//===--- RuntimeDyldChecker.cpp - RuntimeDyld tester framework --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/ExecutionEngine/RuntimeDyldChecker.h" #include "RuntimeDyldCheckerImpl.h" #include "RuntimeDyldImpl.h" #include "llvm/ADT/STLExtras.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDisassembler/MCDisassembler.h" #include "llvm/MC/MCInst.h" #include "llvm/Support/Path.h" #include #include #include #define DEBUG_TYPE "rtdyld" using namespace llvm; namespace llvm { // Helper class that implements the language evaluated by RuntimeDyldChecker. class RuntimeDyldCheckerExprEval { public: RuntimeDyldCheckerExprEval(const RuntimeDyldCheckerImpl &Checker, raw_ostream &ErrStream) : Checker(Checker) {} bool evaluate(StringRef Expr) const { // Expect equality expression of the form 'LHS = RHS'. Expr = Expr.trim(); size_t EQIdx = Expr.find('='); ParseContext OutsideLoad(false); // Evaluate LHS. StringRef LHSExpr = Expr.substr(0, EQIdx).rtrim(); StringRef RemainingExpr; EvalResult LHSResult; std::tie(LHSResult, RemainingExpr) = evalComplexExpr(evalSimpleExpr(LHSExpr, OutsideLoad), OutsideLoad); if (LHSResult.hasError()) return handleError(Expr, LHSResult); if (RemainingExpr != "") return handleError(Expr, unexpectedToken(RemainingExpr, LHSExpr, "")); // Evaluate RHS. StringRef RHSExpr = Expr.substr(EQIdx + 1).ltrim(); EvalResult RHSResult; std::tie(RHSResult, RemainingExpr) = evalComplexExpr(evalSimpleExpr(RHSExpr, OutsideLoad), OutsideLoad); if (RHSResult.hasError()) return handleError(Expr, RHSResult); if (RemainingExpr != "") return handleError(Expr, unexpectedToken(RemainingExpr, RHSExpr, "")); if (LHSResult.getValue() != RHSResult.getValue()) { Checker.ErrStream << "Expression '" << Expr << "' is false: " << format("0x%" PRIx64, LHSResult.getValue()) << " != " << format("0x%" PRIx64, RHSResult.getValue()) << "\n"; return false; } return true; } private: // RuntimeDyldCheckerExprEval requires some context when parsing exprs. In // particular, it needs to know whether a symbol is being evaluated in the // context of a load, in which case we want the linker's local address for // the symbol, or outside of a load, in which case we want the symbol's // address in the remote target. struct ParseContext { bool IsInsideLoad; ParseContext(bool IsInsideLoad) : IsInsideLoad(IsInsideLoad) {} }; const RuntimeDyldCheckerImpl &Checker; enum class BinOpToken : unsigned { Invalid, Add, Sub, BitwiseAnd, BitwiseOr, ShiftLeft, ShiftRight }; class EvalResult { public: EvalResult() : Value(0), ErrorMsg("") {} EvalResult(uint64_t Value) : Value(Value), ErrorMsg("") {} EvalResult(std::string ErrorMsg) : Value(0), ErrorMsg(std::move(ErrorMsg)) {} uint64_t getValue() const { return Value; } bool hasError() const { return ErrorMsg != ""; } const std::string &getErrorMsg() const { return ErrorMsg; } private: uint64_t Value; std::string ErrorMsg; }; StringRef getTokenForError(StringRef Expr) const { if (Expr.empty()) return ""; StringRef Token, Remaining; if (isalpha(Expr[0])) std::tie(Token, Remaining) = parseSymbol(Expr); else if (isdigit(Expr[0])) std::tie(Token, Remaining) = parseNumberString(Expr); else { unsigned TokLen = 1; if (Expr.startswith("<<") || Expr.startswith(">>")) TokLen = 2; Token = Expr.substr(0, TokLen); } return Token; } EvalResult unexpectedToken(StringRef TokenStart, StringRef SubExpr, StringRef ErrText) const { std::string ErrorMsg("Encountered unexpected token '"); ErrorMsg += getTokenForError(TokenStart); if (SubExpr != "") { ErrorMsg += "' while parsing subexpression '"; ErrorMsg += SubExpr; } ErrorMsg += "'"; if (ErrText != "") { ErrorMsg += " "; ErrorMsg += ErrText; } return EvalResult(std::move(ErrorMsg)); } bool handleError(StringRef Expr, const EvalResult &R) const { assert(R.hasError() && "Not