//===- ARMInstructionSelector.cpp ----------------------------*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This file implements the targeting of the InstructionSelector class for ARM. /// \todo This should be generated by TableGen. //===----------------------------------------------------------------------===// #include "ARMRegisterBankInfo.h" #include "ARMSubtarget.h" #include "ARMTargetMachine.h" #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" #include "llvm/CodeGen/GlobalISel/InstructionSelectorImpl.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/Debug.h" #define DEBUG_TYPE "arm-isel" using namespace llvm; namespace { #define GET_GLOBALISEL_PREDICATE_BITSET #include "ARMGenGlobalISel.inc" #undef GET_GLOBALISEL_PREDICATE_BITSET class ARMInstructionSelector : public InstructionSelector { public: ARMInstructionSelector(const ARMBaseTargetMachine &TM, const ARMSubtarget &STI, const ARMRegisterBankInfo &RBI); bool select(MachineInstr &I, CodeGenCoverage &CoverageInfo) const override; static const char *getName() { return DEBUG_TYPE; } private: bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const; struct CmpConstants; struct InsertInfo; bool selectCmp(CmpConstants Helper, MachineInstrBuilder &MIB, MachineRegisterInfo &MRI) const; // Helper for inserting a comparison sequence that sets \p ResReg to either 1 // if \p LHSReg and \p RHSReg are in the relationship defined by \p Cond, or // \p PrevRes otherwise. In essence, it computes PrevRes OR (LHS Cond RHS). bool insertComparison(CmpConstants Helper, InsertInfo I, unsigned ResReg, ARMCC::CondCodes Cond, unsigned LHSReg, unsigned RHSReg, unsigned PrevRes) const; // Set \p DestReg to \p Constant. void putConstant(InsertInfo I, unsigned DestReg, unsigned Constant) const; bool selectGlobal(MachineInstrBuilder &MIB, MachineRegisterInfo &MRI) const; bool selectSelect(MachineInstrBuilder &MIB, MachineRegisterInfo &MRI) const; bool selectShift(unsigned ShiftOpc, MachineInstrBuilder &MIB) const; // Check if the types match and both operands have the expected size and // register bank. bool validOpRegPair(MachineRegisterInfo &MRI, unsigned LHS, unsigned RHS, unsigned ExpectedSize, unsigned ExpectedRegBankID) const; // Check if the register has the expected size and register bank. bool validReg(MachineRegisterInfo &MRI, unsigned Reg, unsigned ExpectedSize, unsigned ExpectedRegBankID) const; const ARMBaseInstrInfo &TII; const ARMBaseRegisterInfo &TRI; const ARMBaseTargetMachine &TM; const ARMRegisterBankInfo &RBI; const ARMSubtarget &STI; #define GET_GLOBALISEL_PREDICATES_DECL #include "ARMGenGlobalISel.inc" #undef GET_GLOBALISEL_PREDICATES_DECL // We declare the temporaries used by selectImpl() in the class to minimize the // cost of constructing placeholder values. #define GET_GLOBALISEL_TEMPORARIES_DECL #include "ARMGenGlobalISel.inc" #undef GET_GLOBALISEL_TEMPORARIES_DECL }; } // end anonymous namespace namespace llvm { InstructionSelector * createARMInstructionSelector(const ARMBaseTargetMachine &TM, const ARMSubtarget &STI, const ARMRegisterBankInfo &RBI) { return new ARMInstructionSelector(TM, STI, RBI); } } const unsigned zero_reg = 0; #define GET_GLOBALISEL_IMPL #include "ARMGenGlobalISel.inc" #undef GET_GLOBALISEL_IMPL ARMInstructionSelector::ARMInstructionSelector(const ARMBaseTargetMachine &TM, const ARMSubtarget &STI, const ARMRegisterBankInfo &RBI) : InstructionSelector(), TII(*STI.getInstrInfo()), TRI(*STI.getRegisterInfo()), TM(TM), RBI(RBI), STI(STI), #define