//===- GCOVProfiling.cpp - Insert edge counters for gcov profiling --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass implements GCOV-style profiling. When this pass is run it emits // "gcno" files next to the existing source, and instruments the code that runs // to records the edges between blocks that run and emit a complementary "gcda" // file on exit. // //===----------------------------------------------------------------------===// #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Sequence.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/UniqueVector.h" #include "llvm/Analysis/EHPersonalities.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Path.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Instrumentation.h" #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" #include "llvm/Transforms/Utils/ModuleUtils.h" #include #include #include #include using namespace llvm; #define DEBUG_TYPE "insert-gcov-profiling" static cl::opt DefaultGCOVVersion("default-gcov-version", cl::init("402*"), cl::Hidden, cl::ValueRequired); static cl::opt DefaultExitBlockBeforeBody("gcov-exit-block-before-body", cl::init(false), cl::Hidden); GCOVOptions GCOVOptions::getDefault() { GCOVOptions Options; Options.EmitNotes = true; Options.EmitData = true; Options.UseCfgChecksum = false; Options.NoRedZone = false; Options.FunctionNamesInData = true; Options.ExitBlockBeforeBody = DefaultExitBlockBeforeBody; if (DefaultGCOVVersion.size() != 4) { llvm::report_fatal_error(std::string("Invalid -default-gcov-version: ") + DefaultGCOVVersion); } memcpy(Options.Version, DefaultGCOVVersion.c_str(), 4); return Options; } namespace { class GCOVFunction; class GCOVProfiler { public: GCOVProfiler() : GCOVProfiler(GCOVOptions::getDefault()) {} GCOVProfiler(const GCOVOptions &Opts) : Options(Opts) { assert((Options.EmitNotes || Options.EmitData) && "GCOVProfiler asked to do nothing?"); ReversedVersion[0] = Options.Version[3]; ReversedVersion[1] = Options.Version[2]; ReversedVersion[2] = Options.Version[1]; ReversedVersion[3] = Options.Version[0]; ReversedVersion[4] = '\0'; } bool runOnModule(Module &M, const TargetLibraryInfo &TLI); private: // Create the .gcno files for the Module based on DebugInfo. void emitProfileNotes(); // Modify the program to track transitions along edges and call into the // profiling runtime to emit .gcda files when run. bool emitProfileArcs(); // Get pointers to the functions in the runtime library. Constant *getStartFileFunc(); Constant *getIncrementIndirectCounterFunc(); Constant *getEmitFunctionFunc(); Constant *getEmitArcsFunc(); Constant *getSummaryInfoFunc(); Constant *getEndFileFunc(); // Create or retrieve an i32 state value that is used to represent the // pred block number for certain non-trivial edges. GlobalVariable *getEdgeStateValue(); // Produce a table of pointers to counters, by predecessor and successor // block number. GlobalVariable *buildEdgeLookupTable(Function *F, GlobalVariable *Counter, const UniqueVector &Preds, const UniqueVector &Succs); // Add the function to write out all our counters to the global destructor // list. Function * insertCounterWriteout(ArrayRef>); Function *insertFlush(ArrayRef>); void insertIndirectCounterIncrement(); enum class GCovFileType { GCNO, GCDA }; std::string mangleName(const DICompileUnit *CU, GCovFileType FileType); GCOVOptions Options; // Reversed, NUL-terminated copy of Options.Version. char ReversedVersion[5]; // Checksum, produced by hash of EdgeDestinations SmallVector FileChecksums; Module *M; const TargetLibraryInfo *TLI; LLVMContext *Ctx; SmallVector, 16> Funcs; }; class GCOVProfilerLegacyPass : public ModulePass { public: static char ID; GCOVProfilerLegacyPass() : GCOVProfilerLegacyPass(GCOVOptions::getDefault()) {} GCOVProfilerLegacyPass(const GCOVOptions &Opts) : ModulePass(ID), Profiler(Opts) { initializeGCOVProfilerLegacyPassPass(*PassRegistry::getPassRegistry()); } StringRef getPassName() const override { return "GCOV Profiler"; } bool runOnModule(Module &M) override { auto &TLI = getAnalysis().getTLI(); return Profiler.runOnModule(M, TLI); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); } private: GCOVProfiler Profiler; }; } char GCOVProfilerLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN( GCOVProfilerLegacyPass, "insert-gcov-profiling", "Insert instrumentation for GCOV profiling", false, false) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_END( GCOVProfilerLegacyPass, "insert-gcov-profiling", "Insert instrumentation for GCOV profiling", false, false) ModulePass *llvm::createGCOVProfilerPass(const GCOVOptions &Options) { return new GCOVProfilerLegacyPass(Options); } static