//===- MergeFunctions.cpp - Merge identical functions ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass looks for equivalent functions that are mergable and folds them. // // Order relation is defined on set of functions. It was made through // special function comparison procedure that returns // 0 when functions are equal, // -1 when Left function is less than right function, and // 1 for opposite case. We need total-ordering, so we need to maintain // four properties on the functions set: // a <= a (reflexivity) // if a <= b and b <= a then a = b (antisymmetry) // if a <= b and b <= c then a <= c (transitivity). // for all a and b: a <= b or b <= a (totality). // // Comparison iterates through each instruction in each basic block. // Functions are kept on binary tree. For each new function F we perform // lookup in binary tree. // In practice it works the following way: // -- We define Function* container class with custom "operator<" (FunctionPtr). // -- "FunctionPtr" instances are stored in std::set collection, so every // std::set::insert operation will give you result in log(N) time. // // As an optimization, a hash of the function structure is calculated first, and // two functions are only compared if they have the same hash. This hash is // cheap to compute, and has the property that if function F == G according to // the comparison function, then hash(F) == hash(G). This consistency property // is critical to ensuring all possible merging opportunities are exploited. // Collisions in the hash affect the speed of the pass but not the correctness // or determinism of the resulting transformation. // // When a match is found the functions are folded. If both functions are // overridable, we move the functionality into a new internal function and // leave two overridable thunks to it. // //===----------------------------------------------------------------------===// // // Future work: // // * virtual functions. // // Many functions have their address taken by the virtual function table for // the object they belong to. However, as long as it's only used for a lookup // and call, this is irrelevant, and we'd like to fold such functions. // // * be smarter about bitcasts. // // In order to fold functions, we will sometimes add either bitcast instructions // or bitcast constant expressions. Unfortunately, this can confound further // analysis since the two functions differ where one has a bitcast and the // other doesn't. We should learn to look through bitcasts. // // * Compare complex types with pointer types inside. // * Compare cross-reference cases. // * Compare complex expressions. // // All the three issues above could be described as ability to prove that // fA == fB == fC == fE == fF == fG in example below: // // void fA() { // fB(); // } // void fB() { // fA(); // } // // void fE() { // fF(); // } // void fF() { // fG(); // } // void fG() { // fE(); // } // // Simplest cross-reference case (fA <--> fB) was implemented in previous // versions of MergeFunctions, though it presented only in two function pairs // in test-suite (that counts >50k functions) // Though possibility to detect complex cross-referencing (e.g.: A->B->C->D->A) // could cover much more cases. // //===----------------------------------------------------------------------===// #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/IR/Argument.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/IR/ValueHandle.h" #include "llvm/IR/ValueMap.