//===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// Implements the AMDGPU specific subclass of TargetSubtarget. // //===----------------------------------------------------------------------===// #include "AMDGPUSubtarget.h" #include "AMDGPU.h" #include "AMDGPUTargetMachine.h" #include "AMDGPUCallLowering.h" #include "AMDGPUInstructionSelector.h" #include "AMDGPULegalizerInfo.h" #include "AMDGPURegisterBankInfo.h" #include "SIMachineFunctionInfo.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "llvm/ADT/SmallString.h" #include "llvm/CodeGen/MachineScheduler.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/IR/MDBuilder.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include using namespace llvm; #define DEBUG_TYPE "amdgpu-subtarget" #define GET_SUBTARGETINFO_TARGET_DESC #define GET_SUBTARGETINFO_CTOR #define AMDGPUSubtarget GCNSubtarget #include "AMDGPUGenSubtargetInfo.inc" #define GET_SUBTARGETINFO_TARGET_DESC #define GET_SUBTARGETINFO_CTOR #undef AMDGPUSubtarget #include "R600GenSubtargetInfo.inc" GCNSubtarget::~GCNSubtarget() = default; R600Subtarget & R600Subtarget::initializeSubtargetDependencies(const Triple &TT, StringRef GPU, StringRef FS) { SmallString<256> FullFS("+promote-alloca,+dx10-clamp,"); FullFS += FS; ParseSubtargetFeatures(GPU, FullFS); // FIXME: I don't think think Evergreen has any useful support for // denormals, but should be checked. Should we issue a warning somewhere // if someone tries to enable these? if (getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) { FP32Denormals = false; } HasMulU24 = getGeneration() >= EVERGREEN; HasMulI24 = hasCaymanISA(); return *this; } GCNSubtarget & GCNSubtarget::initializeSubtargetDependencies(const Triple &TT, StringRef GPU, StringRef FS) { // Determine default and user-specified characteristics // On SI+, we want FP64 denormals to be on by default. FP32 denormals can be // enabled, but some instructions do not respect them and they run at the // double precision rate, so don't enable by default. // // We want to be able to turn these off, but making this a subtarget feature // for SI has the unhelpful behavior that it unsets everything else if you // disable it. SmallString<256> FullFS("+promote-alloca,+dx10-clamp,+load-store-opt,"); if (isAmdHsaOS()) // Turn on FlatForGlobal for HSA. FullFS += "+flat-address-space,+flat-for-global,+unaligned-buffer-access,+trap-handler,"; // FIXME: I don't think think Evergreen has any useful support for // denormals, but should be checked. Should we issue a warning somewhere // if someone tries to enable these? if (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) { FullFS += "+fp64-fp16-denormals,"; } else { FullFS += "-fp32-denormals,"; } FullFS += FS; ParseSubtargetFeatures(GPU, FullFS); // We don't support FP64 for EG/NI atm. assert(!hasFP64() || (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS)); // Unless +-flat-for-global is specified, turn on FlatForGlobal for all OS-es // on VI and newer hardware to avoid assertion failures due to missing ADDR64 // variants of MUBUF instructions. if (!hasAddr64() && !FS.contains("flat-for-global")) { FlatForGlobal = true; } // Set defaults if needed. if (MaxPrivateElementSize == 0) MaxPrivateElementSize = 4; if (LDSBankCount == 0) LDSBankCount = 32; if (TT.getArch() == Triple::amdgcn) { if (LocalMemorySize == 0) LocalMemorySize = 32768; // Do something sensible for unspecified target. if (!HasMovrel && !HasVGPRIndexMode) HasMovrel = true; } HasFminFmaxLegacy = getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS; return *this; } AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT, const FeatureBitset &FeatureBits) : TargetTriple(TT), SubtargetFeatureBits(FeatureBits), Has16BitInsts(false), HasMadMixInsts(false), FP32Denormals(false), FPExceptions(false), HasSDWA(false), HasVOP3PInsts(false), HasMulI24(true), HasMulU24(true), HasFminFmaxLegacy(true), EnablePromoteAlloca(false), LocalMemorySize(0), WavefrontSize(0) { } GCNSubtarget::GCNSubtarget(const Triple &TT, StringRef GPU, StringRef FS, const GCNTargetMachine &TM) : AMDGPUGenSubtargetInfo(TT, GPU, FS), AMDGPUSubtarget(TT, getFeatureBits()), TargetTriple(TT), Gen(SOUTHERN_ISLANDS), IsaVersion(ISAVersion0_0_0), LDSBankCount(0), MaxPrivateElementSize(0), FastFMAF32(false), HalfRate64Ops(false), FP64FP16Denormals(false), DX10Clamp(false), FlatForGlobal(false), AutoWaitcntBeforeBarrier(false), CodeObjectV3(false), UnalignedScratchAccess(false), UnalignedBufferAccess(false), HasApertureRegs(false), EnableXNACK(false), TrapHandler(false), DebuggerInsertNops(false), DebuggerEmitPrologue(false), EnableHugePrivateBuffer(false), EnableVGPRSpilling(false), EnableLoadStoreOpt(false), EnableUnsafeDSOffsetFolding(false), EnableSIScheduler(false), EnableDS128(false), DumpCode(false), FP64(false), GCN3Encoding(false), CIInsts(false), GFX9Insts(false), SGPRInitBug(false), HasSMemRealTime(false), HasIntClamp(false), HasFmaMixInsts(false), HasMovrel(false), HasVGPRIndexMode(false), HasScalarStores(false), HasScalarAtomics(false), HasInv2PiInlineImm(false), HasSDWAOmod(false), HasSDWAScalar(false), HasSDWASdst(false), HasSDWAMac(false), HasSDWAOutModsVOPC(false), HasDPP(false), HasDLInsts(false), D16PreservesUnusedBits(false), FlatAddressSpace(false), FlatInstOffsets(false), FlatGlobalInsts(false), FlatScratchInsts(false), AddNoCarryInsts(false), HasUnpackedD16VMem(false), ScalarizeGlobal(false), FeatureDisable(false), InstrInfo(initializeSubtargetDependencies(TT, GPU, FS)), TLInfo(TM, *this), FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0) { AS = AMDGPU::getAMDGPUAS(TT); CallLoweringInfo.reset(new AMDGPUCallLowering(*getTargetLowering())); Legalizer.reset(new AMDGPULegalizerInfo(*this, TM)); RegBankInfo.reset(new AMDGPURegisterBankInfo(*getRegisterInfo())); InstSelector.reset(new AMDGPUInstructionSelector( *this, *static_cast(RegBankInfo.get()), TM)); } unsigned AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves, const Function &F) const { if (NWaves == 1) return getLocalMemorySize(); unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second; unsigned WorkGroupsPerCu = getMaxWorkGroupsPerCU(WorkGroupSize); unsigned MaxWaves = getMaxWavesPerEU(); return getLocalMemorySize() * MaxWaves / WorkGroupsPerCu / NWaves; } unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(uint32_t Bytes, const Function &F) const { unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second; unsigned WorkGroupsPerCu = getMaxWorkGroupsPerCU(WorkGroupSize); unsigned MaxWaves = getMaxWavesPerEU(); unsigned Limit = getLocalMemorySize() * MaxWaves / WorkGroupsPerCu; unsigned NumWaves = Limit / (Bytes ? Bytes : 1u); NumWaves = std::min(NumWaves, MaxWaves); NumWaves = std::max(NumWaves, 1u); return NumWaves; } unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(const MachineFunction &MF) const { const auto *MFI = MF.getInfo(); return getOccupancyWithLocalMemSize(MFI->getLDSSize(), MF.getFunction()); } std::pair AMDGPUSubtarget::getDefaultFlatWorkGroupSize(CallingConv::ID CC) const { switch (CC) { case CallingConv::AMDGPU_CS: case CallingConv::AMDGPU_KERNEL: case CallingConv::SPIR_KERNEL: return std::make_pair(getWavefrontSize() * 2, getWavefrontSize() * 4); case CallingConv::AMDGPU_VS: case CallingConv::AMDGPU_LS: case CallingConv::AMDGPU_HS: case CallingConv::AMDGPU_ES: case CallingConv::AMDGPU_GS: case CallingConv::AMDGPU_PS: return std::make_pair(1, getWavefrontSize()); default: return std::make_pair(1, 16 * getWavefrontSize()); } } std::pair AMDGPUSubtarget::getFlatWorkGroupSizes( const Function &F) const { // FIXME: 1024 if function. // Default minimum/maximum flat work group sizes. std::pair Default = getDefaultFlatWorkGroupSize(F.getCallingConv()); // TODO: Do not process "amdgpu-max-work-group-size" attribute once mesa // starts using "amdgpu-flat-work-group-size" attribute. Default.second = AMDGPU::getIntegerAttribute( F, "amdgpu-max-work-group-size", Default.second); Default.first = std::min(Default.first, Default.second); // Requested minimum/maximum flat