StringRef getFunctionName(const DISubprogram *SP) { if (!SP->getLinkageName().empty()) return SP->getLinkageName(); return SP->getName(); } namespace { class GCOVRecord { protected: static const char *const LinesTag; static const char *const FunctionTag; static const char *const BlockTag; static const char *const EdgeTag; GCOVRecord() = default; void writeBytes(const char *Bytes, int Size) { os->write(Bytes, Size); } void write(uint32_t i) { writeBytes(reinterpret_cast(&i), 4); } // Returns the length measured in 4-byte blocks that will be used to // represent this string in a GCOV file static unsigned lengthOfGCOVString(StringRef s) { // A GCOV string is a length, followed by a NUL, then between 0 and 3 NULs // padding out to the next 4-byte word. The length is measured in 4-byte // words including padding, not bytes of actual string. return (s.size() / 4) + 1; } void writeGCOVString(StringRef s) { uint32_t Len = lengthOfGCOVString(s); write(Len); writeBytes(s.data(), s.size()); // Write 1 to 4 bytes of NUL padding. assert((unsigned)(4 - (s.size() % 4)) > 0); assert((unsigned)(4 - (s.size() % 4)) <= 4); writeBytes("\0\0\0\0", 4 - (s.size() % 4)); } raw_ostream *os; }; const char *const GCOVRecord::LinesTag = "\0\0\x45\x01"; const char *const GCOVRecord::FunctionTag = "\0\0\0\1"; const char *const GCOVRecord::BlockTag = "\0\0\x41\x01"; const char *const GCOVRecord::EdgeTag = "\0\0\x43\x01"; class GCOVFunction; class GCOVBlock; // Constructed only by requesting it from a GCOVBlock, this object stores a // list of line numbers and a single filename, representing lines that belong // to the block. class GCOVLines : public GCOVRecord { public: void addLine(uint32_t Line) { assert(Line != 0 && "Line zero is not a valid real line number."); Lines.push_back(Line); } uint32_t length() const { // Here 2 = 1 for string length + 1 for '0' id#. return lengthOfGCOVString(Filename) + 2 + Lines.size(); } void writeOut() { write(0); writeGCOVString(Filename); for (int i = 0, e = Lines.size(); i != e; ++i) write(Lines[i]); } GCOVLines(StringRef F, raw_ostream *os) : Filename(F) { this->os = os; } private: StringRef Filename; SmallVector Lines; }; // Represent a basic block in GCOV. Each block has a unique number in the // function, number of lines belonging to each block, and a set of edges to // other blocks. class GCOVBlock : public GCOVRecord { public: GCOVLines &getFile(StringRef Filename) { return LinesByFile.try_emplace(Filename, Filename, os).first->second; } void addEdge(GCOVBlock &Successor) { OutEdges.push_back(&Successor); } void writeOut() { uint32_t Len = 3; SmallVector *, 32> SortedLinesByFile; for (auto &I : LinesByFile) { Len += I.second.length(); SortedLinesByFile.push_back(&I); } writeBytes(LinesTag, 4); write(Len); write(Number); llvm::sort( SortedLinesByFile.begin(), SortedLinesByFile.end(), [](StringMapEntry *LHS, StringMapEntry *RHS) { return LHS->getKey() < RHS->getKey(); }); for (auto &I : SortedLinesByFile) I->getValue().writeOut(); write(0); write(0); } GCOVBlock(const GCOVBlock &RHS) : GCOVRecord(RHS), Number(RHS.Number) { // Only allow copy before edges and lines have been added. After that, // there are inter-block pointers (eg: edges) that won't take kindly to // blocks being copied or moved around. assert(LinesByFile.empty()); assert(OutEdges.empty()); } private: friend class GCOVFunction; GCOVBlock(uint32_t Number, raw_ostream *os) : Number(Number) { this->os = os; } uint32_t Number; StringMap LinesByFile; SmallVector OutEdges; }; // A function has a unique identifier, a checksum (we leave as zero) and a // set of blocks and a map of edges between blocks. This is the only GCOV // object users can construct, the blocks and lines will be rooted here. class GCOVFunction : public GCOVRecord { public: GCOVFunction(const DISubprogram *SP, Function *F, raw_ostream *os, uint32_t Ident, bool UseCfgChecksum, bool ExitBlockBeforeBody) : SP(SP), Ident(Ident), UseCfgChecksum(UseCfgChecksum), CfgChecksum(0), ReturnBlock(1, os) { this->os = os; LLVM_DEBUG(dbgs() << "Function: " << getFunctionName(SP) << "\n"); uint32_t i = 0; for (auto &BB : *F) { // Skip index 1 if it's assigned to the ReturnBlock. if (i == 1 && ExitBlockBeforeBody) ++i; Blocks.insert(std::make_pair(&BB, GCOVBlock(i++, os))); } if (!ExitBlockBeforeBody) ReturnBlock.Number = i; std::string FunctionNameAndLine; raw_string_ostream FNLOS(FunctionNameAndLine); FNLOS << getFunctionName(SP) << SP->getLine(); FNLOS.flush(); FuncChecksum = hash_value(FunctionNameAndLine); } GCOVBlock &getBlock(BasicBlock *BB) { return Blocks.find(BB)->second; } GCOVBlock &getReturnBlock() { return