GET_GLOBALISEL_PREDICATES_INIT #include "ARMGenGlobalISel.inc" #undef GET_GLOBALISEL_PREDICATES_INIT #define GET_GLOBALISEL_TEMPORARIES_INIT #include "ARMGenGlobalISel.inc" #undef GET_GLOBALISEL_TEMPORARIES_INIT { } static const TargetRegisterClass *guessRegClass(unsigned Reg, MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI) { const RegisterBank *RegBank = RBI.getRegBank(Reg, MRI, TRI); assert(RegBank && "Can't get reg bank for virtual register"); const unsigned Size = MRI.getType(Reg).getSizeInBits(); assert((RegBank->getID() == ARM::GPRRegBankID || RegBank->getID() == ARM::FPRRegBankID) && "Unsupported reg bank"); if (RegBank->getID() == ARM::FPRRegBankID) { if (Size == 32) return &ARM::SPRRegClass; else if (Size == 64) return &ARM::DPRRegClass; else if (Size == 128) return &ARM::QPRRegClass; else llvm_unreachable("Unsupported destination size"); } return &ARM::GPRRegClass; } static bool selectCopy(MachineInstr &I, const TargetInstrInfo &TII, MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI) { unsigned DstReg = I.getOperand(0).getReg(); if (TargetRegisterInfo::isPhysicalRegister(DstReg)) return true; const TargetRegisterClass *RC = guessRegClass(DstReg, MRI, TRI, RBI); // No need to constrain SrcReg. It will get constrained when // we hit another of its uses or its defs. // Copies do not have constraints. if (!RBI.constrainGenericRegister(DstReg, *RC, MRI)) { LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode()) << " operand\n"); return false; } return true; } static bool selectMergeValues(MachineInstrBuilder &MIB, const ARMBaseInstrInfo &TII, MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI) { assert(TII.getSubtarget().hasVFP2() && "Can't select merge without VFP"); // We only support G_MERGE_VALUES as a way to stick together two scalar GPRs // into one DPR. unsigned VReg0 = MIB->getOperand(0).getReg(); (void)VReg0; assert(MRI.getType(VReg0).getSizeInBits() == 64 && RBI.getRegBank(VReg0, MRI, TRI)->getID() == ARM::FPRRegBankID && "Unsupported operand for G_MERGE_VALUES"); unsigned VReg1 = MIB->getOperand(1).getReg(); (void)VReg1; assert(MRI.getType(VReg1).getSizeInBits() == 32 && RBI.getRegBank(VReg1, MRI, TRI)->getID() == ARM::GPRRegBankID && "Unsupported operand for G_MERGE_VALUES"); unsigned VReg2 = MIB->getOperand(2).getReg(); (void)VReg2; assert(MRI.getType(VReg2).getSizeInBits() == 32 && RBI.getRegBank(VReg2, MRI, TRI)->getID() == ARM::GPRRegBankID && "Unsupported operand for G_MERGE_VALUES"); MIB->setDesc(TII.get(ARM::VMOVDRR)); MIB.add(predOps(ARMCC::AL)); return true; } static bool selectUnmergeValues(MachineInstrBuilder &MIB, const ARMBaseInstrInfo &TII, MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI) { assert(TII.getSubtarget().hasVFP2() && "Can't select unmerge without VFP"); // We only support G_UNMERGE_VALUES as a way to break up one DPR into two // GPRs. unsigned VReg0 = MIB->getOperand(0).getReg(); (void)VReg0; assert(MRI.getType(VReg0).getSizeInBits() == 32 && RBI.getRegBank(VReg0, MRI, TRI)->getID() == ARM::GPRRegBankID && "Unsupported operand for G_UNMERGE_VALUES"); unsigned VReg1 = MIB->getOperand(1).getReg(); (void)VReg1; assert(MRI.getType(VReg1).getSizeInBits() == 32 && RBI.getRegBank(VReg1, MRI, TRI)->getID() == ARM::GPRRegBankID && "Unsupported operand for G_UNMERGE_VALUES"); unsigned VReg2 = MIB->getOperand(2).getReg(); (void)VReg2; assert(MRI.getType(VReg2).getSizeInBits() == 64 && RBI.getRegBank(VReg2, MRI, TRI)->getID() == ARM::FPRRegBankID && "Unsupported operand for G_UNMERGE_VALUES"); MIB->setDesc(TII.get(ARM::VMOVRRD)); MIB.add(predOps(ARMCC::AL)); return true; } /// Select the opcode for simple extensions (that translate to a single SXT/UXT /// instruction). Extension operations more complicated than that should not /// invoke this. Returns the original opcode if it doesn't know how to select a /// better one. static unsigned selectSimpleExtOpc(unsigned Opc, unsigned Size) { using namespace TargetOpcode; if (Size != 8 && Size != 16) return Opc; if (Opc == G_SEXT) return Size == 8 ? ARM::SXTB : ARM::SXTH; if (Opc == G_ZEXT) return Size == 8 ? ARM::UXTB : ARM::UXTH; return Opc; } /// Select the opcode for simple loads and stores. For types smaller than 32 /// bits, the value will be zero extended. Returns the original opcode if it /// doesn't know how to select a better one. static unsigned selectLoadStoreOpCode(unsigned Opc, unsigned RegBank, unsigned Size) { bool isStore = Opc == TargetOpcode::G_STORE; if (RegBank == ARM::GPRRegBankID) { switch (Size) { case 1: case 8: return isStore ? ARM::STRBi12 : ARM::LDRBi12; case 16: return isStore ? ARM::STRH : ARM::LDRH; case 32: return isStore ? ARM::STRi12 : ARM::LDRi12; default: return Opc; } } if (RegBank == ARM::FPRRegBankID) { switch (Size) { case 32: return isStore ? ARM::VSTRS : ARM::VLDRS; case 64: return isStore ? ARM::VSTRD : ARM::VLDRD; default: return Opc; } } return Opc; } // When lowering comparisons, we sometimes need to perform two compares instead // of just one. Get the condition codes for both comparisons. If only one is // needed, the second member of the pair is ARMCC::AL. static std::pair getComparePreds(CmpInst::Predicate Pred) { std::pair Preds = {ARMCC::AL, ARMCC::AL}; switch (Pred) { case CmpInst::FCMP_ONE: Preds = {ARMCC::GT, ARMCC::MI}; break; case CmpInst::FCMP_UEQ: Preds = {ARMCC::EQ, ARMCC::VS}; break; case CmpInst::ICMP_EQ: case CmpInst::FCMP_OEQ: Preds.first = ARMCC::EQ; break; case CmpInst::ICMP_SGT: case CmpInst::FCMP_OGT: Preds.first = ARMCC::GT; break; case CmpInst::ICMP_SGE: case CmpInst::FCMP_OGE: Preds.first = ARMCC::GE; break; case CmpInst::ICMP_UGT: case CmpInst::FCMP_UGT: Preds.first = ARMCC::HI; break; case CmpInst::FCMP_OLT: Preds.first = ARMCC::MI; break; case CmpInst::ICMP_ULE: case CmpInst::FCMP_OLE: Preds.first = ARMCC::LS; break; case CmpInst::FCMP_ORD: Preds.first = ARMCC::VC; break; case CmpInst::FCMP_UNO: Preds.first = ARMCC::VS; break; case CmpInst::FCMP_UGE: Preds.first = ARMCC::PL; break; case CmpInst::ICMP_SLT: case CmpInst::FCMP_ULT: Preds.first = ARMCC::LT; break; case CmpInst::ICMP_SLE: case CmpInst::FCMP_ULE: Preds.first = ARMCC::LE; break; case CmpInst::FCMP_UNE: case CmpInst::ICMP_NE: Preds.first = ARMCC::NE; break; case CmpInst::ICMP_UGE: Preds.first = ARMCC::HS; break; case CmpInst::ICMP_ULT: Preds.first = ARMCC::LO; break; default: break; } assert(Preds.first != ARMCC::AL && "No comparisons needed?"); return Preds; } struct ARMInstructionSelector::CmpConstants { CmpConstants(unsigned CmpOpcode, unsigned FlagsOpcode, unsigned OpRegBank, unsigned OpSize) : ComparisonOpcode(CmpOpcode), ReadFlagsOpcode(FlagsOpcode), OperandRegBankID(OpRegBank), OperandSize(OpSize) {} // The opcode used for performing the comparison. const unsigned ComparisonOpcode; // The opcode used for reading the flags set by the comparison. May be // ARM::INSTRUCTION_LIST_END if we don't need to read the