work group sizes. std::pair Requested = AMDGPU::getIntegerPairAttribute( F, "amdgpu-flat-work-group-size", Default); // Make sure requested minimum is less than requested maximum. if (Requested.first > Requested.second) return Default; // Make sure requested values do not violate subtarget's specifications. if (Requested.first < getMinFlatWorkGroupSize()) return Default; if (Requested.second > getMaxFlatWorkGroupSize()) return Default; return Requested; } std::pair AMDGPUSubtarget::getWavesPerEU( const Function &F) const { // Default minimum/maximum number of waves per execution unit. std::pair Default(1, getMaxWavesPerEU()); // Default/requested minimum/maximum flat work group sizes. std::pair FlatWorkGroupSizes = getFlatWorkGroupSizes(F); // If minimum/maximum flat work group sizes were explicitly requested using // "amdgpu-flat-work-group-size" attribute, then set default minimum/maximum // number of waves per execution unit to values implied by requested // minimum/maximum flat work group sizes. unsigned MinImpliedByFlatWorkGroupSize = getMaxWavesPerEU(FlatWorkGroupSizes.second); bool RequestedFlatWorkGroupSize = false; // TODO: Do not process "amdgpu-max-work-group-size" attribute once mesa // starts using "amdgpu-flat-work-group-size" attribute. if (F.hasFnAttribute("amdgpu-max-work-group-size") || F.hasFnAttribute("amdgpu-flat-work-group-size")) { Default.first = MinImpliedByFlatWorkGroupSize; RequestedFlatWorkGroupSize = true; } // Requested minimum/maximum number of waves per execution unit. std::pair Requested = AMDGPU::getIntegerPairAttribute( F, "amdgpu-waves-per-eu", Default, true); // Make sure requested minimum is less than requested maximum. if (Requested.second && Requested.first > Requested.second) return Default; // Make sure requested values do not violate subtarget's specifications. if (Requested.first < getMinWavesPerEU() || Requested.first > getMaxWavesPerEU()) return Default; if (Requested.second > getMaxWavesPerEU()) return Default; // Make sure requested values are compatible with values implied by requested // minimum/maximum flat work group sizes. if (RequestedFlatWorkGroupSize && Requested.first < MinImpliedByFlatWorkGroupSize) return Default; return Requested; } bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const { Function *Kernel = I->getParent()->getParent(); unsigned MinSize = 0; unsigned MaxSize = getFlatWorkGroupSizes(*Kernel).second; bool IdQuery = false; // If reqd_work_group_size is present it narrows value down. if (auto *CI = dyn_cast(I)) { const Function *F = CI->getCalledFunction(); if (F) { unsigned Dim = UINT_MAX; switch (F->getIntrinsicID()) { case Intrinsic::amdgcn_workitem_id_x: case Intrinsic::r600_read_tidig_x: IdQuery = true; LLVM_FALLTHROUGH; case Intrinsic::r600_read_local_size_x: Dim = 0; break; case Intrinsic::amdgcn_workitem_id_y: case Intrinsic::r600_read_tidig_y: IdQuery = true; LLVM_FALLTHROUGH; case Intrinsic::r600_read_local_size_y: Dim = 1; break; case Intrinsic::amdgcn_workitem_id_z: case Intrinsic::r600_read_tidig_z: IdQuery = true; LLVM_FALLTHROUGH; case Intrinsic::r600_read_local_size_z: Dim = 2; break; default: break; } if (Dim <= 3) { if (auto Node = Kernel->getMetadata("reqd_work_group_size")) if (Node->getNumOperands() == 3) MinSize = MaxSize = mdconst::extract( Node->getOperand(Dim))->getZExtValue(); } } } if (!MaxSize) return false; // Range metadata is [Lo, Hi). For ID query we need to pass max size // as Hi. For size query we need to pass Hi + 1. if (IdQuery) MinSize = 0; else ++MaxSize; MDBuilder MDB(I->getContext()); MDNode *MaxWorkGroupSizeRange = MDB.createRange(APInt(32, MinSize), APInt(32, MaxSize)); I->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); return true; } uint64_t AMDGPUSubtarget::getExplicitKernArgSize(const Function &F, unsigned &MaxAlign) const { assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL || F.getCallingConv() == CallingConv::SPIR_KERNEL); const DataLayout &DL = F.getParent()->getDataLayout(); uint64_t ExplicitArgBytes = 