ReturnBlock; } std::string getEdgeDestinations() { std::string EdgeDestinations; raw_string_ostream EDOS(EdgeDestinations); Function *F = Blocks.begin()->first->getParent(); for (BasicBlock &I : *F) { GCOVBlock &Block = getBlock(&I); for (int i = 0, e = Block.OutEdges.size(); i != e; ++i) EDOS << Block.OutEdges[i]->Number; } return EdgeDestinations; } uint32_t getFuncChecksum() { return FuncChecksum; } void setCfgChecksum(uint32_t Checksum) { CfgChecksum = Checksum; } void writeOut() { writeBytes(FunctionTag, 4); uint32_t BlockLen = 1 + 1 + 1 + lengthOfGCOVString(getFunctionName(SP)) + 1 + lengthOfGCOVString(SP->getFilename()) + 1; if (UseCfgChecksum) ++BlockLen; write(BlockLen); write(Ident); write(FuncChecksum); if (UseCfgChecksum) write(CfgChecksum); writeGCOVString(getFunctionName(SP)); writeGCOVString(SP->getFilename()); write(SP->getLine()); // Emit count of blocks. writeBytes(BlockTag, 4); write(Blocks.size() + 1); for (int i = 0, e = Blocks.size() + 1; i != e; ++i) { write(0); // No flags on our blocks. } LLVM_DEBUG(dbgs() << Blocks.size() << " blocks.\n"); // Emit edges between blocks. if (Blocks.empty()) return; Function *F = Blocks.begin()->first->getParent(); for (BasicBlock &I : *F) { GCOVBlock &Block = getBlock(&I); if (Block.OutEdges.empty()) continue; writeBytes(EdgeTag, 4); write(Block.OutEdges.size() * 2 + 1); write(Block.Number); for (int i = 0, e = Block.OutEdges.size(); i != e; ++i) { LLVM_DEBUG(dbgs() << Block.Number << " -> " << Block.OutEdges[i]->Number << "\n"); write(Block.OutEdges[i]->Number); write(0); // no flags } } // Emit lines for each block. for (BasicBlock &I : *F) getBlock(&I).writeOut(); } private: const DISubprogram *SP; uint32_t Ident; uint32_t FuncChecksum; bool UseCfgChecksum; uint32_t CfgChecksum; DenseMap Blocks; GCOVBlock ReturnBlock; }; } std::string GCOVProfiler::mangleName(const DICompileUnit *CU, GCovFileType OutputType) { bool Notes = OutputType == GCovFileType::GCNO; if (NamedMDNode *GCov = M->getNamedMetadata("llvm.gcov")) { for (int i = 0, e = GCov->getNumOperands(); i != e; ++i) { MDNode *N = GCov->getOperand(i); bool ThreeElement = N->getNumOperands() == 3; if (!ThreeElement && N->getNumOperands() != 2) continue; if (dyn_cast(N->getOperand(ThreeElement ? 2 : 1)) != CU) continue; if (ThreeElement) { // These nodes have no mangling to apply, it's stored mangled in the // bitcode. MDString *NotesFile = dyn_cast(N->getOperand(0)); MDString *DataFile = dyn_cast(N->getOperand(1)); if (!NotesFile || !DataFile) continue; return Notes ? NotesFile->getString() : DataFile->getString(); } MDString *GCovFile = dyn_cast(N->getOperand(0)); if (!GCovFile) continue; SmallString<128> Filename = GCovFile->getString(); sys::path::replace_extension(Filename, Notes ? "gcno" : "gcda"); return Filename.str(); } } SmallString<128> Filename = CU->getFilename(); sys::path::replace_extension(Filename, Notes ? "gcno" : "gcda"); StringRef FName = sys::path::filename(Filename); SmallString<128> CurPath; if (sys::fs::current_path(CurPath)) return FName; sys::path::append(CurPath, FName); return CurPath.str(); } bool GCOVProfiler::runOnModule(Module &M, const TargetLibraryInfo &TLI) { this->M = &M; this->TLI = &TLI; Ctx = &M.getContext(); if (Options.EmitNotes) emitProfileNotes(); if (Options.EmitData) return emitProfileArcs(); return false; } PreservedAnalyses GCOVProfilerPass::run(Module &M, ModuleAnalysisManager &AM) { GCOVProfiler Profiler(GCOVOpts); auto &TLI = AM.getResult(M); if (!Profiler.runOnModule(M, TLI)) return PreservedAnalyses::all(); return PreservedAnalyses::none(); } static bool functionHasLines(Function &F) { // Check whether this function actually has any source lines. Not only // do these waste space, they also can crash gcov. for (auto &BB : F) { for (auto &I : BB) { // Debug intrinsic locations correspond to the location of the // declaration, not necessarily any statements or expressions. if (isa(&I)) continue; const DebugLoc &Loc = I.getDebugLoc(); if (!Loc) continue; // Artificial lines such as calls to the global constructors. if (Loc.getLine() == 0) continue; return true; } } return false; } static bool isUsingScopeBasedEH(Function &F) { if (!F.hasPersonalityFn()) return false; EHPersonality Personality = classifyEHPersonality(F.getPersonalityFn()); return isScopedEHPersonality(Personality); } static bool shouldKeepInEntry(BasicBlock::iterator It) { if (isa(*It)) return true; if (isa(*It)) return true; if (auto *II = dyn_cast(It)) { if (II->getIntrinsicID() == llvm::Intrinsic::localescape) return true; } return false; } void GCOVProfiler::emitProfileNotes() { NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu"); if (!CU_Nodes) return; for (unsigned i = 0, e = CU_Nodes->getNumOperands(); i != e; ++i) { // Each compile unit gets its own .gcno file. This means that whether we run // this pass over the original .o's as they're produced, or run it after // LTO, we'll generate the same .gcno files. auto *CU = cast(CU_Nodes->getOperand(i)); // Skip module skeleton (and module) CUs. if (CU->getDWOId()) continue; std::error_code EC; raw_fd_ostream out(mangleName(CU, GCovFileType::GCNO), EC, sys::fs::F_None); if (EC) { Ctx->emitError(Twine("failed to open coverage notes file for writing: ") + EC.message()); continue; } std::string EdgeDestinations; unsigned FunctionIdent = 0; for (auto &F : M->functions()) { DISubprogram *SP = F.getSubprogram(); if (!SP) continue; if (!functionHasLines(F)) continue; // TODO: Functions using scope-based EH are currently not supported. if (isUsingScopeBasedEH(F)) continue; // gcov expects every function to start with an entry block that has a // single successor, so split the entry block to make sure of that. BasicBlock &EntryBlock = F.getEntryBlock(); BasicBlock::iterator It = EntryBlock.begin(); while (shouldKeepInEntry(It)) ++It; EntryBlock.splitBasicBlock(It); Funcs.push_back(make_unique(SP, &F, &out, FunctionIdent++, Options.UseCfgChecksum, Options.ExitBlockBeforeBody)); GCOVFunction &Func = *Funcs.back(); for (auto &BB : F) { GCOVBlock &Block = Func.getBlock(&BB); TerminatorInst *TI = BB.getTerminator(); if (int successors = TI->getNumSuccessors()) { for (int i = 0; i != successors; ++i) { Block.addEdge(Func.getBlock(TI->getSuccessor(i))); } } else if (isa(TI)) { Block.addEdge(Func.getReturnBlock()); } uint32_t Line = 0; for (auto &I : BB) { // Debug intrinsic locations correspond to the location of the // declaration, not necessarily any statements or expressions. if (isa(&I)) continue; const DebugLoc &Loc = I.getDebugLoc(); if (!Loc) continue; // Artificial lines such as calls to the global constructors. if (Loc.getLine() == 0) continue; if (Line == Loc.getLine()) continue; Line = Loc.getLine(); if (SP != getDISubprogram(Loc.getScope())) continue; GCOVLines &Lines = Block.getFile(SP->getFilename()); Lines.addLine(Loc.getLine()); } } EdgeDestinations += Func.getEdgeDestinations(); } FileChecksums.push_back(hash_value(EdgeDestinations)); out.write("oncg", 4); out.write(ReversedVersion, 4); out.write(reinterpret_cast(&FileChecksums.back()), 4); for (auto &Func : Funcs) { Func->setCfgChecksum(FileChecksums.back()); Func->writeOut(); } out.write("\0\0\0\0\0\0\0\0", 8); // EOF out.close(); } } bool GCOVProfiler::emitProfileArcs() { NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu"); if (!CU_Nodes) return false; bool Result = false; bool InsertIndCounterIncrCode = false; for (unsigned i = 0, e = CU_Nodes->getNumOperands(); i != e; ++i) { SmallVector, 8> CountersBySP; for (auto &F : M->functions()) { DISubprogram *SP = F.getSubprogram(); if (!SP) continue; if (!functionHasLines(F)) continue; // TODO: Functions using scope-based EH are currently not supported. if (isUsingScopeBasedEH(F)) continue; if (!Result) Result = true; unsigned Edges = 0; for (auto &BB : F) { TerminatorInst *TI = BB.getTerminator(); if (isa(TI)) ++Edges; else Edges += TI->getNumSuccessors(); } ArrayType *CounterTy = ArrayType::get(Type::getInt64Ty(*Ctx), Edges); GlobalVariable *Counters = new GlobalVariable(*M, CounterTy, false, GlobalValue::InternalLinkage, Constant::getNullValue(CounterTy), "__llvm_gcov_ctr"); CountersBySP.push_back(std::make_pair(Counters, SP)); UniqueVector ComplexEdgePreds; UniqueVector ComplexEdgeSuccs; unsigned Edge = 0; for (auto &BB : F) { TerminatorInst *TI = BB.getTerminator(); int Successors = isa(TI) ? 1 : TI->getNumSuccessors(); if (Successors) { if (Successors == 1) { IRBuilder<> Builder(&*BB.getFirstInsertionPt()); Value *Counter = Builder.CreateConstInBoundsGEP2_64(Counters, 0, Edge); Value *Count = Builder.CreateLoad(Counter); Count = Builder.CreateAdd(Count, Builder.getInt64(1)); Builder.CreateStore(Count, Counter); } else if (BranchInst *BI = dyn_cast(TI)) { IRBuilder<> Builder(BI); Value *Sel = Builder.CreateSelect(BI->getCondition(), Builder.getInt64(Edge), Builder.getInt64(Edge + 1)); Value *Counter = Builder.CreateInBoundsGEP( Counters->getValueType(), Counters, {Builder.getInt64(0), Sel}); Value *Count = Builder.CreateLoad(Counter); Count = Builder.CreateAdd(Count, Builder.getInt64(1)); Builder.CreateStore(Count, Counter); } else { ComplexEdgePreds.insert(&BB); for (int i = 0; i != Successors; ++i) ComplexEdgeSuccs.insert(TI->getSuccessor(i)); } Edge += Successors; } } if (!ComplexEdgePreds.empty()) { GlobalVariable *EdgeTable = buildEdgeLookupTable(&F, Counters, ComplexEdgePreds, ComplexEdgeSuccs); GlobalVariable *EdgeState = getEdgeStateValue(); for (int i = 0, e = ComplexEdgePreds.size(); i != e; ++i) { IRBuilder<> Builder(&*ComplexEdgePreds[i + 1]->getFirstInsertionPt()); Builder.CreateStore(Builder.getInt32(i), EdgeState); } for (int i = 0, e = ComplexEdgeSuccs.size(); i != e; ++i) { // Call runtime to perform increment. IRBuilder<> Builder(&*ComplexEdgeSuccs[i + 1]->getFirstInsertionPt()); Value *CounterPtrArray = Builder.CreateConstInBoundsGEP2_64(EdgeTable, 0, i * ComplexEdgePreds.size()); // Build code to increment the counter. InsertIndCounterIncrCode = true; Builder.CreateCall(getIncrementIndirectCounterFunc(), {EdgeState, CounterPtrArray}); } } } Function *WriteoutF = insertCounterWriteout(CountersBySP); Function *FlushF = insertFlush(CountersBySP); // Create a small bit of code that registers the "__llvm_gcov_writeout" to // be executed at exit and the "__llvm_gcov_flush" function to be executed // when "__gcov_flush" is called. FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), false); Function *F = Function::Create(FTy, GlobalValue::InternalLinkage, "__llvm_gcov_init", M); F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); F->setLinkage(GlobalValue::InternalLinkage); F->addFnAttr(Attribute::NoInline); if (Options.NoRedZone) F->addFnAttr(Attribute::NoRedZone); BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); IRBuilder<> Builder(BB); FTy = FunctionType::get(Type::getVoidTy(*Ctx), false); Type *Params[] = { PointerType::get(FTy, 0), PointerType::get(FTy, 0) }; FTy = FunctionType::get(Builder.getVoidTy(), Params, false); // Initialize the environment and register the local writeout and flush // functions. Constant *GCOVInit = M->getOrInsertFunction("llvm_gcov_init", FTy); Builder.CreateCall(GCOVInit, {WriteoutF, FlushF}); Builder.CreateRetVoid(); appendToGlobalCtors(*M, F, 0); } if (InsertIndCounterIncrCode) insertIndirectCounterIncrement(); return Result; } // All edges with successors that aren't branches are "complex", because it // requires complex logic to pick which counter to update. GlobalVariable *GCOVProfiler::buildEdgeLookupTable( Function *F, GlobalVariable *Counters, const UniqueVector &Preds, const UniqueVector &Succs) { // TODO: support invoke, threads. We rely on the fact that nothing can modify // the whole-Module pred edge# between the time we set it and the time we next // read it. Threads and invoke make this untrue. // emit [(succs * preds) x i64*], logically [succ x [pred x i64*]]. size_t TableSize = Succs.size() * Preds.size(); Type *Int64PtrTy = Type::getInt64PtrTy(*Ctx); ArrayType *EdgeTableTy = ArrayType::get(Int64PtrTy, TableSize); std::unique_ptr EdgeTable(new Constant *[TableSize]); Constant *NullValue = Constant::getNullValue(Int64PtrTy); for (size_t i = 0; i != TableSize; ++i) EdgeTable[i] = NullValue; unsigned Edge = 0; for (BasicBlock &BB : *F) { TerminatorInst *TI = BB.getTerminator(); int Successors = isa(TI) ? 1 : TI->getNumSuccessors(); if (Successors > 1 && !isa(TI) && !isa(TI)) { for (int i = 0; i != Successors; ++i) { BasicBlock *Succ = TI->getSuccessor(i); IRBuilder<> Builder(Succ); Value *Counter = Builder.CreateConstInBoundsGEP2_64(Counters, 0, Edge + i); EdgeTable[((Succs.idFor(Succ) - 1) * Preds.size()) + (Preds.idFor(&BB) - 1)] = cast(Counter); } } Edge += Successors; } GlobalVariable *EdgeTableGV = new GlobalVariable( *M, EdgeTableTy, true, GlobalValue::InternalLinkage, ConstantArray::get(EdgeTableTy, makeArrayRef(&EdgeTable[0],TableSize)), "__llvm_gcda_edge_table"); EdgeTableGV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); return EdgeTableGV; } Constant *GCOVProfiler::getStartFileFunc() { Type *Args[] = { Type::getInt8PtrTy(*Ctx), // const char *orig_filename Type::getInt8PtrTy(*Ctx), // const char version[4] Type::getInt32Ty(*Ctx), // uint32_t checksum }; FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), Args, false); auto *Res = M->getOrInsertFunction("llvm_gcda_start_file", FTy); if (Function *FunRes = dyn_cast(Res)) if (auto AK = TLI->getExtAttrForI32Param(false)) FunRes->addParamAttr(2, AK); return Res; } Constant *GCOVProfiler::getIncrementIndirectCounterFunc() { Type *Int32Ty = Type::getInt32Ty(*Ctx); Type *Int64Ty = Type::getInt64Ty(*Ctx); Type *Args[] = { Int32Ty->getPointerTo(), // uint32_t *predecessor Int64Ty->getPointerTo()->getPointerTo() // uint64_t **counters }; FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), Args, false); return M->getOrInsertFunction("__llvm_gcov_indirect_counter_increment", FTy); } Constant *GCOVProfiler::getEmitFunctionFunc() { Type *Args[] = { Type::getInt32Ty(*Ctx), // uint32_t ident Type::getInt8PtrTy(*Ctx), // const char *function_name Type::getInt32Ty(*Ctx), // uint32_t func_checksum Type::getInt8Ty(*Ctx), // uint8_t use_extra_checksum Type::getInt32Ty(*Ctx), // uint32_t cfg_checksum }; FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), Args, false); auto *Res = M->getOrInsertFunction("llvm_gcda_emit_function", FTy); if (Function *FunRes = dyn_cast(Res)) if (auto AK = TLI->getExtAttrForI32Param(false)) { FunRes->addParamAttr(0, AK); FunRes->addParamAttr(2, AK); FunRes->addParamAttr(3, AK); FunRes->addParamAttr(4, AK); } return Res; } Constant *GCOVProfiler::getEmitArcsFunc() { Type *Args[] = { Type::getInt32Ty(*Ctx), // uint32_t num_counters Type::getInt64PtrTy(*Ctx), // uint64_t *counters }; FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), Args, false); auto *Res = M->getOrInsertFunction("llvm_gcda_emit_arcs", FTy); if (Function *FunRes = dyn_cast(Res)) if (auto AK = TLI->getExtAttrForI32Param(false)) FunRes->addParamAttr(0, AK); return Res; } Constant *GCOVProfiler::getSummaryInfoFunc() { FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), false); return M->getOrInsertFunction("llvm_gcda_summary_info", FTy); } Constant *GCOVProfiler::getEndFileFunc() { FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), false); return M->getOrInsertFunction("llvm_gcda_end_file", FTy); } GlobalVariable *GCOVProfiler::getEdgeStateValue() { GlobalVariable *GV = M->getGlobalVariable("__llvm_gcov_global_state_pred"); if (!GV) { GV = new GlobalVariable(*M, Type::getInt32Ty(*Ctx), false, GlobalValue::InternalLinkage, ConstantInt::get(Type::getInt32Ty(*Ctx), 0xffffffff), "__llvm_gcov_global_state_pred"); GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); } return GV; } Function *GCOVProfiler::insertCounterWriteout( ArrayRef > CountersBySP) { FunctionType *WriteoutFTy = FunctionType::get(Type::getVoidTy(*Ctx), false); Function *WriteoutF = M->getFunction("__llvm_gcov_writeout"); if (!WriteoutF) WriteoutF = Function::Create(WriteoutFTy, GlobalValue::InternalLinkage, "__llvm_gcov_writeout", M); WriteoutF->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); WriteoutF->addFnAttr(Attribute::NoInline); if (Options.NoRedZone) WriteoutF->addFnAttr(Attribute::NoRedZone); BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", WriteoutF); IRBuilder<> Builder(BB); Constant *StartFile = getStartFileFunc(); Constant *EmitFunction = getEmitFunctionFunc(); Constant *EmitArcs = getEmitArcsFunc(); Constant *SummaryInfo = getSummaryInfoFunc(); Constant *EndFile = getEndFileFunc(); NamedMDNode *CUNodes = M->getNamedMetadata("llvm.dbg.cu"); if (!CUNodes) { Builder.CreateRetVoid(); return WriteoutF; } // Collect the relevant data into a large constant data structure that we can // walk to write out everything. StructType *StartFileCallArgsTy = StructType::create( {Builder.getInt8PtrTy(), Builder.getInt8PtrTy(), Builder.getInt32Ty()}); StructType *EmitFunctionCallArgsTy = StructType::create( {Builder.getInt32Ty(), Builder.getInt8PtrTy(), Builder.getInt32Ty(), Builder.getInt8Ty(), Builder.getInt32Ty()}); StructType *EmitArcsCallArgsTy = StructType::create( {Builder.getInt32Ty(), Builder.getInt64Ty()->getPointerTo()}); StructType *FileInfoTy = StructType::create({StartFileCallArgsTy, Builder.getInt32Ty(), EmitFunctionCallArgsTy->getPointerTo(), EmitArcsCallArgsTy->getPointerTo()}); Constant *Zero32 = Builder.getInt32(0); // Build an explicit array of two zeros for use in ConstantExpr GEP building. Constant *TwoZero32s[] = {Zero32, Zero32}; SmallVector FileInfos; for (int i : llvm::seq(0, CUNodes->getNumOperands())) { auto *CU = cast(CUNodes->getOperand(i)); // Skip module skeleton (and module) CUs. if (CU->getDWOId()) continue; std::string FilenameGcda = mangleName(CU, GCovFileType::GCDA); uint32_t CfgChecksum = FileChecksums.empty() ? 0 : FileChecksums[i]; auto *StartFileCallArgs = ConstantStruct::get( StartFileCallArgsTy, {Builder.CreateGlobalStringPtr(FilenameGcda), Builder.CreateGlobalStringPtr(ReversedVersion), Builder.getInt32(CfgChecksum)}); SmallVector EmitFunctionCallArgsArray; SmallVector EmitArcsCallArgsArray; for (int j : llvm::seq(0, CountersBySP.size())) { auto *SP = cast_or_null(CountersBySP[j].second); uint32_t FuncChecksum = Funcs.empty() ? 