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/Utils/FunctionComparator.h" #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "mergefunc" STATISTIC(NumFunctionsMerged, "Number of functions merged"); STATISTIC(NumThunksWritten, "Number of thunks generated"); STATISTIC(NumDoubleWeak, "Number of new functions created"); static cl::opt NumFunctionsForSanityCheck( "mergefunc-sanity", cl::desc("How many functions in module could be used for " "MergeFunctions pass sanity check. " "'0' disables this check. Works only with '-debug' key."), cl::init(0), cl::Hidden); // Under option -mergefunc-preserve-debug-info we: // - Do not create a new function for a thunk. // - Retain the debug info for a thunk's parameters (and associated // instructions for the debug info) from the entry block. // Note: -debug will display the algorithm at work. // - Create debug-info for the call (to the shared implementation) made by // a thunk and its return value. // - Erase the rest of the function, retaining the (minimally sized) entry // block to create a thunk. // - Preserve a thunk's call site to point to the thunk even when both occur // within the same translation unit, to aid debugability. Note that this // behaviour differs from the underlying -mergefunc implementation which // modifies the thunk's call site to point to the shared implementation // when both occur within the same translation unit. static cl::opt MergeFunctionsPDI("mergefunc-preserve-debug-info", cl::Hidden, cl::init(false), cl::desc("Preserve debug info in thunk when mergefunc " "transformations are made.")); namespace { class FunctionNode { mutable AssertingVH F; FunctionComparator::FunctionHash Hash; public: // Note the hash is recalculated potentially multiple times, but it is cheap. FunctionNode(Function *F) : F(F), Hash(FunctionComparator::functionHash(*F)) {} Function *getFunc() const { return F; } FunctionComparator::FunctionHash getHash() const { return Hash; } /// Replace the reference to the function F by the function G, assuming their /// implementations are equal. void replaceBy(Function *G) const { F = G; } void release() { F = nullptr; } }; /// MergeFunctions finds functions which will generate identical machine code, /// by considering all pointer types to be equivalent. Once identified, /// MergeFunctions will fold them by replacing a call to one to a call to a /// bitcast of the other. class MergeFunctions : public ModulePass { public: static char ID; MergeFunctions() : ModulePass(ID), FnTree(FunctionNodeCmp(&GlobalNumbers)) { initializeMergeFunctionsPass(*PassRegistry::getPassRegistry()); } bool runOnModule(Module &M) override; private: // The function comparison operator is provided here so that FunctionNodes do // not need to become larger with another pointer. class FunctionNodeCmp { GlobalNumberState* GlobalNumbers; public: FunctionNodeCmp(GlobalNumberState* GN) : GlobalNumbers(GN) {} bool operator()(const FunctionNode &LHS, const FunctionNode &RHS) const { // Order first by hashes, then full function comparison. if (LHS.getHash() != RHS.getHash()) return LHS.getHash() < RHS.getHash(); FunctionComparator FCmp(LHS.getFunc(), RHS.getFunc(), GlobalNumbers); return FCmp.compare() == -1; } }; using FnTreeType = std::set; GlobalNumberState GlobalNumbers; /// A work queue of functions that may have been modified and should be /// analyzed again. std::vector Deferred; #ifndef NDEBUG /// Checks the rules of order relation introduced among functions set. /// Returns true, if sanity check has been passed, and false if failed. bool doSanityCheck(std::vector &Worklist); #endif /// Insert a ComparableFunction into the FnTree, or merge it away if it's /// equal to one that's already present. bool insert(Function *NewFunction); /// Remove a Function from the FnTree and queue it up for a second sweep of /// analysis. void remove(Function *F); /// Find the functions that use this Value and remove them from FnTree and /// queue the functions. void removeUsers(Value *V); /// Replace all direct calls of Old with calls of New. Will bitcast New if /// necessary to make types match. void replaceDirectCallers(Function *Old, Function *New); /// Merge two equivalent functions. Upon completion, G may be deleted, or may /// be converted into a thunk. In either case, it should never be visited /// again. void mergeTwoFunctions(Function *F, Function *G); /// Fill