//===--- MemoryBuffer.cpp - Memory Buffer implementation ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the MemoryBuffer interface. // //===----------------------------------------------------------------------===// #include "llvm/Support/MemoryBuffer.h" #include "llvm/ADT/SmallString.h" #include "llvm/Config/config.h" #include "llvm/Support/Errc.h" #include "llvm/Support/Errno.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Path.h" #include "llvm/Support/Process.h" #include "llvm/Support/Program.h" #include "llvm/Support/SmallVectorMemoryBuffer.h" #include #include #include #include #include #include #if !defined(_MSC_VER) && !defined(__MINGW32__) #include #else #include #endif using namespace llvm; //===----------------------------------------------------------------------===// // MemoryBuffer implementation itself. //===----------------------------------------------------------------------===// MemoryBuffer::~MemoryBuffer() { } /// init - Initialize this MemoryBuffer as a reference to externally allocated /// memory, memory that we know is already null terminated. void MemoryBuffer::init(const char *BufStart, const char *BufEnd, bool RequiresNullTerminator) { assert((!RequiresNullTerminator || BufEnd[0] == 0) && "Buffer is not null terminated!"); BufferStart = BufStart; BufferEnd = BufEnd; } //===----------------------------------------------------------------------===// // MemoryBufferMem implementation. //===----------------------------------------------------------------------===// /// CopyStringRef - Copies contents of a StringRef into a block of memory and /// null-terminates it. static void CopyStringRef(char *Memory, StringRef Data) { if (!Data.empty()) memcpy(Memory, Data.data(), Data.size()); Memory[Data.size()] = 0; // Null terminate string. } namespace { struct NamedBufferAlloc { const Twine &Name; NamedBufferAlloc(const Twine &Name) : Name(Name) {} }; } void *operator new(size_t N, const NamedBufferAlloc &Alloc) { SmallString<256> NameBuf; StringRef NameRef = Alloc.Name.toStringRef(NameBuf); char *Mem = static_cast(operator new(N + NameRef.size() + 1)); CopyStringRef(Mem + N, NameRef); return Mem; } namespace { /// MemoryBufferMem - Named MemoryBuffer pointing to a block of memory. template class MemoryBufferMem : public MB { public: MemoryBufferMem(StringRef InputData, bool RequiresNullTerminator) { MemoryBuffer::init(InputData.begin(), InputData.end(), RequiresNullTerminator); } /// Disable sized deallocation for MemoryBufferMem, because it has /// tail-allocated data. void operator delete(void *p) { ::operator delete(p); } StringRef getBufferIdentifier() const override { // The name is stored after the class itself. return StringRef(reinterpret_cast(this + 1)); } MemoryBuffer::BufferKind getBufferKind() const override { return MemoryBuffer::MemoryBuffer_Malloc; } }; } template static ErrorOr> getFileAux(const Twine &Filename, int64_t FileSize, uint64_t MapSize, uint64_t Offset, bool RequiresNullTerminator, bool IsVolatile); std::unique_ptr MemoryBuffer::getMemBuffer(StringRef InputData, StringRef BufferName, bool RequiresNullTerminator) { auto *Ret = new (NamedBufferAlloc(BufferName)) MemoryBufferMem(InputData, RequiresNullTerminator); return std::unique_ptr(Ret); } std::unique_ptr MemoryBuffer::getMemBuffer(MemoryBufferRef Ref, bool RequiresNullTerminator) { return std::unique_ptr(getMemBuffer( Ref.getBuffer(), Ref.getBufferIdentifier(), RequiresNullTerminator)); } static ErrorOr> getMemBufferCopyImpl(StringRef InputData, const Twine &BufferName) { auto Buf = WritableMemoryBuffer::getNewUninitMemBuffer(InputData.size(), BufferName); if (!Buf) return make_error_code(errc::not_enough_memory); memcpy(Buf->getBufferStart(), InputData.data(), InputData.size()); return std::move(Buf); } std::unique_ptr MemoryBuffer::getMemBufferCopy(StringRef