//===---- BDCE.cpp - Bit-tracking dead code elimination -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Bit-Tracking Dead Code Elimination pass. Some // instructions (shifts, some ands, ors, etc.) kill some of their input bits. // We track these dead bits and remove instructions that compute only these // dead bits. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/BDCE.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/DemandedBits.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" using namespace llvm; #define DEBUG_TYPE "bdce" STATISTIC(NumRemoved, "Number of instructions removed (unused)"); STATISTIC(NumSimplified, "Number of instructions trivialized (dead bits)"); /// If an instruction is trivialized (dead), then the chain of users of that /// instruction may need to be cleared of assumptions that can no longer be /// guaranteed correct. static void clearAssumptionsOfUsers(Instruction *I, DemandedBits &DB) { assert(I->getType()->isIntegerTy() && "Trivializing a non-integer value?"); // Initialize the worklist with eligible direct users. SmallVector WorkList; for (User *JU : I->users()) { // If all bits of a user are demanded, then we know that nothing below that // in the def-use chain needs to be changed. auto *J = dyn_cast(JU); if (J && J->getType()->isSized() && !DB.getDemandedBits(J).isAllOnesValue()) WorkList.push_back(J); // Note that we need to check for unsized types above before asking for // demanded bits. Normally, the only way to reach an instruction with an // unsized type is via an instruction that has side effects (or otherwise // will demand its input bits). However, if we have a readnone function // that returns an unsized type (e.g., void), we must avoid asking for the // demanded bits of the function call's return value. A void-returning // readnone function is always dead (and so we can stop walking the use/def // chain here), but the check is necessary to avoid asserting. } // DFS through subsequent users while tracking visits to avoid cycles. SmallPtrSet Visited; while (!WorkList.empty()) { Instruction *J = WorkList.pop_back_val(); // NSW, NUW, and exact are based on operands that might have changed. J->dropPoisonGeneratingFlags(); // We do not have to worry about llvm.assume or range metadata: // 1. llvm.assume demands its operand, so trivializing can't change it. // 2. range metadata only applies to memory accesses which demand all bits. Visited.insert(J); for (User *KU : J->users()) { // If all bits of a user are demanded, then we know that nothing below // that in the def-use chain needs to be changed. auto *K = dyn_cast(KU); if (K && !Visited.count(K) && K->getType()->isSized() && !DB.getDemandedBits(K).isAllOnesValue()) WorkList.push_back(K); } } } static bool bitTrackingDCE(Function &F, DemandedBits &DB) { SmallVector Worklist; bool Changed = false; for (Instruction &I : instructions(F)) { // If the instruction has side effects and no non-dbg uses, // skip it. This way we avoid computing known bits on an instruction // that will not help us. if (I.mayHaveSideEffects() && I.use_empty()) continue; if (I.getType()->isIntegerTy() && !DB.getDemandedBits(&I).getBoolValue()) { // For live instructions that have all dead bits, first make them dead by // replacing all uses with something else. Then, if they don't need to // remain live (because they have side effects, etc.) we can remove them. LLVM_DEBUG(dbgs() << "BDCE: Trivializing: " << I << " (all bits dead)\n"); clearAssumptionsOfUsers(&I, DB); // FIXME: In theory we could substitute undef here instead of zero. // This should be reconsidered once we settle on the semantics of // undef, poison, etc. Value *Zero = ConstantInt::get(I.getType(), 0); ++NumSimplified; I.replaceNonMetadataUsesWith(Zero); Changed = true; } if (!DB.isInstructionDead(&I)) continue; salvageDebugInfo(I); Worklist.push_back(&I); I.dropAllReferences(); Changed = true; } for (Instruction *&I : Worklist) { ++NumRemoved; I->eraseFromParent(); } return Changed; } PreservedAnalyses BDCEPass::run(Function &F, FunctionAnalysisManager &AM) { auto &DB = AM.getResult(F); if (!bitTrackingDCE(F, DB)) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserveSet(); PA.preserve(); return PA; } namespace { struct BDCELegacyPass : public FunctionPass { static char ID; // Pass identification, replacement for typeid BDCELegacyPass() : FunctionPass(ID) { initializeBDCELegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; auto &DB = getAnalysis().getDemandedBits(); return bitTrackingDCE(F, DB); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired(); AU.addPreserved(); } }; } char BDCELegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(BDCELegacyPass, "bdce", "Bit-Tracking Dead Code Elimination", false, false) INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) INITIALIZE_PASS_END(BDCELegacyPass, "bdce", "Bit-Tracking Dead Code Elimination", false, false) FunctionPass *llvm::createBitTrackingDCEPass() { return new BDCELegacyPass(); }