an error result."); Checker.ErrStream << "Error evaluating expression '" << Expr << "': " << R.getErrorMsg() << "\n"; return false; } std::pair parseBinOpToken(StringRef Expr) const { if (Expr.empty()) return std::make_pair(BinOpToken::Invalid, ""); // Handle the two 2-character tokens. if (Expr.startswith("<<")) return std::make_pair(BinOpToken::ShiftLeft, Expr.substr(2).ltrim()); if (Expr.startswith(">>")) return std::make_pair(BinOpToken::ShiftRight, Expr.substr(2).ltrim()); // Handle one-character tokens. BinOpToken Op; switch (Expr[0]) { default: return std::make_pair(BinOpToken::Invalid, Expr); case '+': Op = BinOpToken::Add; break; case '-': Op = BinOpToken::Sub; break; case '&': Op = BinOpToken::BitwiseAnd; break; case '|': Op = BinOpToken::BitwiseOr; break; } return std::make_pair(Op, Expr.substr(1).ltrim()); } EvalResult computeBinOpResult(BinOpToken Op, const EvalResult &LHSResult, const EvalResult &RHSResult) const { switch (Op) { default: llvm_unreachable("Tried to evaluate unrecognized operation."); case BinOpToken::Add: return EvalResult(LHSResult.getValue() + RHSResult.getValue()); case BinOpToken::Sub: return EvalResult(LHSResult.getValue() - RHSResult.getValue()); case BinOpToken::BitwiseAnd: return EvalResult(LHSResult.getValue() & RHSResult.getValue()); case BinOpToken::BitwiseOr: return EvalResult(LHSResult.getValue() | RHSResult.getValue()); case BinOpToken::ShiftLeft: return EvalResult(LHSResult.getValue() << RHSResult.getValue()); case BinOpToken::ShiftRight: return EvalResult(LHSResult.getValue() >> RHSResult.getValue()); } } // Parse a symbol and return a (string, string) pair representing the symbol // name and expression remaining to be parsed. std::pair parseSymbol(StringRef Expr) const { size_t FirstNonSymbol = Expr.find_first_not_of("0123456789" "abcdefghijklmnopqrstuvwxyz" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" ":_.$"); return std::make_pair(Expr.substr(0, FirstNonSymbol), Expr.substr(FirstNonSymbol).ltrim()); } // Evaluate a call to decode_operand. Decode the instruction operand at the // given symbol and get the value of the requested operand. // Returns an error if the instruction cannot be decoded, or the requested // operand is not an immediate. // On success, returns a pair containing the value of the operand, plus // the expression remaining to be evaluated. std::pair evalDecodeOperand(StringRef Expr) const { if (!Expr.startswith("(")) return std::make_pair(unexpectedToken(Expr, Expr, "expected '('"), ""); StringRef RemainingExpr = Expr.substr(1).ltrim(); StringRef Symbol; std::tie(Symbol, RemainingExpr) = parseSymbol(RemainingExpr); if (!Checker.isSymbolValid(Symbol)) return std::make_pair( EvalResult(("Cannot decode unknown symbol '" + Symbol + "'").str()), ""); if (!RemainingExpr.startswith(",")) return std::make_pair( unexpectedToken(RemainingExpr, RemainingExpr, "expected ','"), ""); RemainingExpr = RemainingExpr.substr(1).ltrim(); EvalResult OpIdxExpr; std::tie(OpIdxExpr, RemainingExpr) = evalNumberExpr(RemainingExpr); if (OpIdxExpr.hasError()) return std::make_pair(OpIdxExpr, ""); if (!RemainingExpr.startswith(")")) return std::make_pair( unexpectedToken(RemainingExpr, RemainingExpr, "expected ')'"), ""); RemainingExpr = RemainingExpr.substr(1).ltrim(); MCInst Inst; uint64_t Size; if (!decodeInst(Symbol, Inst, Size)) return std::make_pair( EvalResult(("Couldn't decode instruction at '" + Symbol + "'").str()), ""); unsigned OpIdx = OpIdxExpr.getValue(); if (OpIdx >= Inst.getNumOperands()) { std::string ErrMsg; raw_string_ostream ErrMsgStream(ErrMsg); ErrMsgStream << "Invalid operand index '" << format("%i", OpIdx) << "' for instruction '" << Symbol << "'. Instruction has only " << format("%i", Inst.getNumOperands()) << " operands.