0; MaxAlign = 1; for (const Argument &Arg : F.args()) { Type *ArgTy = Arg.getType(); unsigned Align = DL.getABITypeAlignment(ArgTy); uint64_t AllocSize = DL.getTypeAllocSize(ArgTy); ExplicitArgBytes = alignTo(ExplicitArgBytes, Align) + AllocSize; MaxAlign = std::max(MaxAlign, Align); } return ExplicitArgBytes; } unsigned AMDGPUSubtarget::getKernArgSegmentSize(const Function &F, unsigned &MaxAlign) const { uint64_t ExplicitArgBytes = getExplicitKernArgSize(F, MaxAlign); unsigned ExplicitOffset = getExplicitKernelArgOffset(F); uint64_t TotalSize = ExplicitOffset + ExplicitArgBytes; unsigned ImplicitBytes = getImplicitArgNumBytes(F); if (ImplicitBytes != 0) { unsigned Alignment = getAlignmentForImplicitArgPtr(); TotalSize = alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes; } // Being able to dereference past the end is useful for emitting scalar loads. return alignTo(TotalSize, 4); } R600Subtarget::R600Subtarget(const Triple &TT, StringRef GPU, StringRef FS, const TargetMachine &TM) : R600GenSubtargetInfo(TT, GPU, FS), AMDGPUSubtarget(TT, getFeatureBits()), InstrInfo(*this), FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0), FMA(false), CaymanISA(false), CFALUBug(false), DX10Clamp(false), HasVertexCache(false), R600ALUInst(false), FP64(false), TexVTXClauseSize(0), Gen(R600), TLInfo(TM, initializeSubtargetDependencies(TT, GPU, FS)), InstrItins(getInstrItineraryForCPU(GPU)), AS (AMDGPU::getAMDGPUAS(TT)) { } void GCNSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy, unsigned NumRegionInstrs) const { // Track register pressure so the scheduler can try to decrease // pressure once register usage is above the threshold defined by // SIRegisterInfo::getRegPressureSetLimit() Policy.ShouldTrackPressure = true; // Enabling both top down and bottom up scheduling seems to give us less // register spills than just using one of these approaches on its own. Policy.OnlyTopDown = false; Policy.OnlyBottomUp = false; // Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler. if (!enableSIScheduler()) Policy.ShouldTrackLaneMasks = true; } bool GCNSubtarget::isVGPRSpillingEnabled(const Function& F) const { return EnableVGPRSpilling || !AMDGPU::isShader(F.getCallingConv()); } unsigned GCNSubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const { if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { if (SGPRs <= 80) return 10; if (SGPRs <= 88) return 9; if (SGPRs <= 100) return 8; return 7; } if (SGPRs <= 48) return 10; if (SGPRs <= 56) return 9; if (SGPRs <= 64) return 8; if (SGPRs <= 72) return 7; if (SGPRs <= 80) return 6; return 5; } unsigned GCNSubtarget::getOccupancyWithNumVGPRs(unsigned VGPRs) const { if (VGPRs <= 24) return 10; if (VGPRs <= 28) return 9; if (VGPRs <= 32) return 8; if (VGPRs <= 36) return 7; if (VGPRs <= 40) return 6; if (VGPRs <= 48) return 5; if (VGPRs <= 64) return 4; if (VGPRs <= 84) return 3; if (VGPRs <= 128) return 2; return 1; } unsigned GCNSubtarget::getReservedNumSGPRs(const MachineFunction &MF) const { const SIMachineFunctionInfo &MFI = *MF.getInfo(); if (MFI.hasFlatScratchInit()) { if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) return 6; // FLAT_SCRATCH, XNACK, VCC (in that order). if (getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) return 4; // FLAT_SCRATCH, VCC (in that order). } if (isXNACKEnabled()) return 4; // XNACK, VCC (in that order). return 2; // VCC. } unsigned GCNSubtarget::getMaxNumSGPRs(const MachineFunction &MF) const { const Function &F = MF.getFunction(); const SIMachineFunctionInfo &MFI = *MF.getInfo(); // Compute maximum number of SGPRs function can use using default/requested // minimum number of waves per execution unit. std::pair WavesPerEU = MFI.getWavesPerEU(); unsigned MaxNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, false); unsigned MaxAddressableNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, true); // Check if maximum number of SGPRs was explicitly requested using // "amdgpu-num-sgpr" attribute. if (F.hasFnAttribute("amdgpu-num-sgpr")) { unsigned