PDIUnrelatedWL with instructions from the entry block that are /// unrelated to parameter related debug info. void filterInstsUnrelatedToPDI(BasicBlock *GEntryBlock, std::vector &PDIUnrelatedWL); /// Erase the rest of the CFG (i.e. barring the entry block). void eraseTail(Function *G); /// Erase the instructions in PDIUnrelatedWL as they are unrelated to the /// parameter debug info, from the entry block. void eraseInstsUnrelatedToPDI(std::vector &PDIUnrelatedWL); /// Replace G with a simple tail call to bitcast(F). Also (unless /// MergeFunctionsPDI holds) replace direct uses of G with bitcast(F), /// delete G. void writeThunk(Function *F, Function *G); /// Replace function F with function G in the function tree. void replaceFunctionInTree(const FunctionNode &FN, Function *G); /// The set of all distinct functions. Use the insert() and remove() methods /// to modify it. The map allows efficient lookup and deferring of Functions. FnTreeType FnTree; // Map functions to the iterators of the FunctionNode which contains them // in the FnTree. This must be updated carefully whenever the FnTree is // modified, i.e. in insert(), remove(), and replaceFunctionInTree(), to avoid // dangling iterators into FnTree. The invariant that preserves this is that // there is exactly one mapping F -> FN for each FunctionNode FN in FnTree. ValueMap FNodesInTree; }; } // end anonymous namespace char MergeFunctions::ID = 0; INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false) ModulePass *llvm::createMergeFunctionsPass() { return new MergeFunctions(); } #ifndef NDEBUG bool MergeFunctions::doSanityCheck(std::vector &Worklist) { if (const unsigned Max = NumFunctionsForSanityCheck) { unsigned TripleNumber = 0; bool Valid = true; dbgs() << "MERGEFUNC-SANITY: Started for first " << Max << " functions.\n"; unsigned i = 0; for (std::vector::iterator I = Worklist.begin(), E = Worklist.end(); I != E && i < Max; ++I, ++i) { unsigned j = i; for (std::vector::iterator J = I; J != E && j < Max; ++J, ++j) { Function *F1 = cast(*I); Function *F2 = cast(*J); int Res1 = FunctionComparator(F1, F2, &GlobalNumbers).compare(); int Res2 = FunctionComparator(F2, F1, &GlobalNumbers).compare(); // If F1 <= F2, then F2 >= F1, otherwise report failure. if (Res1 != -Res2) { dbgs() << "MERGEFUNC-SANITY: Non-symmetric; triple: " << TripleNumber << "\n"; dbgs() << *F1 << '\n' << *F2 << '\n'; Valid = false; } if (Res1 == 0) continue; unsigned k = j; for (std::vector::iterator K = J; K != E && k < Max; ++k, ++K, ++TripleNumber) { if (K == J) continue; Function *F3 = cast(*K); int Res3 = FunctionComparator(F1, F3, &GlobalNumbers).compare(); int Res4 = FunctionComparator(F2, F3, &GlobalNumbers).compare(); bool Transitive = true; if (Res1 != 0 && Res1 == Res4) { // F1 > F2, F2 > F3 => F1 > F3 Transitive = Res3 == Res1; } else if (Res3 != 0 && Res3 == -Res4) { // F1 > F3, F3 > F2 => F1 > F2 Transitive = Res3 == Res1; } else if (Res4 != 0 && -Res3 == Res4) { // F2 > F3, F3 > F1 => F2 > F1 Transitive = Res4 == -Res1; } if (!Transitive) { dbgs() << "MERGEFUNC-SANITY: Non-transitive; triple: " << TripleNumber << "\n"; dbgs() << "Res1, Res3, Res4: " << Res1 << ", " << Res3 << ", " << Res4 << "\n"; dbgs() << *F1 << '\n' << *F2 << '\n' << *F3 << '\n'; Valid = false; } } } } dbgs() << "MERGEFUNC-SANITY: " << (Valid ? "Passed." : "Failed.") << "\n"; return Valid; } return true; } #endif bool MergeFunctions::runOnModule(Module &M) { if (skipModule(M)) return false; bool Changed = false; // All functions in the module, ordered by hash. Functions with a unique // hash value are easily eliminated. std::vector> HashedFuncs; for (Function &Func : M) { if (!Func.isDeclaration() && !Func.hasAvailableExternallyLinkage()) { HashedFuncs.push_back({FunctionComparator::functionHash(Func), &Func}); } } std::stable_sort( HashedFuncs.begin(), HashedFuncs.end(), [](const std::pair &a, const std::pair &b) { return a.first < b.first; }); auto