\nInstruction is:\n "; Inst.dump_pretty(ErrMsgStream, Checker.InstPrinter); return std::make_pair(EvalResult(ErrMsgStream.str()), ""); } const MCOperand &Op = Inst.getOperand(OpIdx); if (!Op.isImm()) { std::string ErrMsg; raw_string_ostream ErrMsgStream(ErrMsg); ErrMsgStream << "Operand '" << format("%i", OpIdx) << "' of instruction '" << Symbol << "' is not an immediate.\nInstruction is:\n "; Inst.dump_pretty(ErrMsgStream, Checker.InstPrinter); return std::make_pair(EvalResult(ErrMsgStream.str()), ""); } return std::make_pair(EvalResult(Op.getImm()), RemainingExpr); } // Evaluate a call to next_pc. // Decode the instruction at the given symbol and return the following program // counter. // Returns an error if the instruction cannot be decoded. // On success, returns a pair containing the next PC, plus of the // expression remaining to be evaluated. std::pair evalNextPC(StringRef Expr, ParseContext PCtx) const { if (!Expr.startswith("(")) return std::make_pair(unexpectedToken(Expr, Expr, "expected '('"), ""); StringRef RemainingExpr = Expr.substr(1).ltrim(); StringRef Symbol; std::tie(Symbol, RemainingExpr) = parseSymbol(RemainingExpr); if (!Checker.isSymbolValid(Symbol)) return std::make_pair( EvalResult(("Cannot decode unknown symbol '" + Symbol + "'").str()), ""); if (!RemainingExpr.startswith(")")) return std::make_pair( unexpectedToken(RemainingExpr, RemainingExpr, "expected ')'"), ""); RemainingExpr = RemainingExpr.substr(1).ltrim(); MCInst Inst; uint64_t InstSize; if (!decodeInst(Symbol, Inst, InstSize)) return std::make_pair( EvalResult(("Couldn't decode instruction at '" + Symbol + "'").str()), ""); uint64_t SymbolAddr = PCtx.IsInsideLoad ? Checker.getSymbolLocalAddr(Symbol) : Checker.getSymbolRemoteAddr(Symbol); uint64_t NextPC = SymbolAddr + InstSize; return std::make_pair(EvalResult(NextPC), RemainingExpr); } // Evaluate a call to stub_addr. // Look up and return the address of the stub for the given // (,
, ) tuple. // On success, returns a pair containing the stub address, plus the expression // remaining to be evaluated. std::pair evalStubAddr(StringRef Expr, ParseContext PCtx) const { if (!Expr.startswith("(")) return std::make_pair(unexpectedToken(Expr, Expr, "expected '('"), ""); StringRef RemainingExpr = Expr.substr(1).ltrim(); // Handle file-name specially, as it may contain characters that aren't // legal for symbols. StringRef FileName; size_t ComaIdx = RemainingExpr.find(','); FileName = RemainingExpr.substr(0, ComaIdx).rtrim(); RemainingExpr = RemainingExpr.substr(ComaIdx).ltrim(); if (!RemainingExpr.startswith(",")) return std::make_pair( unexpectedToken(RemainingExpr, Expr, "expected ','"), ""); RemainingExpr = RemainingExpr.substr(1).ltrim(); StringRef SectionName; std::tie(SectionName, RemainingExpr) = parseSymbol(RemainingExpr); if (!RemainingExpr.startswith(",")) return std::make_pair( unexpectedToken(RemainingExpr, Expr, "expected ','"), ""); RemainingExpr = RemainingExpr.substr(1).ltrim(); StringRef Symbol; std::tie(Symbol, RemainingExpr) = parseSymbol(RemainingExpr); if (!RemainingExpr.startswith(")")) return std::make_pair( unexpectedToken(RemainingExpr, Expr, "expected ')'"), ""); RemainingExpr = RemainingExpr.substr(1).ltrim(); uint64_t StubAddr; std::string ErrorMsg = ""; std::tie(StubAddr, ErrorMsg) = Checker.getStubAddrFor( FileName, SectionName, Symbol, PCtx.IsInsideLoad); if (ErrorMsg != "") return std::make_pair(EvalResult(ErrorMsg), ""); return std::make_pair(EvalResult(StubAddr), RemainingExpr); } std::pair evalSectionAddr(StringRef Expr, ParseContext PCtx) const { if (!Expr.startswith("(")) return std::make_pair(unexpectedToken(Expr, Expr, "expected '('"), ""); StringRef RemainingExpr = Expr.substr(1).ltrim(); // Handle file-name specially, as it may contain characters that aren't // legal for symbols. StringRef FileName; size_t ComaIdx = RemainingExpr.find(','); FileName = RemainingExpr.substr(0, ComaIdx).rtrim(); RemainingExpr = RemainingExpr.substr(ComaIdx).ltrim(); if (!RemainingExpr.startswith(",")) return std::make_pair( unexpectedToken(RemainingExpr, Expr, "expected ','"), ""); RemainingExpr = RemainingExpr.substr(1).ltrim(); StringRef SectionName; std::tie(SectionName, RemainingExpr) = parseSymbol(RemainingExpr); if (!RemainingExpr.startswith(")")) return std::make_pair( unexpectedToken(RemainingExpr, Expr, "expected ')'"), ""); RemainingExpr = RemainingExpr.substr(1).ltrim(); uint64_t StubAddr; std::string ErrorMsg = ""; std::tie(StubAddr, ErrorMsg) = Checker.getSectionAddr( FileName, SectionName, PCtx.IsInsideLoad); if (ErrorMsg != "") return std::make_pair(EvalResult(ErrorMsg), ""); return std::make_pair(EvalResult(StubAddr), RemainingExpr); } // Evaluate an identiefer expr, which may be a symbol, or a call to // one of the builtin functions: get_insn_opcode or get_insn_length. // Return the result, plus the expression remaining to be parsed. std::pair evalIdentifierExpr(StringRef Expr, ParseContext PCtx) const { StringRef Symbol; StringRef RemainingExpr; std::tie(Symbol, RemainingExpr) = parseSymbol(Expr); // Check for builtin function calls. if (Symbol == "decode_operand") return evalDecodeOperand(RemainingExpr); else if (Symbol == "next_pc") return evalNextPC(RemainingExpr, PCtx); else if (Symbol == "stub_addr") return evalStubAddr(RemainingExpr, PCtx); else if (Symbol == "section_addr") return evalSectionAddr(RemainingExpr, PCtx); if (!Checker.isSymbolValid(Symbol)) { std::string ErrMsg("No known address for symbol '"); ErrMsg += Symbol; ErrMsg += "'"; if (Symbol.startswith("L")) ErrMsg += " (this appears to be an assembler local label - " " perhaps drop the 'L'?)"; return std::make_pair(EvalResult(ErrMsg), ""); } // The value for the symbol depends on the context we're evaluating in: // Inside a load this is the address in the linker's memory, outside a // load it's the address in the target processes memory. uint64_t Value = PCtx.IsInsideLoad ? Checker.getSymbolLocalAddr(Symbol) : Checker.getSymbolRemoteAddr(Symbol); // Looks like a plain symbol reference. return std::make_pair(EvalResult(Value), RemainingExpr); } // Parse a number (hexadecimal or decimal) and return a (string, string) // pair representing the number and the expression remaining to be parsed. std::pair parseNumberString(StringRef Expr) const { size_t FirstNonDigit = StringRef::npos; if (Expr.startswith("0x")) { FirstNonDigit = Expr.find_first_not_of("0123456789abcdefABCDEF", 2); if (FirstNonDigit == StringRef::npos) FirstNonDigit = Expr.size(); } else { FirstNonDigit = Expr.find_first_not_of("0123456789"); if (FirstNonDigit == StringRef::npos) FirstNonDigit = Expr.size(); } return std::make_pair(Expr.substr(0, FirstNonDigit), Expr.substr(FirstNonDigit)); } // Evaluate a constant numeric expression (hexadecimal or decimal) and // return a pair containing the result, and the expression remaining to be // evaluated. std::pair evalNumberExpr(StringRef Expr) const { StringRef ValueStr; StringRef RemainingExpr; std::tie(ValueStr, RemainingExpr) = parseNumberString(Expr); if (ValueStr.empty() || !isdigit(ValueStr[0])) return std::make_pair( unexpectedToken(RemainingExpr, RemainingExpr, "expected number"), ""); uint64_t Value; ValueStr.getAsInteger(0, Value); return std::make_pair(EvalResult(Value), RemainingExpr); } // Evaluate an expression of the form "()" and return a pair // containing the result of evaluating , plus the expression // remaining to be parsed. std::pair evalParensExpr(StringRef Expr, ParseContext PCtx) const { assert(Expr.startswith("(") && "Not a parenthesized expression"); EvalResult