DUMP_METHOD void AppleAcceleratorTable::dump(raw_ostream &OS) const { if (!IsValid) return; ScopedPrinter W(OS); Hdr.dump(W); W.printNumber("DIE offset base", HdrData.DIEOffsetBase); W.printNumber("Number of atoms", uint64_t(HdrData.Atoms.size())); SmallVector AtomForms; { ListScope AtomsScope(W, "Atoms"); unsigned i = 0; for (const auto &Atom : HdrData.Atoms) { DictScope AtomScope(W, ("Atom " + Twine(i++)).str()); W.startLine() << "Type: " << formatAtom(Atom.first) << '\n'; W.startLine() << "Form: " << formatv("{0}", Atom.second) << '\n'; AtomForms.push_back(DWARFFormValue(Atom.second)); } } // Now go through the actual tables and dump them. uint32_t Offset = sizeof(Hdr) + Hdr.HeaderDataLength; unsigned HashesBase = Offset + Hdr.BucketCount * 4; unsigned OffsetsBase = HashesBase + Hdr.HashCount * 4; for (unsigned Bucket = 0; Bucket < Hdr.BucketCount; ++Bucket) { unsigned Index = AccelSection.getU32(&Offset); ListScope BucketScope(W, ("Bucket " + Twine(Bucket)).str()); if (Index == UINT32_MAX) { W.printString("EMPTY"); continue; } for (unsigned HashIdx = Index; HashIdx < Hdr.HashCount; ++HashIdx) { unsigned HashOffset = HashesBase + HashIdx*4; unsigned OffsetsOffset = OffsetsBase + HashIdx*4; uint32_t Hash = AccelSection.getU32(&HashOffset); if (Hash % Hdr.BucketCount != Bucket) break; unsigned DataOffset = AccelSection.getU32(&OffsetsOffset); ListScope HashScope(W, ("Hash 0x" + Twine::utohexstr(Hash)).str()); if (!AccelSection.isValidOffset(DataOffset)) { W.printString("Invalid section offset"); continue; } while (dumpName(W, AtomForms, &DataOffset)) /*empty*/; } } } AppleAcceleratorTable::Entry::Entry( const AppleAcceleratorTable::HeaderData &HdrData) : HdrData(&HdrData) { Values.reserve(HdrData.Atoms.size()); for (const auto &Atom : HdrData.Atoms) Values.push_back(DWARFFormValue(Atom.second)); } void AppleAcceleratorTable::Entry::extract( const AppleAcceleratorTable &AccelTable, uint32_t *Offset) { dwarf::FormParams FormParams = {AccelTable.Hdr.Version, 0, dwarf::DwarfFormat::DWARF32}; for (auto &Atom : Values) Atom.extractValue(AccelTable.AccelSection, Offset, FormParams); } Optional AppleAcceleratorTable::Entry::lookup(HeaderData::AtomType Atom) const { assert(HdrData && "Dereferencing end iterator?"); assert(HdrData->Atoms.size() == Values.size()); for (const auto &Tuple : zip_first(HdrData->Atoms, Values)) { if (std::get<0>(Tuple).first == Atom) return std::get<1>(Tuple); } return None; } Optional AppleAcceleratorTable::Entry::getDIESectionOffset() const { return HdrData->extractOffset(lookup(dwarf::DW_ATOM_die_offset)); } Optional AppleAcceleratorTable::Entry::getCUOffset() const { return HdrData->extractOffset(lookup(dwarf::DW_ATOM_cu_offset)); } Optional AppleAcceleratorTable::Entry::getTag() const { Optional Tag = lookup(dwarf::DW_ATOM_die_tag); if (!Tag) return None; if (Optional Value = Tag->getAsUnsignedConstant()) return dwarf::Tag(*Value); return None; } AppleAcceleratorTable::ValueIterator::ValueIterator( const AppleAcceleratorTable &AccelTable, unsigned Offset) : AccelTable(&AccelTable), Current(AccelTable.HdrData), DataOffset(Offset) { if (!AccelTable.AccelSection.isValidOffsetForDataOfSize(DataOffset, 4)) return; // Read the first entry. NumData = AccelTable.AccelSection.getU32(&DataOffset); Next(); } void AppleAcceleratorTable::ValueIterator::Next() { assert(NumData > 0 && "attempted to increment iterator past the end"); auto &AccelSection = AccelTable->AccelSection; if (Data >= NumData || !AccelSection.isValidOffsetForDataOfSize(DataOffset, 4)) { NumData = 0; DataOffset = 0; return; } Current.extract(*AccelTable, &DataOffset); ++Data; } iterator_range AppleAcceleratorTable::equal_range(StringRef Key) const { if (!IsValid) return make_range(ValueIterator(), ValueIterator()); // Find the bucket. unsigned HashValue = djbHash(Key); unsigned Bucket = HashValue % Hdr.BucketCount; unsigned BucketBase = sizeof(Hdr) + Hdr.HeaderDataLength; unsigned HashesBase = BucketBase + Hdr.BucketCount * 4; unsigned OffsetsBase = HashesBase + Hdr.HashCount * 4; unsigned BucketOffset = BucketBase + Bucket * 4; unsigned Index = AccelSection.getU32(&BucketOffset); // Search through all hashes in the bucket. for (unsigned HashIdx = Index; HashIdx < Hdr.HashCount; ++HashIdx) { unsigned HashOffset = HashesBase + HashIdx * 4; unsigned OffsetsOffset = OffsetsBase + HashIdx * 4; uint32_t Hash = AccelSection.getU32(&HashOffset); if (Hash % Hdr.BucketCount != Bucket) // We are already in the next bucket. break; unsigned DataOffset = AccelSection.getU32(&OffsetsOffset); unsigned StringOffset = AccelSection.getRelocatedValue(4, &DataOffset); if (!StringOffset) break; // Finally, compare the key. if (Key == StringSection.getCStr(&StringOffset)) return make_range({*this, DataOffset}, ValueIterator()); } return make_range(ValueIterator(), ValueIterator()); } void DWARFDebugNames::Header::dump(ScopedPrinter &W) const { DictScope HeaderScope(W, "Header"); W.printHex("Length", UnitLength); W.printNumber("Version", Version); W.printHex("Padding", Padding); W.printNumber("CU count", CompUnitCount); W.printNumber("Local TU count", LocalTypeUnitCount); W.printNumber("Foreign TU count", ForeignTypeUnitCount); W.printNumber("Bucket count", BucketCount); W.printNumber("Name count", NameCount); W.printHex("Abbreviations table size", AbbrevTableSize); W.startLine() << "Augmentation: '" << AugmentationString << "'\n"; } llvm::Error DWARFDebugNames::Header::extract(const DWARFDataExtractor &AS, uint32_t *Offset) { // Check that we can read the fixed-size part. if (!AS.isValidOffset(*Offset + sizeof(HeaderPOD) - 1)) return make_error("Section too small: cannot read header.", inconvertibleErrorCode()); UnitLength = AS.getU32(Offset); Version = AS.getU16(Offset); Padding = AS.getU16(Offset); CompUnitCount = AS.getU32(Offset); LocalTypeUnitCount = AS.getU32(Offset); ForeignTypeUnitCount = AS.getU32(Offset); BucketCount = AS.getU32(Offset); NameCount = AS.getU32(Offset); AbbrevTableSize = AS.getU32(Offset); AugmentationStringSize = alignTo(AS.getU32(Offset), 4); if (!AS.isValidOffsetForDataOfSize(*Offset, AugmentationStringSize)) return make_error( "Section too small: cannot read header augmentation.", inconvertibleErrorCode()); AugmentationString.resize(AugmentationStringSize); AS.getU8(Offset, reinterpret_cast(AugmentationString.data()), AugmentationStringSize); return Error::success(); } void DWARFDebugNames::Abbrev::dump(ScopedPrinter &W) const { DictScope AbbrevScope(W, ("Abbreviation 0x" + Twine::utohexstr(Code)).str()); W.startLine() << formatv("Tag: {0}\n", Tag); for (const auto &Attr : Attributes) W.startLine() << formatv("{0}: {1}\n", Attr.Index, Attr.Form); } static constexpr DWARFDebugNames::AttributeEncoding sentinelAttrEnc() { return {dwarf::Index(0), dwarf::Form(0)}; } static bool isSentinel(const