Requested = AMDGPU::getIntegerAttribute( F, "amdgpu-num-sgpr", MaxNumSGPRs); // Make sure requested value does not violate subtarget's specifications. if (Requested && (Requested <= getReservedNumSGPRs(MF))) Requested = 0; // If more SGPRs are required to support the input user/system SGPRs, // increase to accommodate them. // // FIXME: This really ends up using the requested number of SGPRs + number // of reserved special registers in total. Theoretically you could re-use // the last input registers for these special registers, but this would // require a lot of complexity to deal with the weird aliasing. unsigned InputNumSGPRs = MFI.getNumPreloadedSGPRs(); if (Requested && Requested < InputNumSGPRs) Requested = InputNumSGPRs; // Make sure requested value is compatible with values implied by // default/requested minimum/maximum number of waves per execution unit. if (Requested && Requested > getMaxNumSGPRs(WavesPerEU.first, false)) Requested = 0; if (WavesPerEU.second && Requested && Requested < getMinNumSGPRs(WavesPerEU.second)) Requested = 0; if (Requested) MaxNumSGPRs = Requested; } if (hasSGPRInitBug()) MaxNumSGPRs = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; return std::min(MaxNumSGPRs - getReservedNumSGPRs(MF), MaxAddressableNumSGPRs); } unsigned GCNSubtarget::getMaxNumVGPRs(const MachineFunction &MF) const { const Function &F = MF.getFunction(); const SIMachineFunctionInfo &MFI = *MF.getInfo(); // Compute maximum number of VGPRs function can use using default/requested // minimum number of waves per execution unit. std::pair WavesPerEU = MFI.getWavesPerEU(); unsigned MaxNumVGPRs = getMaxNumVGPRs(WavesPerEU.first); // Check if maximum number of VGPRs was explicitly requested using // "amdgpu-num-vgpr" attribute. if (F.hasFnAttribute("amdgpu-num-vgpr")) { unsigned Requested = AMDGPU::getIntegerAttribute( F, "amdgpu-num-vgpr", MaxNumVGPRs); // Make sure requested value is compatible with values implied by // default/requested minimum/maximum number of waves per execution unit. if (Requested && Requested > getMaxNumVGPRs(WavesPerEU.first)) Requested = 0; if (WavesPerEU.second && Requested && Requested < getMinNumVGPRs(WavesPerEU.second)) Requested = 0; if (Requested) MaxNumVGPRs = Requested; } return MaxNumVGPRs; } namespace { struct MemOpClusterMutation : ScheduleDAGMutation { const SIInstrInfo *TII; MemOpClusterMutation(const SIInstrInfo *tii) : TII(tii) {} void apply(ScheduleDAGInstrs *DAGInstrs) override { ScheduleDAGMI *DAG = static_cast(DAGInstrs); SUnit *SUa = nullptr; // Search for two consequent memory operations and link them // to prevent scheduler from moving them apart. // In DAG pre-process SUnits are in the original order of // the instructions before scheduling. for (SUnit &SU : DAG->SUnits) { MachineInstr &MI2 = *SU.getInstr(); if (!MI2.mayLoad() && !MI2.mayStore()) { SUa = nullptr; continue; } if (!SUa) { SUa = &SU; continue; } MachineInstr &MI1 = *SUa->getInstr(); if ((TII->isVMEM(MI1) && TII->isVMEM(MI2)) || (TII->isFLAT(MI1) && TII->isFLAT(MI2)) || (TII->isSMRD(MI1) && TII->isSMRD(MI2)) || (TII->isDS(MI1) && TII->isDS(MI2))) { SU.addPredBarrier(SUa); for (const SDep &SI : SU.Preds) { if (SI.getSUnit() != SUa) SUa->addPred(SDep(SI.getSUnit(), SDep::Artificial)); } if (&SU != &DAG->ExitSU) { for (const SDep &SI : SUa->Succs) { if (SI.getSUnit() != &SU) SI.getSUnit()->addPred(SDep(&SU, SDep::Artificial)); } } } SUa = &SU; } } }; } // namespace void GCNSubtarget::getPostRAMutations( std::vector> &Mutations) const { Mutations.push_back(llvm::make_unique(&InstrInfo)); } const AMDGPUSubtarget &AMDGPUSubtarget::get(const MachineFunction &MF) { if (MF.getTarget().getTargetTriple().getArch() == Triple::amdgcn) return static_cast(MF.getSubtarget()); else return static_cast(MF.getSubtarget()); } const AMDGPUSubtarget &AMDGPUSubtarget::get(const TargetMachine &TM, const Function &F) { if (TM.getTargetTriple().getArch() == Triple::amdgcn) return static_cast(TM.getSubtarget(F)); else return static_cast(TM.getSubtarget(F)); }