SubExprResult; StringRef RemainingExpr; std::tie(SubExprResult, RemainingExpr) = evalComplexExpr(evalSimpleExpr(Expr.substr(1).ltrim(), PCtx), PCtx); if (SubExprResult.hasError()) return std::make_pair(SubExprResult, ""); if (!RemainingExpr.startswith(")")) return std::make_pair( unexpectedToken(RemainingExpr, Expr, "expected ')'"), ""); RemainingExpr = RemainingExpr.substr(1).ltrim(); return std::make_pair(SubExprResult, RemainingExpr); } // Evaluate an expression in one of the following forms: // *{} // Return a pair containing the result, plus the expression remaining to be // parsed. std::pair evalLoadExpr(StringRef Expr) const { assert(Expr.startswith("*") && "Not a load expression"); StringRef RemainingExpr = Expr.substr(1).ltrim(); // Parse read size. if (!RemainingExpr.startswith("{")) return std::make_pair(EvalResult("Expected '{' following '*'."), ""); RemainingExpr = RemainingExpr.substr(1).ltrim(); EvalResult ReadSizeExpr; std::tie(ReadSizeExpr, RemainingExpr) = evalNumberExpr(RemainingExpr); if (ReadSizeExpr.hasError()) return std::make_pair(ReadSizeExpr, RemainingExpr); uint64_t ReadSize = ReadSizeExpr.getValue(); if (ReadSize < 1 || ReadSize > 8) return std::make_pair(EvalResult("Invalid size for dereference."), ""); if (!RemainingExpr.startswith("}")) return std::make_pair(EvalResult("Missing '}' for dereference."), ""); RemainingExpr = RemainingExpr.substr(1).ltrim(); // Evaluate the expression representing the load address. ParseContext LoadCtx(true); EvalResult LoadAddrExprResult; std::tie(LoadAddrExprResult, RemainingExpr) = evalComplexExpr(evalSimpleExpr(RemainingExpr, LoadCtx), LoadCtx); if (LoadAddrExprResult.hasError()) return std::make_pair(LoadAddrExprResult, ""); uint64_t LoadAddr = LoadAddrExprResult.getValue(); return std::make_pair( EvalResult(Checker.readMemoryAtAddr(LoadAddr, ReadSize)), RemainingExpr); } // Evaluate a "simple" expression. This is any expression that _isn't_ an // un-parenthesized binary expression. // // "Simple" expressions can be optionally bit-sliced. See evalSlicedExpr. // // Returns a pair containing the result of the evaluation, plus the // expression remaining to be parsed. std::pair evalSimpleExpr(StringRef Expr, ParseContext PCtx) const { EvalResult SubExprResult; StringRef RemainingExpr; if (Expr.empty()) return std::make_pair(EvalResult("Unexpected end of expression"), ""); if (Expr[0] == '(') std::tie(SubExprResult, RemainingExpr) = evalParensExpr(Expr, PCtx); else if (Expr[0] == '*') std::tie(SubExprResult, RemainingExpr) = evalLoadExpr(Expr); else if (isalpha(Expr[0]) || Expr[0] == '_') std::tie(SubExprResult, RemainingExpr) = evalIdentifierExpr(Expr, PCtx); else if (isdigit(Expr[0])) std::tie(SubExprResult, RemainingExpr) = evalNumberExpr(Expr); else return std::make_pair( unexpectedToken(Expr, Expr, "expected '(', '*', identifier, or number"), ""); if (SubExprResult.hasError()) return std::make_pair(SubExprResult, RemainingExpr); // Evaluate bit-slice if present. if (RemainingExpr.startswith("[")) std::tie(SubExprResult, RemainingExpr) = evalSliceExpr(std::make_pair(SubExprResult, RemainingExpr)); return std::make_pair(SubExprResult, RemainingExpr); } // Evaluate a bit-slice of an expression. // A bit-slice has the form "[high:low]". The result of evaluating a // slice is the bits between high and low (inclusive) in the original // expression, right shifted so that the "low" bit is in position 0 in the // result. // Returns a pair containing the result of the slice operation, plus the // expression remaining to be parsed. std::pair evalSliceExpr(const std::pair &Ctx) const { EvalResult SubExprResult; StringRef RemainingExpr; std::tie(SubExprResult, RemainingExpr) = Ctx; assert(RemainingExpr.startswith("[") && "Not a slice expr."); RemainingExpr = RemainingExpr.substr(1).ltrim(); EvalResult HighBitExpr; std::tie(HighBitExpr, RemainingExpr) = evalNumberExpr(RemainingExpr); if (HighBitExpr.hasError()) return std::make_pair(HighBitExpr, RemainingExpr); if (!RemainingExpr.startswith(":")) return std::make_pair( unexpectedToken(RemainingExpr, RemainingExpr, "expected ':'"), ""); RemainingExpr = RemainingExpr.substr(1).ltrim(); EvalResult LowBitExpr; std::tie(LowBitExpr, RemainingExpr) = evalNumberExpr(RemainingExpr); if (LowBitExpr.hasError()) return std::make_pair(LowBitExpr, RemainingExpr); if (!RemainingExpr.startswith("]")) return std::make_pair( unexpectedToken(RemainingExpr, RemainingExpr, "expected ']'"), ""); RemainingExpr = RemainingExpr.substr(1).ltrim(); unsigned HighBit = HighBitExpr.getValue(); unsigned LowBit = LowBitExpr.getValue(); uint64_t Mask = ((uint64_t)1 << (HighBit - LowBit + 1)) - 1; uint64_t SlicedValue = (SubExprResult.getValue() >> LowBit) & Mask; return std::make_pair(EvalResult(SlicedValue), RemainingExpr); } // Evaluate a "complex" expression. // Takes an already evaluated subexpression and checks for the presence of a // binary operator, computing the result of the binary operation if one is // found. Used to make arithmetic expressions left-associative. // Returns a pair containing the ultimate result of evaluating the // expression, plus the expression remaining to be evaluated. std::pair evalComplexExpr(const std::pair &LHSAndRemaining, ParseContext PCtx) const { EvalResult LHSResult; StringRef RemainingExpr; std::tie(LHSResult, RemainingExpr) = LHSAndRemaining; // If there was an error, or there's nothing left to evaluate, return the // result. if (LHSResult.hasError() || RemainingExpr == "") return std::make_pair(LHSResult, RemainingExpr); // Otherwise check if this is a binary expressioan. BinOpToken BinOp; std::tie(BinOp, RemainingExpr) = parseBinOpToken(RemainingExpr); // If this isn't a recognized expression just return. if (BinOp == BinOpToken::Invalid) return std::make_pair(LHSResult, RemainingExpr); // This is a recognized bin-op. Evaluate the RHS, then evaluate the binop. EvalResult RHSResult; std::tie(RHSResult, RemainingExpr) = evalSimpleExpr(RemainingExpr, PCtx); // If there was an error evaluating the RHS, return it. if (RHSResult.hasError()) return std::make_pair(RHSResult, RemainingExpr); // This is a binary expression - evaluate and try to continue as a // complex expr. EvalResult ThisResult(computeBinOpResult(BinOp, LHSResult, RHSResult)); return evalComplexExpr(std::make_pair(ThisResult, RemainingExpr), PCtx); } bool decodeInst(StringRef Symbol, MCInst &Inst, uint64_t &Size) const { MCDisassembler *Dis = Checker.Disassembler; StringRef SectionMem = Checker.getSubsectionStartingAt(Symbol); ArrayRef SectionBytes( reinterpret_cast(SectionMem.data()), SectionMem.size()); MCDisassembler::DecodeStatus S = Dis->getInstruction(Inst, Size, SectionBytes, 0, nulls(), nulls()); return (S == MCDisassembler::Success); } }; } RuntimeDyldCheckerImpl::RuntimeDyldCheckerImpl(RuntimeDyld &RTDyld, MCDisassembler *Disassembler, MCInstPrinter *InstPrinter, raw_ostream &ErrStream) : RTDyld(RTDyld), Disassembler(Disassembler), InstPrinter(InstPrinter), ErrStream(ErrStream) { RTDyld.Checker = this; } bool RuntimeDyldCheckerImpl::check(StringRef CheckExpr) const { CheckExpr = CheckExpr.trim(); LLVM_DEBUG(dbgs() << "RuntimeDyldChecker: Checking '" << CheckExpr << "'...\n"); RuntimeDyldCheckerExprEval P(*this, ErrStream); bool Result = P.evaluate(CheckExpr); (void)Result; LLVM_DEBUG(dbgs() << "RuntimeDyldChecker: '" << CheckExpr << "' " << (Result ? "passed" : "FAILED") << ".