DWARFDebugNames::AttributeEncoding &AE) { return AE == sentinelAttrEnc(); } static DWARFDebugNames::Abbrev sentinelAbbrev() { return DWARFDebugNames::Abbrev(0, dwarf::Tag(0), {}); } static bool isSentinel(const DWARFDebugNames::Abbrev &Abbr) { return Abbr.Code == 0; } DWARFDebugNames::Abbrev DWARFDebugNames::AbbrevMapInfo::getEmptyKey() { return sentinelAbbrev(); } DWARFDebugNames::Abbrev DWARFDebugNames::AbbrevMapInfo::getTombstoneKey() { return DWARFDebugNames::Abbrev(~0, dwarf::Tag(0), {}); } Expected DWARFDebugNames::NameIndex::extractAttributeEncoding(uint32_t *Offset) { if (*Offset >= EntriesBase) { return make_error("Incorrectly terminated abbreviation table.", inconvertibleErrorCode()); } uint32_t Index = Section.AccelSection.getULEB128(Offset); uint32_t Form = Section.AccelSection.getULEB128(Offset); return AttributeEncoding(dwarf::Index(Index), dwarf::Form(Form)); } Expected> DWARFDebugNames::NameIndex::extractAttributeEncodings(uint32_t *Offset) { std::vector Result; for (;;) { auto AttrEncOr = extractAttributeEncoding(Offset); if (!AttrEncOr) return AttrEncOr.takeError(); if (isSentinel(*AttrEncOr)) return std::move(Result); Result.emplace_back(*AttrEncOr); } } Expected DWARFDebugNames::NameIndex::extractAbbrev(uint32_t *Offset) { if (*Offset >= EntriesBase) { return make_error("Incorrectly terminated abbreviation table.", inconvertibleErrorCode()); } uint32_t Code = Section.AccelSection.getULEB128(Offset); if (Code == 0) return sentinelAbbrev(); uint32_t Tag = Section.AccelSection.getULEB128(Offset); auto AttrEncOr = extractAttributeEncodings(Offset); if (!AttrEncOr) return AttrEncOr.takeError(); return Abbrev(Code, dwarf::Tag(Tag), std::move(*AttrEncOr)); } Error DWARFDebugNames::NameIndex::extract() { const DWARFDataExtractor &AS = Section.AccelSection; uint32_t Offset = Base; if (Error E = Hdr.extract(AS, &Offset)) return E; CUsBase = Offset; Offset += Hdr.CompUnitCount * 4; Offset += Hdr.LocalTypeUnitCount * 4; Offset += Hdr.ForeignTypeUnitCount * 8; BucketsBase = Offset; Offset += Hdr.BucketCount * 4; HashesBase = Offset; if (Hdr.BucketCount > 0) Offset += Hdr.NameCount * 4; StringOffsetsBase = Offset; Offset += Hdr.NameCount * 4; EntryOffsetsBase = Offset; Offset += Hdr.NameCount * 4; if (!AS.isValidOffsetForDataOfSize(Offset, Hdr.AbbrevTableSize)) return make_error( "Section too small: cannot read abbreviations.", inconvertibleErrorCode()); EntriesBase = Offset + Hdr.AbbrevTableSize; for (;;) { auto AbbrevOr = extractAbbrev(&Offset); if (!AbbrevOr) return AbbrevOr.takeError(); if (isSentinel(*AbbrevOr)) return Error::success(); if (!Abbrevs.insert(std::move(*AbbrevOr)).second) { return make_error("Duplicate abbreviation code.", inconvertibleErrorCode()); } } } DWARFDebugNames::Entry::Entry(const NameIndex &NameIdx, const Abbrev &Abbr) : NameIdx(&NameIdx), Abbr(&Abbr) { // This merely creates form values. It is up to the caller // (NameIndex::getEntry) to populate them. Values.reserve(Abbr.Attributes.size()); for (const auto &Attr : Abbr.Attributes) Values.emplace_back(Attr.Form); } Optional DWARFDebugNames::Entry::lookup(dwarf::Index Index) const { assert(Abbr->Attributes.size() == Values.size()); for (const auto &Tuple : zip_first(Abbr->Attributes, Values)) { if (std::get<0>(Tuple).Index == Index) return std::get<1>(Tuple); } return None; } Optional DWARFDebugNames::Entry::getDIEUnitOffset() const { if (Optional Off = lookup(dwarf::DW_IDX_die_offset)) return Off->getAsReferenceUVal(); return None; } Optional DWARFDebugNames::Entry::getCUIndex() const { if (Optional Off = lookup(dwarf::DW_IDX_compile_unit)) return Off->getAsUnsignedConstant(); // In a per-CU index, the entries without a DW_IDX_compile_unit attribute // implicitly refer to the single CU. if (NameIdx->getCUCount() == 1) return 0; return None; } Optional DWARFDebugNames::Entry::getCUOffset() const { Optional Index = getCUIndex(); if (!Index || *Index >= NameIdx->getCUCount()) return None; return NameIdx->getCUOffset(*Index); } void DWARFDebugNames::Entry::dump(ScopedPrinter &W) const { W.printHex("Abbrev", Abbr->Code); W.startLine() << formatv("Tag: {0}\n", Abbr->Tag); assert(Abbr->Attributes.size() == Values.size()); for (const auto &Tuple : zip_first(Abbr->Attributes, Values)) { W.startLine() << formatv("{0}: ", std::get<0>(Tuple).Index); std::get<1>(Tuple).dump(W.getOStream()); W.getOStream() << '\n'; } } char DWARFDebugNames::SentinelError::ID; std::error_code DWARFDebugNames::SentinelError::convertToErrorCode() const { return inconvertibleErrorCode(); } uint32_t DWARFDebugNames::NameIndex::getCUOffset(uint32_t CU) const { assert(CU < Hdr.CompUnitCount); uint32_t Offset = CUsBase + 4 * CU; return Section.AccelSection.getRelocatedValue(4, &Offset); } uint32_t DWARFDebugNames::NameIndex::getLocalTUOffset(uint32_t TU) const { assert(TU < Hdr.LocalTypeUnitCount); uint32_t Offset = CUsBase + Hdr.CompUnitCount * 4; return Section.AccelSection.getRelocatedValue(4, &Offset); } uint64_t DWARFDebugNames::NameIndex::getForeignTUSignature(uint32_t TU) const { assert(TU < Hdr.ForeignTypeUnitCount); uint32_t Offset = CUsBase + (Hdr.CompUnitCount + Hdr.LocalTypeUnitCount) * 4; return Section.AccelSection.getU64(&Offset); } Expected DWARFDebugNames::NameIndex::getEntry(uint32_t *Offset) const { const DWARFDataExtractor &AS = Section.AccelSection; if (!AS.isValidOffset(*Offset)) return make_error("Incorrectly terminated entry list.", inconvertibleErrorCode()); uint32_t AbbrevCode = AS.getULEB128(Offset); if (AbbrevCode == 0) return make_error(); const auto AbbrevIt = Abbrevs.find_as(AbbrevCode); if (AbbrevIt == Abbrevs.end()) return make_error("Invalid abbreviation.", inconvertibleErrorCode()); Entry E(*this, *AbbrevIt); dwarf::FormParams FormParams = {Hdr.Version, 0, dwarf::DwarfFormat::DWARF32}; for (auto &Value : E.Values) { if (!Value.extractValue(AS, Offset, FormParams)) return make_error("Error extracting index attribute values.", inconvertibleErrorCode()); } return std::move(E); } DWARFDebugNames::NameTableEntry DWARFDebugNames::NameIndex::getNameTableEntry(uint32_t Index) const { assert(0 < Index && Index <= Hdr.NameCount); uint32_t StringOffsetOffset = StringOffsetsBase + 4 * (Index - 1); uint32_t EntryOffsetOffset = EntryOffsetsBase + 4 * (Index - 1); const DWARFDataExtractor &AS = Section.AccelSection; uint32_t StringOffset = AS.getRelocatedValue(4, &StringOffsetOffset); uint32_t EntryOffset = AS.getU32(&EntryOffsetOffset); EntryOffset += EntriesBase; return {Section.StringSection, Index, StringOffset, EntryOffset}; } uint32_t DWARFDebugNames::NameIndex::getBucketArrayEntry(uint32_t Bucket) const { assert(Bucket < Hdr.BucketCount); uint32_t BucketOffset = BucketsBase + 4 * Bucket; return Section.AccelSection.getU32(&BucketOffset); } uint32_t DWARFDebugNames::NameIndex::getHashArrayEntry(uint32_t Index) const { assert(0 < Index && Index <= Hdr.NameCount); uint32_t HashOffset = HashesBase + 4 * (Index - 1); return Section.AccelSection.getU32(&HashOffset); } // Returns true if we should continue scanning for entries, false if this is the // last (sentinel) entry). In case of a parsing error we also return false, as // it's not possible to recover this entry list (but the other lists may still // parse OK). bool DWARFDebugNames::NameIndex::dumpEntry(ScopedPrinter &W, uint32_t *Offset) const { uint32_t EntryId = *Offset; auto EntryOr = getEntry(Offset); if (!EntryOr) { handleAllErrors(EntryOr.takeError(), [](const SentinelError &) {}, [&W](const ErrorInfoBase &EI) { EI.log(W.startLine()); }); return false; } DictScope EntryScope(W, ("Entry @ 0x" + Twine::utohexstr(EntryId)).str()); EntryOr->dump(W); return true; } void DWARFDebugNames::NameIndex::dumpName(ScopedPrinter &W, const NameTableEntry &NTE, Optional Hash) const { DictScope NameScope(W, ("Name " + Twine(NTE.getIndex())).str()); if (Hash) W.printHex("Hash", *Hash); W.startLine() << format("String: 0x%08x", NTE.getStringOffset()); W.getOStream() << " \"" << NTE.getString() << "\"\n"; uint32_t EntryOffset = NTE.getEntryOffset(); while (dumpEntry(W, &EntryOffset)) /*empty*/; } void DWARFDebugNames::NameIndex::dumpCUs(ScopedPrinter &W) const { ListScope CUScope(W, "Compilation Unit offsets"); for (uint32_t CU = 0; CU < Hdr.CompUnitCount; ++CU) W.startLine() << format("CU[%u]: 0x%08x\n", CU, getCUOffset(CU)); } void DWARFDebugNames::NameIndex::dumpLocalTUs(ScopedPrinter &W) const { if (Hdr.LocalTypeUnitCount == 0) return; ListScope TUScope(W, "Local Type Unit offsets"); for (uint32_t TU = 0; TU < Hdr.LocalTypeUnitCount; ++TU) W.startLine() << format("LocalTU[%u]: 0x%08x\n", TU, getLocalTUOffset(TU)); } void DWARFDebugNames::NameIndex::dumpForeignTUs(ScopedPrinter &W) const { if (Hdr.ForeignTypeUnitCount == 0) return; ListScope TUScope(W, "Foreign Type Unit signatures"); for (uint32_t TU = 0; TU < Hdr.ForeignTypeUnitCount; ++TU) { W.startLine() << format("ForeignTU[%u]: 0x%016" PRIx64 "\n", TU, getForeignTUSignature(TU)); } } void DWARFDebugNames::NameIndex::dumpAbbreviations(ScopedPrinter &W) const { ListScope AbbrevsScope(W, "Abbreviations"); for (const auto &Abbr : Abbrevs) Abbr.dump(W); } void DWARFDebugNames::NameIndex::dumpBucket(ScopedPrinter &W, uint32_t Bucket) const { ListScope BucketScope(W, ("Bucket " + Twine(Bucket)).str()); uint32_t Index = getBucketArrayEntry(Bucket); if (Index == 0) { W.printString("EMPTY"); return; } if (Index > Hdr.NameCount) { W.printString("Name index is invalid"); return; } for (; Index <= Hdr.NameCount; ++Index) { uint32_t Hash = getHashArrayEntry(Index); if (Hash % Hdr.BucketCount != Bucket) break; dumpName(W, getNameTableEntry(Index), Hash); } } LLVM_DUMP_METHOD void DWARFDebugNames::NameIndex::dump(ScopedPrinter &W) const { DictScope UnitScope(W, ("Name Index @ 0x" + Twine::utohexstr(Base)).str()); Hdr.dump(W); dumpCUs(W); dumpLocalTUs(W); dumpForeignTUs(W); dumpAbbreviations(W); if (Hdr.BucketCount > 0) { for (uint32_t Bucket = 0; Bucket < Hdr.BucketCount; ++Bucket) dumpBucket(W, Bucket); return; } W.startLine() << "Hash table not present\n"; for (NameTableEntry NTE : *this) dumpName(W, NTE, None); } llvm::Error DWARFDebugNames::extract() { uint32_t Offset = 0; while (AccelSection.isValidOffset(Offset)) { NameIndex Next(*this, Offset); if (llvm::Error E = Next.extract()) return E; Offset = Next.getNextUnitOffset(); NameIndices.push_back(std::move(Next)); } return Error::success(); } iterator_range DWARFDebugNames::NameIndex::equal_range(StringRef Key) const { return make_range(ValueIterator(*this, Key), ValueIterator()); } LLVM_DUMP_METHOD void DWARFDebugNames::dump(raw_ostream &OS) const { ScopedPrinter W(OS); for (const NameIndex &NI : NameIndices) NI.dump(W); } Optional DWARFDebugNames::ValueIterator::findEntryOffsetInCurrentIndex() { const Header &Hdr = CurrentIndex->Hdr; if (Hdr.BucketCount == 0) { // No Hash Table, We need to search through all names in the Name Index. for (NameTableEntry NTE : *CurrentIndex) { if (NTE.getString() == Key) return NTE.getEntryOffset(); } return None; } // The Name Index has a Hash Table, so use that to speed up the search. // Compute the Key Hash, if it has not been done already. if (!Hash) Hash = caseFoldingDjbHash(Key); uint32_t Bucket = *Hash % Hdr.BucketCount; uint32_t Index = CurrentIndex->getBucketArrayEntry(Bucket); if (Index == 0) return None; // Empty bucket for (; Index <= Hdr.NameCount; ++Index) { uint32_t Hash = CurrentIndex->getHashArrayEntry(Index); if (Hash % Hdr.BucketCount != Bucket) return None; // End of bucket NameTableEntry NTE = CurrentIndex->getNameTableEntry(Index); if (NTE.getString() == Key) return NTE.getEntryOffset(); } return None; } bool DWARFDebugNames::ValueIterator::getEntryAtCurrentOffset() { auto EntryOr = CurrentIndex->getEntry(&DataOffset); if (!EntryOr) { consumeError(EntryOr.takeError()); return false; } CurrentEntry = std::move(*EntryOr); return true; } bool DWARFDebugNames::ValueIterator::findInCurrentIndex() { Optional Offset = findEntryOffsetInCurrentIndex(); if (!Offset) return false; DataOffset = *Offset; return getEntryAtCurrentOffset(); } void DWARFDebugNames::ValueIterator::searchFromStartOfCurrentIndex() { for (const NameIndex *End = CurrentIndex->Section.NameIndices.end(); CurrentIndex != End; ++CurrentIndex) { if (findInCurrentIndex()) return; } setEnd(); } void DWARFDebugNames::ValueIterator::next() { assert(CurrentIndex && "Incrementing an end() iterator?"); // First try the next entry in the current Index. if (getEntryAtCurrentOffset()) return; // If we're a local iterator or we have reached the last Index, we're done. if (IsLocal || CurrentIndex == &CurrentIndex->Section.NameIndices.back()) { setEnd(); return; } // Otherwise, try the next index. ++CurrentIndex; searchFromStartOfCurrentIndex(); } DWARFDebugNames::ValueIterator::ValueIterator(const DWARFDebugNames &AccelTable, StringRef Key) : CurrentIndex(AccelTable.NameIndices.begin()), IsLocal(false), Key(Key) { searchFromStartOfCurrentIndex(); } DWARFDebugNames::ValueIterator::ValueIterator( const DWARFDebugNames::NameIndex &NI, StringRef Key) : CurrentIndex(&NI), IsLocal(true), Key(Key) { if (!findInCurrentIndex()) setEnd(); } iterator_range DWARFDebugNames::equal_range(StringRef Key) const { if (NameIndices.empty()) return make_range(ValueIterator(), ValueIterator()); return make_range(ValueIterator(*this, Key), ValueIterator()); } const DWARFDebugNames::NameIndex * DWARFDebugNames::getCUNameIndex(uint32_t CUOffset) { if (CUToNameIndex.size() == 0 && NameIndices.size() > 0) { for (const auto &NI : *this) { for (uint32_t CU = 0; CU < NI.getCUCount(); ++CU) CUToNameIndex.try_emplace(NI.getCUOffset(CU), &NI); } } return CUToNameIndex.lookup(CUOffset); }