0 : Funcs[j]->getFuncChecksum(); EmitFunctionCallArgsArray.push_back(ConstantStruct::get( EmitFunctionCallArgsTy, {Builder.getInt32(j), Options.FunctionNamesInData ? Builder.CreateGlobalStringPtr(getFunctionName(SP)) : Constant::getNullValue(Builder.getInt8PtrTy()), Builder.getInt32(FuncChecksum), Builder.getInt8(Options.UseCfgChecksum), Builder.getInt32(CfgChecksum)})); GlobalVariable *GV = CountersBySP[j].first; unsigned Arcs = cast(GV->getValueType())->getNumElements(); EmitArcsCallArgsArray.push_back(ConstantStruct::get( EmitArcsCallArgsTy, {Builder.getInt32(Arcs), ConstantExpr::getInBoundsGetElementPtr( GV->getValueType(), GV, TwoZero32s)})); } // Create global arrays for the two emit calls. int CountersSize = CountersBySP.size(); assert(CountersSize == (int)EmitFunctionCallArgsArray.size() && "Mismatched array size!"); assert(CountersSize == (int)EmitArcsCallArgsArray.size() && "Mismatched array size!"); auto *EmitFunctionCallArgsArrayTy = ArrayType::get(EmitFunctionCallArgsTy, CountersSize); auto *EmitFunctionCallArgsArrayGV = new GlobalVariable( *M, EmitFunctionCallArgsArrayTy, /*isConstant*/ true, GlobalValue::InternalLinkage, ConstantArray::get(EmitFunctionCallArgsArrayTy, EmitFunctionCallArgsArray), Twine("__llvm_internal_gcov_emit_function_args.") + Twine(i)); auto *EmitArcsCallArgsArrayTy = ArrayType::get(EmitArcsCallArgsTy, CountersSize); EmitFunctionCallArgsArrayGV->setUnnamedAddr( GlobalValue::UnnamedAddr::Global); auto *EmitArcsCallArgsArrayGV = new GlobalVariable( *M, EmitArcsCallArgsArrayTy, /*isConstant*/ true, GlobalValue::InternalLinkage, ConstantArray::get(EmitArcsCallArgsArrayTy, EmitArcsCallArgsArray), Twine("__llvm_internal_gcov_emit_arcs_args.") + Twine(i)); EmitArcsCallArgsArrayGV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); FileInfos.push_back(ConstantStruct::get( FileInfoTy, {StartFileCallArgs, Builder.getInt32(CountersSize), ConstantExpr::getInBoundsGetElementPtr(EmitFunctionCallArgsArrayTy, EmitFunctionCallArgsArrayGV, TwoZero32s), ConstantExpr::getInBoundsGetElementPtr( EmitArcsCallArgsArrayTy, EmitArcsCallArgsArrayGV, TwoZero32s)})); } // If we didn't find anything to actually emit, bail on out. if (FileInfos.empty()) { Builder.CreateRetVoid(); return WriteoutF; } // To simplify code, we cap the number of file infos we write out to fit // easily in a 32-bit signed integer. This gives consistent behavior between // 32-bit and 64-bit systems without requiring (potentially very slow) 64-bit // operations on 32-bit systems. It also seems unreasonable to try to handle // more than 2 billion files. if ((int64_t)FileInfos.size() > (int64_t)INT_MAX) FileInfos.resize(INT_MAX); // Create a global for the entire data structure so we can walk it more // easily. auto *FileInfoArrayTy = ArrayType::get(FileInfoTy, FileInfos.size()); auto *FileInfoArrayGV = new GlobalVariable( *M, FileInfoArrayTy, /*isConstant*/ true, GlobalValue::InternalLinkage, ConstantArray::get(FileInfoArrayTy, FileInfos), "__llvm_internal_gcov_emit_file_info"); FileInfoArrayGV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Create the CFG for walking this data structure. auto *FileLoopHeader = BasicBlock::Create(*Ctx, "file.loop.header", WriteoutF); auto *CounterLoopHeader = BasicBlock::Create(*Ctx, "counter.loop.header", WriteoutF); auto *FileLoopLatch = BasicBlock::Create(*Ctx, "file.loop.latch", WriteoutF); auto *ExitBB = BasicBlock::Create(*Ctx, "exit", WriteoutF); // We always have at least one file, so just branch to the header. Builder.CreateBr(FileLoopHeader); // The index into the files structure is our loop induction variable. Builder.SetInsertPoint(FileLoopHeader); PHINode *IV = Builder.CreatePHI(Builder.getInt32Ty(), /*NumReservedValues*/ 2); IV->addIncoming(Builder.getInt32(0), BB); auto *FileInfoPtr = Builder.CreateInBoundsGEP(FileInfoArrayGV, {Builder.getInt32(0), IV}); auto *StartFileCallArgsPtr = Builder.CreateStructGEP(FileInfoPtr, 0); auto *StartFileCall = Builder.CreateCall( StartFile, {Builder.CreateLoad(Builder.CreateStructGEP(StartFileCallArgsPtr, 0)), Builder.CreateLoad(Builder.CreateStructGEP(StartFileCallArgsPtr, 1)), Builder.CreateLoad(Builder.CreateStructGEP(StartFileCallArgsPtr, 2))}); if (auto AK = TLI->getExtAttrForI32Param(false)) StartFileCall->addParamAttr(2, AK); auto *NumCounters = Builder.CreateLoad(Builder.CreateStructGEP(FileInfoPtr, 1)); auto *EmitFunctionCallArgsArray = Builder.CreateLoad(Builder.CreateStructGEP(FileInfoPtr, 2)); auto *EmitArcsCallArgsArray = Builder.CreateLoad(Builder.CreateStructGEP(FileInfoPtr, 3)); auto *EnterCounterLoopCond = Builder.CreateICmpSLT(Builder.getInt32(0), NumCounters); Builder.CreateCondBr(EnterCounterLoopCond, CounterLoopHeader, FileLoopLatch); Builder.SetInsertPoint(CounterLoopHeader); auto *JV = Builder.CreatePHI(Builder.getInt32Ty(), /*NumReservedValues*/ 2); JV->addIncoming(Builder.getInt32(0), FileLoopHeader); auto *EmitFunctionCallArgsPtr = Builder.CreateInBoundsGEP(EmitFunctionCallArgsArray, {JV}); auto *EmitFunctionCall = Builder.CreateCall( EmitFunction, {Builder.CreateLoad(Builder.CreateStructGEP(EmitFunctionCallArgsPtr, 0)), Builder.CreateLoad(Builder.CreateStructGEP(EmitFunctionCallArgsPtr, 1)), Builder.CreateLoad(Builder.CreateStructGEP(EmitFunctionCallArgsPtr, 2)), Builder.CreateLoad(Builder.CreateStructGEP(EmitFunctionCallArgsPtr, 3)), Builder.CreateLoad( Builder.CreateStructGEP(EmitFunctionCallArgsPtr, 4))}); if (auto AK = TLI->getExtAttrForI32Param(false)) { EmitFunctionCall->addParamAttr(0, AK); EmitFunctionCall->addParamAttr(2, AK); EmitFunctionCall->addParamAttr(3, AK); EmitFunctionCall->addParamAttr(4, AK); } auto *EmitArcsCallArgsPtr = Builder.CreateInBoundsGEP(EmitArcsCallArgsArray, {JV}); auto *EmitArcsCall = Builder.CreateCall( EmitArcs, {Builder.CreateLoad(Builder.CreateStructGEP(EmitArcsCallArgsPtr, 0)), Builder.CreateLoad(Builder.CreateStructGEP(EmitArcsCallArgsPtr, 1))}); if (auto AK = TLI->getExtAttrForI32Param(false)) EmitArcsCall->addParamAttr(0, AK); auto *NextJV = Builder.CreateAdd(JV, Builder.getInt32(1)); auto *CounterLoopCond = Builder.CreateICmpSLT(NextJV, NumCounters); Builder.CreateCondBr(CounterLoopCond, CounterLoopHeader, FileLoopLatch); JV->addIncoming(NextJV, CounterLoopHeader); Builder.SetInsertPoint(FileLoopLatch); Builder.CreateCall(SummaryInfo, {}); Builder.CreateCall(EndFile, {}); auto *NextIV = Builder.CreateAdd(IV, Builder.getInt32(1)); auto *FileLoopCond = Builder.CreateICmpSLT(NextIV, Builder.getInt32(FileInfos.size())); Builder.CreateCondBr(FileLoopCond, FileLoopHeader, ExitBB); IV->addIncoming(NextIV, FileLoopLatch); Builder.SetInsertPoint(ExitBB); Builder.CreateRetVoid(); return WriteoutF; } void GCOVProfiler::insertIndirectCounterIncrement() { Function *Fn = cast(GCOVProfiler::getIncrementIndirectCounterFunc()); Fn->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); Fn->setLinkage(GlobalValue::InternalLinkage); Fn->addFnAttr(Attribute::NoInline); if (Options.NoRedZone) Fn->addFnAttr(Attribute::NoRedZone); // Create basic blocks for function. BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", Fn); IRBuilder<> Builder(BB); BasicBlock *PredNotNegOne = BasicBlock::Create(*Ctx, "", Fn); BasicBlock *CounterEnd = BasicBlock::Create(*Ctx, "", Fn); BasicBlock *Exit = BasicBlock::Create(*Ctx, "exit", Fn); // uint32_t pred = *predecessor; // if (pred == 0xffffffff) return; Argument *Arg = &*Fn->arg_begin(); Arg->setName("predecessor"); Value *Pred = Builder.CreateLoad(Arg, "pred"); Value *Cond = Builder.CreateICmpEQ(Pred, Builder.getInt32(0xffffffff)); BranchInst::Create(Exit, PredNotNegOne, Cond, BB); Builder.SetInsertPoint(PredNotNegOne); // uint64_t *counter = counters[pred]; // if (!counter) return; Value *ZExtPred = Builder.CreateZExt(Pred, Builder.getInt64Ty()); Arg = &*std::next(Fn->arg_begin()); Arg->setName("counters"); Value *GEP = Builder.CreateGEP(Type::getInt64PtrTy(*Ctx), Arg, ZExtPred); Value *Counter = Builder.CreateLoad(GEP, "counter"); Cond = Builder.CreateICmpEQ(Counter, Constant::getNullValue( Builder.getInt64Ty()->getPointerTo())); Builder.CreateCondBr(Cond, Exit, CounterEnd); // ++*counter; Builder.SetInsertPoint(CounterEnd); Value *Add = Builder.CreateAdd(Builder.CreateLoad(Counter), Builder.getInt64(1)); Builder.CreateStore(Add, Counter); Builder.CreateBr(Exit); // Fill in the exit block. Builder.SetInsertPoint(Exit); Builder.CreateRetVoid(); } Function *GCOVProfiler:: insertFlush(ArrayRef > CountersBySP) { FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), false); Function *FlushF = M->getFunction("__llvm_gcov_flush"); if (!FlushF) FlushF = Function::Create(FTy, GlobalValue::InternalLinkage, "__llvm_gcov_flush", M); else FlushF->setLinkage(GlobalValue::InternalLinkage); FlushF->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); FlushF->addFnAttr(Attribute::NoInline); if (Options.NoRedZone) FlushF->addFnAttr(Attribute::NoRedZone); BasicBlock *Entry = BasicBlock::Create(*Ctx, "entry", FlushF); // Write out the current counters. Constant *WriteoutF = M->getFunction("__llvm_gcov_writeout"); assert(WriteoutF && "Need to create the writeout function first!"); IRBuilder<> Builder(Entry); Builder.CreateCall(WriteoutF, {}); // Zero out the counters. for (const auto &I : CountersBySP) { GlobalVariable *GV = I.first; Constant *Null = Constant::getNullValue(GV->getValueType()); Builder.CreateStore(Null, GV); } Type *RetTy = FlushF->getReturnType(); if (RetTy == Type::getVoidTy(*Ctx)) Builder.CreateRetVoid(); else if (RetTy->isIntegerTy()) // Used if __llvm_gcov_flush was implicitly declared. Builder.CreateRet(ConstantInt::get(RetTy, 0)); else report_fatal_error("invalid return type for __llvm_gcov_flush"); return FlushF; }