\n"); return Result; } bool RuntimeDyldCheckerImpl::checkAllRulesInBuffer(StringRef RulePrefix, MemoryBuffer *MemBuf) const { bool DidAllTestsPass = true; unsigned NumRules = 0; const char *LineStart = MemBuf->getBufferStart(); // Eat whitespace. while (LineStart != MemBuf->getBufferEnd() && std::isspace(*LineStart)) ++LineStart; while (LineStart != MemBuf->getBufferEnd() && *LineStart != '\0') { const char *LineEnd = LineStart; while (LineEnd != MemBuf->getBufferEnd() && *LineEnd != '\r' && *LineEnd != '\n') ++LineEnd; StringRef Line(LineStart, LineEnd - LineStart); if (Line.startswith(RulePrefix)) { DidAllTestsPass &= check(Line.substr(RulePrefix.size())); ++NumRules; } // Eat whitespace. LineStart = LineEnd; while (LineStart != MemBuf->getBufferEnd() && std::isspace(*LineStart)) ++LineStart; } return DidAllTestsPass && (NumRules != 0); } bool RuntimeDyldCheckerImpl::isSymbolValid(StringRef Symbol) const { if (getRTDyld().getSymbol(Symbol)) return true; JITSymbolResolver::LookupSet Symbols({Symbol}); auto Result = getRTDyld().Resolver.lookup(Symbols); if (!Result) { logAllUnhandledErrors(Result.takeError(), errs(), "RTDyldChecker: "); return false; } assert(Result->count(Symbol) && "Missing symbol result"); return true; } uint64_t RuntimeDyldCheckerImpl::getSymbolLocalAddr(StringRef Symbol) const { return static_cast( reinterpret_cast(getRTDyld().getSymbolLocalAddress(Symbol))); } uint64_t RuntimeDyldCheckerImpl::getSymbolRemoteAddr(StringRef Symbol) const { if (auto InternalSymbol = getRTDyld().getSymbol(Symbol)) return InternalSymbol.getAddress(); JITSymbolResolver::LookupSet Symbols({Symbol}); auto Result = getRTDyld().Resolver.lookup(Symbols); if (!Result) { logAllUnhandledErrors(Result.takeError(), errs(), "RTDyldChecker: "); return 0; } auto I = Result->find(Symbol); assert(I != Result->end() && "Missing symbol result"); return I->second.getAddress(); } uint64_t RuntimeDyldCheckerImpl::readMemoryAtAddr(uint64_t SrcAddr, unsigned Size) const { uintptr_t PtrSizedAddr = static_cast(SrcAddr); assert(PtrSizedAddr == SrcAddr && "Linker memory pointer out-of-range."); uint8_t *Src = reinterpret_cast(PtrSizedAddr); return getRTDyld().readBytesUnaligned(Src, Size); } std::pair RuntimeDyldCheckerImpl::findSectionAddrInfo(StringRef FileName, StringRef SectionName) const { auto SectionMapItr = Stubs.find(FileName); if (SectionMapItr == Stubs.end()) { std::string ErrorMsg = "File '"; ErrorMsg += FileName; ErrorMsg += "' not found. "; if (Stubs.empty()) ErrorMsg += "No stubs registered."; else { ErrorMsg += "Available files are:"; for (const auto& StubEntry : Stubs) { ErrorMsg += " '"; ErrorMsg += StubEntry.first; ErrorMsg += "'"; } } ErrorMsg += "\n"; return std::make_pair(nullptr, ErrorMsg); } auto SectionInfoItr = SectionMapItr->second.find(SectionName); if (SectionInfoItr == SectionMapItr->second.end()) return std::make_pair(nullptr, ("Section '" + SectionName + "' not found in file '" + FileName + "'\n").str()); return std::make_pair(&SectionInfoItr->second, std::string("")); } std::pair RuntimeDyldCheckerImpl::getSectionAddr( StringRef FileName, StringRef SectionName, bool IsInsideLoad) const { const SectionAddressInfo *SectionInfo = nullptr; { std::string ErrorMsg; std::tie(SectionInfo, ErrorMsg) = findSectionAddrInfo(FileName, SectionName); if (ErrorMsg != "") return std::make_pair(0, ErrorMsg); } unsigned SectionID = SectionInfo->SectionID; uint64_t Addr; if (IsInsideLoad) Addr = static_cast(reinterpret_cast( getRTDyld().Sections[SectionID].getAddress())); else Addr = getRTDyld().Sections[SectionID].getLoadAddress(); return std::make_pair(Addr, std::string("")); } std::pair RuntimeDyldCheckerImpl::getStubAddrFor( StringRef FileName, StringRef SectionName, StringRef SymbolName, bool IsInsideLoad) const { const SectionAddressInfo *SectionInfo = nullptr; { std::string ErrorMsg; std::tie(SectionInfo, ErrorMsg) = findSectionAddrInfo(FileName, SectionName); if (ErrorMsg != "") return std::make_pair(0, ErrorMsg); } unsigned SectionID = SectionInfo->SectionID; const StubOffsetsMap &SymbolStubs = SectionInfo->StubOffsets; auto StubOffsetItr = SymbolStubs.find(SymbolName); if (StubOffsetItr == SymbolStubs.end()) return std::make_pair(0, ("Stub for symbol '" + SymbolName + "' not found. " "If '" + SymbolName + "' is an internal symbol this " "may indicate that the stub target offset is being " "computed incorrectly.