flags. const unsigned ReadFlagsOpcode; // The assumed register bank ID for the operands. const unsigned OperandRegBankID; // The assumed size in bits for the operands. const unsigned OperandSize; }; struct ARMInstructionSelector::InsertInfo { InsertInfo(MachineInstrBuilder &MIB) : MBB(*MIB->getParent()), InsertBefore(std::next(MIB->getIterator())), DbgLoc(MIB->getDebugLoc()) {} MachineBasicBlock &MBB; const MachineBasicBlock::instr_iterator InsertBefore; const DebugLoc &DbgLoc; }; void ARMInstructionSelector::putConstant(InsertInfo I, unsigned DestReg, unsigned Constant) const { (void)BuildMI(I.MBB, I.InsertBefore, I.DbgLoc, TII.get(ARM::MOVi)) .addDef(DestReg) .addImm(Constant) .add(predOps(ARMCC::AL)) .add(condCodeOp()); } bool ARMInstructionSelector::validOpRegPair(MachineRegisterInfo &MRI, unsigned LHSReg, unsigned RHSReg, unsigned ExpectedSize, unsigned ExpectedRegBankID) const { return MRI.getType(LHSReg) == MRI.getType(RHSReg) && validReg(MRI, LHSReg, ExpectedSize, ExpectedRegBankID) && validReg(MRI, RHSReg, ExpectedSize, ExpectedRegBankID); } bool ARMInstructionSelector::validReg(MachineRegisterInfo &MRI, unsigned Reg, unsigned ExpectedSize, unsigned ExpectedRegBankID) const { if (MRI.getType(Reg).getSizeInBits() != ExpectedSize) { LLVM_DEBUG(dbgs() << "Unexpected size for register"); return false; } if (RBI.getRegBank(Reg, MRI, TRI)->getID() != ExpectedRegBankID) { LLVM_DEBUG(dbgs() << "Unexpected register bank for register"); return false; } return true; } bool ARMInstructionSelector::selectCmp(CmpConstants Helper, MachineInstrBuilder &MIB, MachineRegisterInfo &MRI) const { const InsertInfo I(MIB); auto ResReg = MIB->getOperand(0).getReg(); if (!validReg(MRI, ResReg, 1, ARM::GPRRegBankID)) return false; auto Cond = static_cast(MIB->getOperand(1).getPredicate()); if (Cond == CmpInst::FCMP_TRUE || Cond == CmpInst::FCMP_FALSE) { putConstant(I, ResReg, Cond == CmpInst::FCMP_TRUE ? 1 : 0); MIB->eraseFromParent(); return true; } auto LHSReg = MIB->getOperand(2).getReg(); auto RHSReg = MIB->getOperand(3).getReg(); if (!validOpRegPair(MRI, LHSReg, RHSReg, Helper.OperandSize, Helper.OperandRegBankID)) return false; auto ARMConds = getComparePreds(Cond); auto ZeroReg = MRI.createVirtualRegister(&ARM::GPRRegClass); putConstant(I, ZeroReg, 0); if (ARMConds.second == ARMCC::AL) { // Simple case, we only need one comparison and we're done. if (!insertComparison(Helper, I, ResReg, ARMConds.first, LHSReg, RHSReg, ZeroReg)) return false; } else { // Not so simple, we need two successive comparisons. auto IntermediateRes = MRI.createVirtualRegister(&ARM::GPRRegClass); if (!insertComparison(Helper, I, IntermediateRes, ARMConds.first, LHSReg, RHSReg, ZeroReg)) return false; if (!insertComparison(Helper, I, ResReg, ARMConds.second, LHSReg, RHSReg, IntermediateRes)) return false; } MIB->eraseFromParent(); return true; } bool ARMInstructionSelector::insertComparison(CmpConstants Helper, InsertInfo I, unsigned ResReg, ARMCC::CondCodes Cond, unsigned LHSReg, unsigned RHSReg, unsigned PrevRes) const { // Perform the comparison. auto CmpI = BuildMI(I.MBB, I.InsertBefore, I.DbgLoc, TII.get(Helper.ComparisonOpcode)) .addUse(LHSReg) .addUse(RHSReg) .add(predOps(ARMCC::AL)); if (!constrainSelectedInstRegOperands(*CmpI, TII, TRI, RBI)) return false; // Read the comparison flags (if necessary). if (Helper.ReadFlagsOpcode != ARM::INSTRUCTION_LIST_END) { auto ReadI = BuildMI(I.MBB, I.InsertBefore, I.DbgLoc, TII.get(Helper.ReadFlagsOpcode)) .add(predOps(ARMCC::AL)); if (!constrainSelectedInstRegOperands(*ReadI, TII, TRI, RBI)) return false; } // Select either 1 or the previous result based on the value of the flags. auto Mov1I = BuildMI(I.MBB, I.InsertBefore, I.DbgLoc, TII.get(ARM::MOVCCi)) .addDef(ResReg) .addUse(PrevRes) .addImm(1) .add(predOps(Cond, ARM::CPSR)); if (!constrainSelectedInstRegOperands(*Mov1I, TII, TRI, RBI)) return false; return true; } bool ARMInstructionSelector::selectGlobal(MachineInstrBuilder &MIB, MachineRegisterInfo &MRI) const { if ((STI.isROPI() || STI.isRWPI()) && !STI.isTargetELF()) { LLVM_DEBUG(dbgs() << "ROPI and RWPI only supported for ELF\n"); return false; } auto GV = MIB->getOperand(1).getGlobal(); if (GV->isThreadLocal()) { LLVM_DEBUG(dbgs() << "TLS variables not supported yet\n"); return false; } auto &MBB = *MIB->getParent(); auto &MF = *MBB.getParent(); bool UseMovt = STI.useMovt(MF); unsigned Size = TM.getPointerSize(0); unsigned Alignment = 4; auto addOpsForConstantPoolLoad = [&MF, Alignment, Size](MachineInstrBuilder &MIB, const GlobalValue *GV, bool IsSBREL) { assert(MIB->getOpcode() == ARM::LDRi12 && "Unsupported instruction"); auto ConstPool = MF.getConstantPool(); auto CPIndex = // For SB relative entries we need a target-specific constant pool. // Otherwise, just use a regular constant pool entry. IsSBREL ? ConstPool->getConstantPoolIndex( ARMConstantPoolConstant::Create(GV, ARMCP::SBREL), Alignment) : ConstPool->getConstantPoolIndex(GV, Alignment); MIB.addConstantPoolIndex(CPIndex, /*Offset*/ 0, /*TargetFlags*/ 0) .addMemOperand( MF.getMachineMemOperand(MachinePointerInfo::getConstantPool(MF), MachineMemOperand::MOLoad, Size, Alignment)) .addImm(0) .add(predOps(ARMCC::AL)); }; if (TM.isPositionIndependent()) { bool Indirect = STI.isGVIndirectSymbol(GV); // FIXME: Taking advantage of MOVT for ELF is pretty involved, so we don't // support it yet. See PR28229. unsigned Opc = UseMovt && !STI.isTargetELF() ? (Indirect ? ARM::MOV_ga_pcrel_ldr : ARM::MOV_ga_pcrel) : (Indirect ? ARM::LDRLIT_ga_pcrel_ldr : ARM::LDRLIT_ga_pcrel); MIB->setDesc(TII.get(Opc)); int TargetFlags = ARMII::MO_NO_FLAG; if (STI.isTargetDarwin()) TargetFlags |= ARMII::MO_NONLAZY; if (STI.isGVInGOT(GV)) TargetFlags |= ARMII::MO_GOT; MIB->getOperand(1).setTargetFlags(TargetFlags); if (Indirect) MIB.addMemOperand(MF.getMachineMemOperand( MachinePointerInfo::getGOT(MF), MachineMemOperand::MOLoad, TM.getProgramPointerSize(), Alignment)); return constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI); } bool isReadOnly = STI.getTargetLowering()->isReadOnly(GV); if (STI.isROPI() && isReadOnly) { unsigned Opc = UseMovt ? ARM::MOV_ga_pcrel : ARM::LDRLIT_ga_pcrel; MIB->setDesc(TII.get(Opc)); return constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI); } if (STI.isRWPI() && !isReadOnly) { auto Offset = MRI.createVirtualRegister(&ARM::GPRRegClass); MachineInstrBuilder OffsetMIB; if (UseMovt) { OffsetMIB = BuildMI(MBB, *MIB, MIB->getDebugLoc(), TII.get(ARM::MOVi32imm), Offset); OffsetMIB.addGlobalAddress(GV, /*Offset*/ 0, ARMII::MO_SBREL); } else { // Load the offset from the constant pool. OffsetMIB = BuildMI(MBB, *MIB, MIB->getDebugLoc(), TII.get(ARM::LDRi12), Offset); addOpsForConstantPoolLoad(OffsetMIB, GV, /*IsSBREL*/ true); } if (!constrainSelectedInstRegOperands(*OffsetMIB, TII, TRI, RBI)) return false; // Add the offset to the SB register. MIB->setDesc(TII.get(ARM::ADDrr)); MIB->RemoveOperand(1); MIB.addReg(ARM::R9) // FIXME: don't hardcode R9 .addReg(Offset) .add(predOps(ARMCC::AL)) .add(condCodeOp()); return constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI); } if (STI.isTargetELF()) { if (UseMovt) { MIB->setDesc(TII.get(ARM::MOVi32imm)); } else { // Load the global's address from the constant pool. MIB->setDesc(TII.get(ARM::LDRi12)); MIB->RemoveOperand(1); addOpsForConstantPoolLoad(MIB, GV, /*IsSBREL*/ false); } } else if (STI.isTargetMachO()) { if (UseMovt) MIB->setDesc(TII.get(ARM::MOVi32imm)); else MIB->setDesc(TII.get(ARM::LDRLIT_ga_abs)); } else { LLVM_DEBUG(dbgs() << "Object format not supported yet\n"); return false; } return constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI); } bool ARMInstructionSelector::selectSelect(MachineInstrBuilder &MIB, MachineRegisterInfo &MRI) const { auto &MBB = *MIB->getParent(); auto InsertBefore = std::next(MIB->getIterator()); auto &DbgLoc = MIB->getDebugLoc(); // Compare the condition to 0. auto CondReg = MIB->getOperand(1).getReg(); assert(validReg(MRI, CondReg, 1, ARM::GPRRegBankID) && "Unsupported types for select operation"); auto CmpI = BuildMI(MBB, InsertBefore, DbgLoc, TII.get(ARM::CMPri)) .addUse(CondReg) .addImm(0) .add(predOps(ARMCC::AL)); if (!constrainSelectedInstRegOperands(*CmpI, TII, TRI, RBI)) return false; // Move a value into the result register based on the result of the // comparison. auto ResReg = MIB->getOperand(0).getReg(); auto TrueReg = MIB->getOperand(2).getReg(); auto FalseReg = MIB->getOperand(3).getReg(); assert(validOpRegPair(MRI, ResReg, TrueReg, 32, ARM::GPRRegBankID) && validOpRegPair(MRI, TrueReg, FalseReg, 32, ARM::GPRRegBankID) && "Unsupported types for select operation"); auto Mov1I = BuildMI(MBB, InsertBefore, DbgLoc, TII.get(ARM::MOVCCr)) .addDef(ResReg) .addUse(TrueReg) .addUse(FalseReg) .add(predOps(ARMCC::EQ, ARM::CPSR)); if (!constrainSelectedInstRegOperands(*Mov1I, TII, TRI, RBI)) return false; MIB->eraseFromParent(); return true; } bool ARMInstructionSelector::selectShift(unsigned ShiftOpc, MachineInstrBuilder &MIB) const { MIB->setDesc(TII.get(ARM::MOVsr)); MIB.addImm(ShiftOpc); MIB.add(predOps(ARMCC::AL)).add(condCodeOp()); return constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI); } bool ARMInstructionSelector::select(MachineInstr &I, CodeGenCoverage &CoverageInfo) const { assert(I.getParent() && "Instruction should be in a basic block!"); assert(I.getParent()->getParent() && "Instruction should be in a function!"); auto &MBB = *I.getParent(); auto &MF = *MBB.getParent(); auto &MRI = MF.getRegInfo(); if (!isPreISelGenericOpcode(I.getOpcode())) { if (I.isCopy()) return selectCopy(I, TII, MRI, TRI, RBI); return true; } using namespace TargetOpcode; if (selectImpl(I, CoverageInfo)) return true; MachineInstrBuilder MIB{MF, I}; bool isSExt = false; switch (I.getOpcode()) { case G_SEXT: isSExt = true; LLVM_FALLTHROUGH; case G_ZEXT: { LLT DstTy = MRI.getType(I.getOperand(0).getReg()); // FIXME: Smaller destination sizes coming soon! if (DstTy.getSizeInBits() != 32) { LLVM_DEBUG(dbgs() << "Unsupported destination size for extension"); return false; } LLT SrcTy = MRI.getType(I.getOperand(1).getReg()); unsigned SrcSize = SrcTy.getSizeInBits(); switch (SrcSize) { case 1: { // ZExt boils down to & 0x1; for SExt we also subtract that from 0 I.setDesc(TII.get(ARM::ANDri)); MIB.addImm(1).add(predOps(ARMCC::AL)).add(condCodeOp()); if (isSExt) { unsigned SExtResult = I.getOperand(0).getReg(); // Use