InputData, const Twine &BufferName) { auto Buf = getMemBufferCopyImpl(InputData, BufferName); if (Buf) return std::move(*Buf); return nullptr; } ErrorOr> MemoryBuffer::getFileOrSTDIN(const Twine &Filename, int64_t FileSize, bool RequiresNullTerminator) { SmallString<256> NameBuf; StringRef NameRef = Filename.toStringRef(NameBuf); if (NameRef == "-") return getSTDIN(); return getFile(Filename, FileSize, RequiresNullTerminator); } ErrorOr> MemoryBuffer::getFileSlice(const Twine &FilePath, uint64_t MapSize, uint64_t Offset, bool IsVolatile) { return getFileAux(FilePath, -1, MapSize, Offset, false, IsVolatile); } //===----------------------------------------------------------------------===// // MemoryBuffer::getFile implementation. //===----------------------------------------------------------------------===// namespace { /// Memory maps a file descriptor using sys::fs::mapped_file_region. /// /// This handles converting the offset into a legal offset on the platform. template class MemoryBufferMMapFile : public MB { sys::fs::mapped_file_region MFR; static uint64_t getLegalMapOffset(uint64_t Offset) { return Offset & ~(sys::fs::mapped_file_region::alignment() - 1); } static uint64_t getLegalMapSize(uint64_t Len, uint64_t Offset) { return Len + (Offset - getLegalMapOffset(Offset)); } const char *getStart(uint64_t Len, uint64_t Offset) { return MFR.const_data() + (Offset - getLegalMapOffset(Offset)); } public: MemoryBufferMMapFile(bool RequiresNullTerminator, int FD, uint64_t Len, uint64_t Offset, std::error_code &EC) : MFR(FD, MB::Mapmode, getLegalMapSize(Len, Offset), getLegalMapOffset(Offset), EC) { if (!EC) { const char *Start = getStart(Len, Offset); MemoryBuffer::init(Start, Start + Len, RequiresNullTerminator); } } /// Disable sized deallocation for MemoryBufferMMapFile, because it has /// tail-allocated data. void operator delete(void *p) { ::operator delete(p); } StringRef getBufferIdentifier() const override { // The name is stored after the class itself. return StringRef(reinterpret_cast(this + 1)); } MemoryBuffer::BufferKind getBufferKind() const override { return MemoryBuffer::MemoryBuffer_MMap; } }; } static ErrorOr> getMemoryBufferForStream(int FD, const Twine &BufferName) { const ssize_t ChunkSize = 4096*4; SmallString Buffer; ssize_t ReadBytes; // Read into Buffer until we hit EOF. do { Buffer.reserve(Buffer.size() + ChunkSize); ReadBytes = sys::RetryAfterSignal(-1, ::read, FD, Buffer.end(), ChunkSize); if (ReadBytes == -1) return std::error_code(errno, std::generic_category()); Buffer.set_size(Buffer.size() + ReadBytes); } while (ReadBytes != 0); return getMemBufferCopyImpl(Buffer, BufferName); } ErrorOr> MemoryBuffer::getFile(const Twine &Filename, int64_t FileSize, bool RequiresNullTerminator, bool IsVolatile) { return getFileAux(Filename, FileSize, FileSize, 0, RequiresNullTerminator, IsVolatile); } template static ErrorOr> getOpenFileImpl(int FD, const Twine &Filename, uint64_t FileSize, uint64_t MapSize, int64_t Offset, bool RequiresNullTerminator, bool IsVolatile); template static ErrorOr> getFileAux(const Twine &Filename, int64_t FileSize, uint64_t MapSize, uint64_t Offset, bool RequiresNullTerminator, bool IsVolatile) { int FD; std::error_code EC = sys::fs::openFileForRead(Filename, FD, sys::fs::OF_None); if (EC) return EC; auto Ret = getOpenFileImpl(FD, Filename, FileSize, MapSize, Offset, RequiresNullTerminator, IsVolatile); close(FD); return Ret; } ErrorOr> WritableMemoryBuffer::getFile(const Twine &Filename, int64_t FileSize, bool IsVolatile) { return getFileAux(Filename, FileSize, FileSize, 0, /*RequiresNullTerminator*/ false, IsVolatile); } ErrorOr> WritableMemoryBuffer::getFileSlice(const Twine &Filename, uint64_t MapSize, uint64_t Offset, bool IsVolatile) { return getFileAux(Filename, -1, MapSize, Offset, false, IsVolatile); } std::unique_ptr