\n").str()); uint64_t StubOffset = StubOffsetItr->second; uint64_t Addr; if (IsInsideLoad) { uintptr_t SectionBase = reinterpret_cast( getRTDyld().Sections[SectionID].getAddress()); Addr = static_cast(SectionBase) + StubOffset; } else { uint64_t SectionBase = getRTDyld().Sections[SectionID].getLoadAddress(); Addr = SectionBase + StubOffset; } return std::make_pair(Addr, std::string("")); } StringRef RuntimeDyldCheckerImpl::getSubsectionStartingAt(StringRef Name) const { RTDyldSymbolTable::const_iterator pos = getRTDyld().GlobalSymbolTable.find(Name); if (pos == getRTDyld().GlobalSymbolTable.end()) return StringRef(); const auto &SymInfo = pos->second; uint8_t *SectionAddr = getRTDyld().getSectionAddress(SymInfo.getSectionID()); return StringRef(reinterpret_cast(SectionAddr) + SymInfo.getOffset(), getRTDyld().Sections[SymInfo.getSectionID()].getSize() - SymInfo.getOffset()); } Optional RuntimeDyldCheckerImpl::getSectionLoadAddress(void *LocalAddress) const { for (auto &S : getRTDyld().Sections) { if (S.getAddress() == LocalAddress) return S.getLoadAddress(); } return Optional(); } void RuntimeDyldCheckerImpl::registerSection( StringRef FilePath, unsigned SectionID) { StringRef FileName = sys::path::filename(FilePath); const SectionEntry &Section = getRTDyld().Sections[SectionID]; StringRef SectionName = Section.getName(); Stubs[FileName][SectionName].SectionID = SectionID; } void RuntimeDyldCheckerImpl::registerStubMap( StringRef FilePath, unsigned SectionID, const RuntimeDyldImpl::StubMap &RTDyldStubs) { StringRef FileName = sys::path::filename(FilePath); const SectionEntry &Section = getRTDyld().Sections[SectionID]; StringRef SectionName = Section.getName(); Stubs[FileName][SectionName].SectionID = SectionID; for (auto &StubMapEntry : RTDyldStubs) { std::string SymbolName = ""; if (StubMapEntry.first.SymbolName) SymbolName = StubMapEntry.first.SymbolName; else { // If this is a (Section, Offset) pair, do a reverse lookup in the // global symbol table to find the name. for (auto &GSTEntry : getRTDyld().GlobalSymbolTable) { const auto &SymInfo = GSTEntry.second; if (SymInfo.getSectionID() == StubMapEntry.first.SectionID && SymInfo.getOffset() == static_cast(StubMapEntry.first.Offset)) { SymbolName = GSTEntry.first(); break; } } } if (SymbolName != "") Stubs[FileName][SectionName].StubOffsets[SymbolName] = StubMapEntry.second; } } RuntimeDyldChecker::RuntimeDyldChecker(RuntimeDyld &RTDyld, MCDisassembler *Disassembler, MCInstPrinter *InstPrinter, raw_ostream &ErrStream) : Impl(make_unique(RTDyld, Disassembler, InstPrinter, ErrStream)) {} RuntimeDyldChecker::~RuntimeDyldChecker() {} RuntimeDyld& RuntimeDyldChecker::getRTDyld() { return Impl->RTDyld; } const RuntimeDyld& RuntimeDyldChecker::getRTDyld() const { return Impl->RTDyld; } bool RuntimeDyldChecker::check(StringRef CheckExpr) const { return Impl->check(CheckExpr); } bool RuntimeDyldChecker::checkAllRulesInBuffer(StringRef RulePrefix, MemoryBuffer *MemBuf) const { return Impl->checkAllRulesInBuffer(RulePrefix, MemBuf); } std::pair RuntimeDyldChecker::getSectionAddr(StringRef FileName, StringRef SectionName, bool LocalAddress) { return Impl->getSectionAddr(FileName, SectionName, LocalAddress); } Optional RuntimeDyldChecker::getSectionLoadAddress(void *LocalAddress) const { return Impl->getSectionLoadAddress(LocalAddress); }