S = HashedFuncs.begin(); for (auto I = HashedFuncs.begin(), IE = HashedFuncs.end(); I != IE; ++I) { // If the hash value matches the previous value or the next one, we must // consider merging it. Otherwise it is dropped and never considered again. if ((I != S && std::prev(I)->first == I->first) || (std::next(I) != IE && std::next(I)->first == I->first) ) { Deferred.push_back(WeakTrackingVH(I->second)); } } do { std::vector Worklist; Deferred.swap(Worklist); LLVM_DEBUG(doSanityCheck(Worklist)); LLVM_DEBUG(dbgs() << "size of module: " << M.size() << '\n'); LLVM_DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n'); // Insert functions and merge them. for (WeakTrackingVH &I : Worklist) { if (!I) continue; Function *F = cast(I); if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage()) { Changed |= insert(F); } } LLVM_DEBUG(dbgs() << "size of FnTree: " << FnTree.size() << '\n'); } while (!Deferred.empty()); FnTree.clear(); GlobalNumbers.clear(); return Changed; } // Replace direct callers of Old with New. void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) { Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType()); for (auto UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) { Use *U = &*UI; ++UI; CallSite CS(U->getUser()); if (CS && CS.isCallee(U)) { // Transfer the called function's attributes to the call site. Due to the // bitcast we will 'lose' ABI changing attributes because the 'called // function' is no longer a Function* but the bitcast. Code that looks up // the attributes from the called function will fail. // FIXME: This is not actually true, at least not anymore. The callsite // will always have the same ABI affecting attributes as the callee, // because otherwise the original input has UB. Note that Old and New // always have matching ABI, so no attributes need to be changed. // Transferring other attributes may help other optimizations, but that // should be done uniformly and not in this ad-hoc way. auto &Context = New->getContext(); auto NewPAL = New->getAttributes(); SmallVector NewArgAttrs; for (unsigned argIdx = 0; argIdx < CS.arg_size(); argIdx++) NewArgAttrs.push_back(NewPAL.getParamAttributes(argIdx)); // Don't transfer attributes from the function to the callee. Function // attributes typically aren't relevant to the calling convention or ABI. CS.setAttributes(AttributeList::get(Context, /*FnAttrs=*/AttributeSet(), NewPAL.getRetAttributes(), NewArgAttrs)); remove(CS.getInstruction()->getParent()->getParent()); U->set(BitcastNew); } } } // Helper for writeThunk, // Selects proper bitcast operation, // but a bit simpler then CastInst::getCastOpcode. static Value *createCast(IRBuilder<> &Builder, Value *V, Type *DestTy) { Type *SrcTy = V->getType(); if (SrcTy->isStructTy()) { assert(DestTy->isStructTy()); assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements()); Value *Result = UndefValue::get(DestTy); for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) { Value *Element = createCast( Builder, Builder.CreateExtractValue(V, makeArrayRef(I)), DestTy->getStructElementType(I)); Result = Builder.CreateInsertValue(Result, Element, makeArrayRef(I)); } return Result; } assert(!DestTy->isStructTy()); if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) return Builder.CreateIntToPtr(V, DestTy); else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) return Builder.CreatePtrToInt(V, DestTy); else return Builder.CreateBitCast(V, DestTy); } // Erase the instructions in PDIUnrelatedWL as they are unrelated to the // parameter debug info, from the entry block. void MergeFunctions::eraseInstsUnrelatedToPDI( std::vector &PDIUnrelatedWL) { LLVM_DEBUG( dbgs() << " Erasing instructions (in reverse order of appearance in " "entry block) unrelated to parameter debug info from entry " "block: {\n"); while (!PDIUnrelatedWL.empty()) { Instruction *I = PDIUnrelatedWL.back(); LLVM_DEBUG(dbgs() << " Deleting Instruction: "); LLVM_DEBUG(I->print(dbgs())); LLVM_DEBUG(dbgs() << "\n"); I->eraseFromParent(); PDIUnrelatedWL.pop_back(); } LLVM_DEBUG(dbgs() << " } // Done erasing instructions unrelated to parameter " "debug info from entry block. \n"); } // Reduce G to its entry block. void MergeFunctions::eraseTail(Function *G) { std::vector WorklistBB; for (Function::iterator BBI = std::next(G->begin()), BBE = G->end(); BBI != BBE; ++BBI) { BBI->dropAllReferences(); WorklistBB.push_back(&*BBI); } while (!WorklistBB.empty()) { BasicBlock *BB = WorklistBB.back(); BB->eraseFromParent(); WorklistBB.pop_back(); } } // We are interested in the following instructions from the entry block as being // related to parameter debug info: // - @llvm.dbg.declare // - stores from the incoming parameters to locations on the stack-frame // - allocas that create these locations on the stack-frame // - @llvm.dbg.value // - the entry block's terminator // The rest are unrelated to debug info for the parameters; fill up // PDIUnrelatedWL with such instructions. void MergeFunctions::filterInstsUnrelatedToPDI( BasicBlock *GEntryBlock, std::vector &PDIUnrelatedWL) { std::set PDIRelated; for (BasicBlock::iterator BI = GEntryBlock->begin(), BIE = GEntryBlock->end(); BI != BIE; ++BI) { if (auto *DVI = dyn_cast(&*BI)) { LLVM_DEBUG(dbgs() << " Deciding: "); LLVM_DEBUG(BI->print(dbgs())); LLVM_DEBUG(dbgs() << "\n"); DILocalVariable *DILocVar = DVI->getVariable(); if (DILocVar->isParameter()) { LLVM_DEBUG(dbgs() << " Include (parameter): "); LLVM_DEBUG(BI->print(dbgs())); LLVM_DEBUG(dbgs() << "\n"); PDIRelated.insert(&*BI); } else { LLVM_DEBUG(dbgs() << " Delete (!parameter): "); LLVM_DEBUG(BI->print(dbgs())); LLVM_DEBUG(dbgs() << "\n"); } } else if (auto *DDI = dyn_cast(&*BI)) { LLVM_DEBUG(dbgs() << " Deciding: "); LLVM_DEBUG(BI->print(dbgs())); LLVM_DEBUG(dbgs() << "\n"); DILocalVariable *DILocVar = DDI->getVariable(); if (DILocVar->isParameter()) { LLVM_DEBUG(dbgs() << " Parameter: "); LLVM_DEBUG(DILocVar->print(dbgs())); AllocaInst *AI = dyn_cast_or_null(DDI->getAddress()); if (AI) { LLVM_DEBUG(dbgs() << " Processing alloca users: "); LLVM_DEBUG(dbgs() << "\n"); for (User *U : AI->users()) { if (StoreInst *SI = dyn_cast(U)) { if (Value *Arg = SI->getValueOperand()) { if (dyn_cast(Arg)) { LLVM_DEBUG(dbgs() << " Include: "); LLVM_DEBUG(AI->print(dbgs())); LLVM_DEBUG(dbgs() << "\n"); PDIRelated.insert(AI); LLVM_DEBUG(dbgs() << " Include (parameter): "); LLVM_DEBUG(SI->print(dbgs())); LLVM_DEBUG(dbgs() << "\n"); PDIRelated.insert(SI); LLVM_DEBUG(dbgs() << " Include: "); LLVM_DEBUG(BI->print(dbgs())); LLVM_DEBUG(dbgs() << "\n"); PDIRelated.insert(&*BI); } else { LLVM_DEBUG(dbgs() << " Delete (!parameter): "); LLVM_DEBUG(SI->print(dbgs())); LLVM_DEBUG(dbgs() << "\n"); } } } else { LLVM_DEBUG(dbgs() << " Defer: "); LLVM_DEBUG(U->print(dbgs())); LLVM_DEBUG(dbgs() << "\n"); } } } else { LLVM_DEBUG(dbgs() << " Delete (alloca NULL): "); LLVM_DEBUG(BI->print(dbgs())); LLVM_DEBUG(dbgs() << "\n"); } } else { LLVM_DEBUG(dbgs() << " Delete (!parameter): "); LLVM_DEBUG(BI->print(dbgs())); LLVM_DEBUG(dbgs() << "\n"); } } else if (dyn_cast(BI) == GEntryBlock->getTerminator()) { LLVM_DEBUG(dbgs() << " Will Include Terminator: "); LLVM_DEBUG(BI->print(dbgs())); LLVM_DEBUG(dbgs() << "\n"); PDIRelated.insert(&*BI); } else { LLVM_DEBUG(dbgs() << " Defer: "); LLVM_DEBUG(BI->print(dbgs())); LLVM_DEBUG(dbgs() << "\n"); } } LLVM_DEBUG( dbgs() << " Report parameter debug info related/related instructions: {\n"); for (BasicBlock::iterator BI = GEntryBlock->begin(), BE = GEntryBlock->end(); BI != BE; ++BI) { Instruction *I = &*BI; if (PDIRelated.find(I) == PDIRelated.end()) { LLVM_DEBUG(dbgs() << " !PDIRelated: "); LLVM_DEBUG(I->print(dbgs())); LLVM_DEBUG(dbgs() << "\n"); PDIUnrelatedWL.push_back(I); } else { LLVM_DEBUG(dbgs() << " PDIRelated: "); LLVM_DEBUG(I->print(dbgs())); LLVM_DEBUG(dbgs() << "\n"); } } LLVM_DEBUG(dbgs() << " }\n"); } // Don't merge