WritableMemoryBuffer::getNewUninitMemBuffer(size_t Size, const Twine &BufferName) { using MemBuffer = MemoryBufferMem; // Allocate space for the MemoryBuffer, the data and the name. It is important // that MemoryBuffer and data are aligned so PointerIntPair works with them. // TODO: Is 16-byte alignment enough? We copy small object files with large // alignment expectations into this buffer. SmallString<256> NameBuf; StringRef NameRef = BufferName.toStringRef(NameBuf); size_t AlignedStringLen = alignTo(sizeof(MemBuffer) + NameRef.size() + 1, 16); size_t RealLen = AlignedStringLen + Size + 1; char *Mem = static_cast(operator new(RealLen, std::nothrow)); if (!Mem) return nullptr; // The name is stored after the class itself. CopyStringRef(Mem + sizeof(MemBuffer), NameRef); // The buffer begins after the name and must be aligned. char *Buf = Mem + AlignedStringLen; Buf[Size] = 0; // Null terminate buffer. auto *Ret = new (Mem) MemBuffer(StringRef(Buf, Size), true); return std::unique_ptr(Ret); } std::unique_ptr WritableMemoryBuffer::getNewMemBuffer(size_t Size, const Twine &BufferName) { auto SB = WritableMemoryBuffer::getNewUninitMemBuffer(Size, BufferName); if (!SB) return nullptr; memset(SB->getBufferStart(), 0, Size); return SB; } static bool shouldUseMmap(int FD, size_t FileSize, size_t MapSize, off_t Offset, bool RequiresNullTerminator, int PageSize, bool IsVolatile) { // mmap may leave the buffer without null terminator if the file size changed // by the time the last page is mapped in, so avoid it if the file size is // likely to change. if (IsVolatile) return false; // We don't use mmap for small files because this can severely fragment our // address space. if (MapSize < 4 * 4096 || MapSize < (unsigned)PageSize) return false; if (!RequiresNullTerminator) return true; // If we don't know the file size, use fstat to find out. fstat on an open // file descriptor is cheaper than stat on a random path. // FIXME: this chunk of code is duplicated, but it avoids a fstat when // RequiresNullTerminator = false and MapSize != -1. if (FileSize == size_t(-1)) { sys::fs::file_status Status; if (sys::fs::status(FD, Status)) return false; FileSize = Status.getSize(); } // If we need a null terminator and the end of the map is inside the file, // we cannot use mmap. size_t End = Offset + MapSize; assert(End <= FileSize); if (End != FileSize) return false; // Don't try to map files that are exactly a multiple of the system page size // if we need a null terminator. if ((FileSize & (PageSize -1)) == 0) return false; #if defined(__CYGWIN__) // Don't try to map files that are exactly a multiple of the physical page size // if we need a null terminator. // FIXME: We should reorganize again getPageSize() on Win32. if ((FileSize & (4096 - 1)) == 0) return false; #endif return true; } static ErrorOr> getReadWriteFile(const Twine &Filename, uint64_t FileSize, uint64_t MapSize, uint64_t Offset) { int FD; std::error_code EC = sys::fs::openFileForReadWrite( Filename, FD, sys::fs::CD_OpenExisting, sys::fs::OF_None); if (EC) return EC; // Default is to map the full file. if (MapSize == uint64_t(-1)) { // If we don't know the file size, use fstat to find out. fstat on an open // file descriptor is cheaper than stat on a random path. if (FileSize == uint64_t(-1)) { sys::fs::file_status Status; std::error_code EC = sys::fs::status(FD, Status); if (EC) return EC; // If this not a file or a block device (e.g. it's a named pipe // or character device), we can't mmap it, so error out. sys::fs::file_type Type = Status.type(); if (Type != sys::fs::file_type::regular_file && Type != sys::fs::file_type::block_file) return make_error_code(errc::invalid_argument); FileSize = Status.getSize(); } MapSize = FileSize; } std::unique_ptr Result( new (NamedBufferAlloc(Filename)) MemoryBufferMMapFile(false, FD, MapSize, Offset, EC)); if (EC) return EC; return std::move(Result); } ErrorOr> WriteThroughMemoryBuffer::getFile(const Twine &Filename, int64_t FileSize) { return getReadWriteFile(Filename, FileSize, FileSize, 0); } /// Map a subrange of the specified file as a WritableMemoryBuffer. ErrorOr> WriteThroughMemoryBuffer::getFileSlice(const Twine &Filename, uint64_t MapSize, uint64_t Offset) { return getReadWriteFile(Filename, -1, MapSize, Offset); } template static ErrorOr> getOpenFileImpl(int FD, const Twine &Filename, uint64_t FileSize, uint64_t MapSize, int64_t Offset, bool RequiresNullTerminator, bool IsVolatile) { static int PageSize = sys::Process::getPageSize(); // Default is to map the full file. if (MapSize == uint64_t(-1)) { // If we don't know the file size, use fstat to find out. fstat on an open // file descriptor is cheaper than stat on a random path. if (FileSize == uint64_t(-1)) { sys::fs::file_status Status; std::error_code EC = sys::fs::status(FD, Status); if (EC) return EC; // If this not a file or a block device (e.g. it's a named pipe // or character device), we can't trust the size. Create the memory // buffer by copying off the stream. sys::fs::file_type Type = Status.type(); if (Type != sys::fs::file_type::regular_file && Type != sys::fs::file_type::block_file) return getMemoryBufferForStream(FD, Filename); FileSize = Status.getSize(); } MapSize = FileSize; } if (shouldUseMmap(FD, FileSize, MapSize, Offset, RequiresNullTerminator, PageSize, IsVolatile)) { std::error_code EC; std::unique_ptr Result( new (NamedBufferAlloc(Filename)) MemoryBufferMMapFile( RequiresNullTerminator, FD, MapSize, Offset, EC)); if (!EC) return std::move(Result); } auto Buf = WritableMemoryBuffer::getNewUninitMemBuffer(MapSize, Filename); if (!Buf) { // Failed to create a buffer. The only way it can fail is if // new(std::nothrow) returns 0. return make_error_code(errc::not_enough_memory); } char *BufPtr = Buf.get()->getBufferStart(); size_t BytesLeft = MapSize; #ifndef HAVE_PREAD if (lseek(FD, Offset, SEEK_SET) == -1) return std::error_code(errno, std::generic_category()); #endif while (BytesLeft) { #ifdef HAVE_PREAD ssize_t NumRead = sys::RetryAfterSignal(-1, ::pread, FD, BufPtr, BytesLeft, MapSize - BytesLeft + Offset); #else ssize_t NumRead = sys::RetryAfterSignal(-1, ::read, FD, BufPtr, BytesLeft); #endif if (NumRead == -1) { // Error while reading. return std::error_code(errno, std::generic_category()); } if (NumRead == 0) { memset(BufPtr, 0, BytesLeft); // zero-initialize rest of the buffer. break; } BytesLeft -= NumRead; BufPtr += NumRead; } return std::move(Buf); } ErrorOr> MemoryBuffer::getOpenFile(int FD, const Twine &Filename, uint64_t FileSize, bool RequiresNullTerminator, bool IsVolatile) { return getOpenFileImpl(FD, Filename, FileSize, FileSize, 0, RequiresNullTerminator, IsVolatile); } ErrorOr> MemoryBuffer::getOpenFileSlice(int FD, const Twine &Filename, uint64_t MapSize, int64_t Offset, bool IsVolatile) { assert(MapSize != uint64_t(-1)); return getOpenFileImpl(FD, Filename, -1, MapSize, Offset, false, IsVolatile); } ErrorOr> MemoryBuffer::getSTDIN() { // Read in all of the data from stdin, we cannot mmap stdin. // // FIXME: That isn't necessarily true, we should try to mmap stdin and // fallback if it fails. sys::ChangeStdinToBinary(); return getMemoryBufferForStream(0, ""); } ErrorOr> MemoryBuffer::getFileAsStream(const Twine &Filename) { int FD; std::error_code EC = sys::fs::openFileForRead(Filename, FD, sys::fs::OF_None); if (EC) return EC; ErrorOr> Ret = getMemoryBufferForStream(FD, Filename); close(FD); return Ret; } MemoryBufferRef MemoryBuffer::getMemBufferRef() const { StringRef Data = getBuffer(); StringRef Identifier = getBufferIdentifier(); return MemoryBufferRef(Data, Identifier); } SmallVectorMemoryBuffer::~SmallVectorMemoryBuffer() {}