a new virtual register for the result of the AND unsigned AndResult = MRI.createVirtualRegister(&ARM::GPRRegClass); I.getOperand(0).setReg(AndResult); auto InsertBefore = std::next(I.getIterator()); auto SubI = BuildMI(MBB, InsertBefore, I.getDebugLoc(), TII.get(ARM::RSBri)) .addDef(SExtResult) .addUse(AndResult) .addImm(0) .add(predOps(ARMCC::AL)) .add(condCodeOp()); if (!constrainSelectedInstRegOperands(*SubI, TII, TRI, RBI)) return false; } break; } case 8: case 16: { unsigned NewOpc = selectSimpleExtOpc(I.getOpcode(), SrcSize); if (NewOpc == I.getOpcode()) return false; I.setDesc(TII.get(NewOpc)); MIB.addImm(0).add(predOps(ARMCC::AL)); break; } default: LLVM_DEBUG(dbgs() << "Unsupported source size for extension"); return false; } break; } case G_ANYEXT: case G_TRUNC: { // The high bits are undefined, so there's nothing special to do, just // treat it as a copy. auto SrcReg = I.getOperand(1).getReg(); auto DstReg = I.getOperand(0).getReg(); const auto &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI); const auto &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI); if (SrcRegBank.getID() == ARM::FPRRegBankID) { // This should only happen in the obscure case where we have put a 64-bit // integer into a D register. Get it out of there and keep only the // interesting part. assert(I.getOpcode() == G_TRUNC && "Unsupported operand for G_ANYEXT"); assert(DstRegBank.getID() == ARM::GPRRegBankID && "Unsupported combination of register banks"); assert(MRI.getType(SrcReg).getSizeInBits() == 64 && "Unsupported size"); assert(MRI.getType(DstReg).getSizeInBits() <= 32 && "Unsupported size"); unsigned IgnoredBits = MRI.createVirtualRegister(&ARM::GPRRegClass); auto InsertBefore = std::next(I.getIterator()); auto MovI = BuildMI(MBB, InsertBefore, I.getDebugLoc(), TII.get(ARM::VMOVRRD)) .addDef(DstReg) .addDef(IgnoredBits) .addUse(SrcReg) .add(predOps(ARMCC::AL)); if (!constrainSelectedInstRegOperands(*MovI, TII, TRI, RBI)) return false; MIB->eraseFromParent(); return true; } if (SrcRegBank.getID() != DstRegBank.getID()) { LLVM_DEBUG( dbgs() << "G_TRUNC/G_ANYEXT operands on different register banks\n"); return false; } if (SrcRegBank.getID() != ARM::GPRRegBankID) { LLVM_DEBUG(dbgs() << "G_TRUNC/G_ANYEXT on non-GPR not supported yet\n"); return false; } I.setDesc(TII.get(COPY)); return selectCopy(I, TII, MRI, TRI, RBI); } case G_CONSTANT: { if (!MRI.getType(I.getOperand(0).getReg()).isPointer()) { // Non-pointer constants should be handled by TableGen. LLVM_DEBUG(dbgs() << "Unsupported constant type\n"); return false; } auto &Val = I.getOperand(1); if (Val.isCImm()) { if (!Val.getCImm()->isZero()) { LLVM_DEBUG(dbgs() << "Unsupported pointer constant value\n"); return false; } Val.ChangeToImmediate(0); } else { assert(Val.isImm() && "Unexpected operand for G_CONSTANT"); if (Val.getImm() != 0) { LLVM_DEBUG(dbgs() << "Unsupported pointer constant value\n"); return false; } } I.setDesc(TII.get(ARM::MOVi)); MIB.add(predOps(ARMCC::AL)).add(condCodeOp()); break; } case G_INTTOPTR: case G_PTRTOINT: { auto SrcReg = I.getOperand(1).getReg(); auto DstReg = I.getOperand(0).getReg(); const auto &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI); const auto &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI); if (SrcRegBank.getID() != DstRegBank.getID()) { LLVM_DEBUG( dbgs() << "G_INTTOPTR/G_PTRTOINT operands on different register banks\n"); return false; } if (SrcRegBank.getID() != ARM::GPRRegBankID) { LLVM_DEBUG( dbgs() << "G_INTTOPTR/G_PTRTOINT on non-GPR not supported yet\n"); return false; } I.setDesc(TII.get(COPY)); return selectCopy(I, TII, MRI, TRI, RBI); } case G_SELECT: return selectSelect(MIB, MRI); case G_ICMP: { CmpConstants Helper(ARM::CMPrr, ARM::INSTRUCTION_LIST_END, ARM::GPRRegBankID, 32); return selectCmp(Helper, MIB, MRI); } case G_FCMP: { assert(STI.hasVFP2() && "Can't select fcmp without VFP"); unsigned OpReg = I.getOperand(2).getReg(); unsigned Size = MRI.getType(OpReg).getSizeInBits(); if (Size == 64 && STI.isFPOnlySP()) { LLVM_DEBUG(dbgs() << "Subtarget only supports single precision"); return false; } if (Size != 32 && Size != 64) { LLVM_DEBUG(dbgs() << "Unsupported size for G_FCMP operand"); return false; } CmpConstants Helper(Size == 32 ? ARM::VCMPS : ARM::VCMPD, ARM::FMSTAT, ARM::FPRRegBankID, Size); return selectCmp(Helper, MIB, MRI); } case G_LSHR: return selectShift(ARM_AM::ShiftOpc::lsr, MIB); case G_ASHR: return selectShift(ARM_AM::ShiftOpc::asr, MIB); case G_SHL: { return selectShift(ARM_AM::ShiftOpc::lsl, MIB); } case G_GEP: I.setDesc(TII.get(ARM::ADDrr)); MIB.add(predOps(ARMCC::AL)).add(condCodeOp()); break; case G_FRAME_INDEX: // Add 0 to the given frame index and hope it will eventually be folded into // the user(s). I.setDesc(TII.get(ARM::ADDri)); MIB.addImm(0).add(predOps(ARMCC::AL)).add(condCodeOp()); break; case G_GLOBAL_VALUE: return selectGlobal(MIB, MRI); case G_STORE: case G_LOAD: { const auto &MemOp = **I.memoperands_begin(); if (MemOp.getOrdering() != AtomicOrdering::NotAtomic) { LLVM_DEBUG(dbgs() << "Atomic load/store not supported yet\n"); return false; } unsigned Reg = I.getOperand(0).getReg(); unsigned RegBank = RBI.getRegBank(Reg, MRI, TRI)->getID(); LLT ValTy = MRI.getType(Reg); const auto ValSize = ValTy.getSizeInBits(); assert((ValSize != 64 || STI.hasVFP2()) && "Don't know how to load/store 64-bit value without VFP"); const auto NewOpc = selectLoadStoreOpCode(I.getOpcode(), RegBank, ValSize); if (NewOpc == G_LOAD || NewOpc == G_STORE) return false; I.setDesc(TII.get(NewOpc)); if (NewOpc == ARM::LDRH || NewOpc == ARM::STRH) // LDRH has a funny addressing mode (there's already a FIXME for it). MIB.addReg(0); MIB.addImm(0).add(predOps(ARMCC::AL)); break; } case G_MERGE_VALUES: { if (!selectMergeValues(MIB, TII, MRI, TRI, RBI)) return false; break; } case G_UNMERGE_VALUES: { if (!selectUnmergeValues(MIB, TII, MRI, TRI, RBI)) return false; break; } case G_BRCOND: { if (!validReg(MRI, I.getOperand(0).getReg(), 1, ARM::GPRRegBankID)) { LLVM_DEBUG(dbgs() << "Unsupported condition register for G_BRCOND"); return false; } // Set the flags. auto Test = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(ARM::TSTri)) .addReg(I.getOperand(0).getReg()) .addImm(1) .add(predOps(ARMCC::AL)); if (!constrainSelectedInstRegOperands(*Test, TII, TRI, RBI)) return false; // Branch conditionally. auto Branch = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(ARM::Bcc)) .add(I.getOperand(1)) .add(predOps(ARMCC::NE, ARM::CPSR)); if (!constrainSelectedInstRegOperands(*Branch, TII, TRI, RBI)) return false; I.eraseFromParent(); return true; } case G_PHI: { I.setDesc(TII.get(PHI)); unsigned DstReg = I.getOperand(0).getReg(); const TargetRegisterClass *RC = guessRegClass(DstReg, MRI, TRI, RBI); if (!RBI.constrainGenericRegister(DstReg, *RC, MRI)) { break; } return true; } default: return false; } return constrainSelectedInstRegOperands(I, TII, TRI, RBI); }