tiny functions using a thunk, since it can just end up // making the function larger. static bool isThunkProfitable(Function * F) { if (F->size() == 1) { if (F->front().size() <= 2) { LLVM_DEBUG(dbgs() << "isThunkProfitable: " << F->getName() << " is too small to bother creating a thunk for\n"); return false; } } return true; } // Replace G with a simple tail call to bitcast(F). Also (unless // MergeFunctionsPDI holds) replace direct uses of G with bitcast(F), // delete G. Under MergeFunctionsPDI, we use G itself for creating // the thunk as we preserve the debug info (and associated instructions) // from G's entry block pertaining to G's incoming arguments which are // passed on as corresponding arguments in the call that G makes to F. // For better debugability, under MergeFunctionsPDI, we do not modify G's // call sites to point to F even when within the same translation unit. void MergeFunctions::writeThunk(Function *F, Function *G) { BasicBlock *GEntryBlock = nullptr; std::vector PDIUnrelatedWL; BasicBlock *BB = nullptr; Function *NewG = nullptr; if (MergeFunctionsPDI) { LLVM_DEBUG(dbgs() << "writeThunk: (MergeFunctionsPDI) Do not create a new " "function as thunk; retain original: " << G->getName() << "()\n"); GEntryBlock = &G->getEntryBlock(); LLVM_DEBUG( dbgs() << "writeThunk: (MergeFunctionsPDI) filter parameter related " "debug info for " << G->getName() << "() {\n"); filterInstsUnrelatedToPDI(GEntryBlock, PDIUnrelatedWL); GEntryBlock->getTerminator()->eraseFromParent(); BB = GEntryBlock; } else { NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "", G->getParent()); BB = BasicBlock::Create(F->getContext(), "", NewG); } IRBuilder<> Builder(BB); Function *H = MergeFunctionsPDI ? G : NewG; SmallVector Args; unsigned i = 0; FunctionType *FFTy = F->getFunctionType(); for (Argument &AI : H->args()) { Args.push_back(createCast(Builder, &AI, FFTy->getParamType(i))); ++i; } CallInst *CI = Builder.CreateCall(F, Args); ReturnInst *RI = nullptr; CI->setTailCall(); CI->setCallingConv(F->getCallingConv()); CI->setAttributes(F->getAttributes()); if (H->getReturnType()->isVoidTy()) { RI = Builder.CreateRetVoid(); } else { RI = Builder.CreateRet(createCast(Builder, CI, H->getReturnType())); } if (MergeFunctionsPDI) { DISubprogram *DIS = G->getSubprogram(); if (DIS) { DebugLoc CIDbgLoc = DebugLoc::get(DIS->getScopeLine(), 0, DIS); DebugLoc RIDbgLoc = DebugLoc::get(DIS->getScopeLine(), 0, DIS); CI->setDebugLoc(CIDbgLoc); RI->setDebugLoc(RIDbgLoc); } else { LLVM_DEBUG( dbgs() << "writeThunk: (MergeFunctionsPDI) No DISubprogram for " << G->getName() << "()\n"); } eraseTail(G); eraseInstsUnrelatedToPDI(PDIUnrelatedWL); LLVM_DEBUG( dbgs() << "} // End of parameter related debug info filtering for: " << G->getName() << "()\n"); } else { NewG->copyAttributesFrom(G); NewG->takeName(G); removeUsers(G); G->replaceAllUsesWith(NewG); G->eraseFromParent(); } LLVM_DEBUG(dbgs() << "writeThunk: " << H->getName() << '\n'); ++NumThunksWritten; } // Merge two equivalent functions. Upon completion, Function G is deleted. void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) { if (F->isInterposable()) { assert(G->isInterposable()); if (!isThunkProfitable(F)) { return; } // Make them both thunks to the same internal function. Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "", F->getParent()); H->copyAttributesFrom(F); H->takeName(F); removeUsers(F); F->replaceAllUsesWith(H); unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment()); writeThunk(F, G); writeThunk(F, H); F->setAlignment(MaxAlignment); F->setLinkage(GlobalValue::PrivateLinkage); ++NumDoubleWeak; ++NumFunctionsMerged; } else { // For better debugability, under MergeFunctionsPDI, we do not modify G's // call sites to point to F even when within the same translation unit. if (!G->isInterposable() && !MergeFunctionsPDI) { if (G->hasGlobalUnnamedAddr()) { // G might have been a key in our GlobalNumberState, and it's illegal // to replace a key in ValueMap with a non-global. GlobalNumbers.erase(G); // If G's address is not significant, replace it entirely. Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType()); G->replaceAllUsesWith(BitcastF); } else { // Redirect direct callers of G to F. (See note on MergeFunctionsPDI // above). replaceDirectCallers(G, F); } } // If G was internal then we may have replaced all uses of G with F. If so, // stop here and delete G. There's no need for a thunk. (See note on // MergeFunctionsPDI above). if (G->hasLocalLinkage() && G->use_empty() && !MergeFunctionsPDI) { G->eraseFromParent(); ++NumFunctionsMerged; return; } if (!isThunkProfitable(F)) { return; } writeThunk(F, G); ++NumFunctionsMerged; } } /// Replace function F by function G. void MergeFunctions::replaceFunctionInTree(const FunctionNode &FN, Function *G) { Function *F = FN.getFunc(); assert(FunctionComparator(F, G, &GlobalNumbers).compare() == 0 && "The two functions must be equal"); auto I = FNodesInTree.find(F); assert(I != FNodesInTree.end() && "F should be in FNodesInTree"); assert(FNodesInTree.count(G) == 0 && "FNodesInTree should not contain G"); FnTreeType::iterator IterToFNInFnTree = I->second; assert(&(*IterToFNInFnTree) == &FN && "F should map to FN in FNodesInTree."); // Remove F -> FN and insert G -> FN FNodesInTree.erase(I); FNodesInTree.insert({G, IterToFNInFnTree}); // Replace F with G in FN, which is stored inside the FnTree. FN.replaceBy(G); } // Insert a ComparableFunction into the FnTree, or merge it away if equal to one // that was already inserted. bool MergeFunctions::insert(Function *NewFunction) { std::pair Result = FnTree.insert(FunctionNode(NewFunction)); if (Result.second) { assert(FNodesInTree.count(NewFunction) == 0); FNodesInTree.insert({NewFunction, Result.first}); LLVM_DEBUG(dbgs() << "Inserting as unique: " << NewFunction->getName() << '\n'); return false; } const FunctionNode &OldF = *Result.first; // Impose a total order (by name) on the replacement of functions. This is // important when operating on more than one module independently to prevent // cycles of thunks calling each other when the modules are linked together. // // First of all, we process strong functions before weak functions. if ((OldF.getFunc()->isInterposable() && !NewFunction->isInterposable()) || (OldF.getFunc()->isInterposable() == NewFunction->isInterposable() && OldF.getFunc()->getName() > NewFunction->getName())) { // Swap the two functions. Function *F = OldF.getFunc(); replaceFunctionInTree(*Result.first, NewFunction); NewFunction = F; assert(OldF.getFunc() != F && "Must have swapped the functions."); } LLVM_DEBUG(dbgs() << " " << OldF.getFunc()->getName() << " == " << NewFunction->getName() << '\n'); Function *DeleteF = NewFunction; mergeTwoFunctions(OldF.getFunc(), DeleteF); return true; } // Remove a function from FnTree. If it was already in FnTree, add // it to Deferred so that we'll look at it in the next round. void MergeFunctions::remove(Function *F) { auto I = FNodesInTree.find(F); if (I != FNodesInTree.end()) { LLVM_DEBUG(dbgs() << "Deferred " << F->getName() << ".\n"); FnTree.erase(I->second); // I->second has been invalidated, remove it from the FNodesInTree map to // preserve the invariant. FNodesInTree.erase(I); Deferred.emplace_back(F); } } // For each instruction used by the value, remove() the function that contains // the instruction. This should happen right before a call to RAUW. void MergeFunctions::removeUsers(Value *V) { std::vector Worklist; Worklist.push_back(V); SmallPtrSet Visited; Visited.insert(V); while (!Worklist.empty()) { Value *V = Worklist.back(); Worklist.pop_back(); for (User *U : V->users()) { if (Instruction *I = dyn_cast(U)) { remove(I->getParent()->getParent()); } else if (isa(U)) { // do nothing } else if (Constant *C = dyn_cast(U)) { for (User *UU : C->users()) { if (!Visited.insert(UU).second) Worklist.push_back(UU); } } } } }