//===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass hoists expressions from branches to a common dominator. It uses // GVN (global value numbering) to discover expressions computing the same // values. The primary goals of code-hoisting are: // 1. To reduce the code size. // 2. In some cases reduce critical path (by exposing more ILP). // // The algorithm factors out the reachability of values such that multiple // queries to find reachability of values are fast. This is based on finding the // ANTIC points in the CFG which do not change during hoisting. The ANTIC points // are basically the dominance-frontiers in the inverse graph. So we introduce a // data structure (CHI nodes) to keep track of values flowing out of a basic // block. We only do this for values with multiple occurrences in the function // as they are the potential hoistable candidates. This approach allows us to // hoist instructions to a basic block with more than two successors, as well as // deal with infinite loops in a trivial way. // // Limitations: This pass does not hoist fully redundant expressions because // they are already handled by GVN-PRE. It is advisable to run gvn-hoist before // and after gvn-pre because gvn-pre creates opportunities for more instructions // to be hoisted. // // Hoisting may affect the performance in some cases. To mitigate that, hoisting // is disabled in the following cases. // 1. Scalars across calls. // 2. geps when corresponding load/store cannot be hoisted. //===----------------------------------------------------------------------===// #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/IteratedDominanceFrontier.h" #include "llvm/Analysis/MemoryDependenceAnalysis.h" #include "llvm/Analysis/MemorySSA.h" #include "llvm/Analysis/MemorySSAUpdater.h" #include "llvm/Analysis/PostDominators.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Argument.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Scalar/GVN.h" #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "gvn-hoist" STATISTIC(NumHoisted, "Number of instructions hoisted"); STATISTIC(NumRemoved, "Number of instructions removed"); STATISTIC(NumLoadsHoisted, "Number of loads hoisted"); STATISTIC(NumLoadsRemoved, "Number of loads removed"); STATISTIC(NumStoresHoisted, "Number of stores hoisted"); STATISTIC(NumStoresRemoved, "Number of stores removed"); STATISTIC(NumCallsHoisted, "Number of calls hoisted"); STATISTIC(NumCallsRemoved, "Number of calls removed"); static cl::opt MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1), cl::desc("Max number of instructions to hoist " "(default unlimited = -1)")); static cl::opt MaxNumberOfBBSInPath( "gvn-hoist-max-bbs", cl::Hidden, cl::init(4), cl::desc("Max number of basic blocks on the path between " "hoisting locations (default = 4, unlimited = -1)")); static cl::opt MaxDepthInBB( "gvn-hoist-max-depth", cl::Hidden, cl::init(100), cl::desc("Hoist instructions from the beginning of the BB up to the " "maximum specified depth (default = 100, unlimited = -1)")); static cl::opt MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10), cl::desc("Maximum length of dependent chains to hoist " "(default = 10, unlimited = -1)")); namespace llvm { using BBSideEffectsSet = DenseMap; using SmallVecInsn = SmallVector; using SmallVecImplInsn = SmallVectorImpl; // Each element of a hoisting list contains the basic block where to hoist and // a list of instructions to be hoisted. using HoistingPointInfo = std::pair; using HoistingPointList = SmallVector; // A map from a pair of VNs to all the instructions with those VNs. using VNType = std::pair; using VNtoInsns = DenseMap>; // CHI keeps information about values flowing out of a basic block. It is // similar to PHI but in the inverse graph, and used for outgoing values on each // edge. For conciseness, it is computed only for instructions with multiple // occurrences in the CFG because they are the only hoistable candidates. // A (CHI[{V, B, I1}, {V, C, I2}] // / \ // / \ // B(I1) C (I2) // The Value number for both I1 and I2 is V, the CHI node will save the // instruction as well as the edge where the value is flowing to. struct CHIArg { VNType VN; // Edge destination (shows the direction of flow), may not be where the I is. BasicBlock *Dest; // The instruction (VN) which uses the values flowing out of CHI. Instruction *I; bool operator==(const CHIArg &A) { return VN == A.VN; } bool operator!=(const CHIArg &A) { return !(*this == A); } }; using CHIIt = SmallVectorImpl::iterator; using CHIArgs = iterator_range; using OutValuesType = DenseMap>; using InValuesType = DenseMap, 2>>; // An invalid value number Used when inserting a single value number into // VNtoInsns. enum : unsigned { InvalidVN = ~2U }; // Records all scalar instructions candidate for code hoisting. class InsnInfo { VNtoInsns VNtoScalars; public: // Inserts I and its value number in VNtoScalars. void insert(Instruction *I, GVN::ValueTable &VN) { // Scalar instruction. unsigned V = VN.lookupOrAdd(I); VNtoScalars[{V, InvalidVN}].push_back(I); } const VNtoInsns &getVNTable() const { return VNtoScalars; } }; // Records all load instructions candidate for code hoisting. class LoadInfo { VNtoInsns VNtoLoads; public: // Insert Load and the value number of its memory address in VNtoLoads. void insert(LoadInst *Load, GVN::ValueTable &VN) { if (Load->isSimple()) { unsigned V = VN.lookupOrAdd(Load->getPointerOperand()); VNtoLoads[{V, InvalidVN}].push_back(Load); } } const VNtoInsns &getVNTable() const { return VNtoLoads; } }; // Records all store instructions candidate for code hoisting. class StoreInfo { VNtoInsns VNtoStores; public: // Insert the Store and a hash number of the store address and the stored // value in VNtoStores. void insert(StoreInst *Store, GVN::ValueTable &VN) { if (!Store->isSimple()) return; // Hash the store address and the stored value. Value *Ptr = Store->getPointerOperand(); Value *Val = Store->getValueOperand(); VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store); } const VNtoInsns &getVNTable() const { return VNtoStores; } }; // Records all call instructions candidate for code hoisting. class CallInfo { VNtoInsns VNtoCallsScalars; VNtoInsns VNtoCallsLoads; VNtoInsns VNtoCallsStores; public: // Insert Call and its value numbering in one of the VNtoCalls* containers. void insert(CallInst *Call, GVN::ValueTable &VN) { // A call that doesNotAccessMemory is handled as a Scalar, // onlyReadsMemory will be handled as a Load instruction, // all other calls will be handled as stores. unsigned V = VN.lookupOrAdd(Call); auto Entry = std::make_pair(V, InvalidVN); if (Call->doesNotAccessMemory()) VNtoCallsScalars[Entry].push_back(Call); else if (Call->onlyReadsMemory()) VNtoCallsLoads[Entry].push_back(Call); else VNtoCallsStores[Entry].push_back(Call); } const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; } const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; } const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; } }; static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) { static const unsigned KnownIDs[] = { LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, LLVMContext::MD_noalias, LLVMContext::MD_range, LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, LLVMContext::MD_invariant_group}; combineMetadata(ReplInst, I, KnownIDs); } // This pass hoists common computations across branches sharing common // dominator. The primary goal is to reduce the code size, and in some // cases reduce critical path (by exposing more ILP). class GVNHoist { public: GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA, MemoryDependenceResults *MD, MemorySSA *MSSA) : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA), MSSAUpdater(llvm::make_unique(MSSA)) {} bool run(Function &F) { NumFuncArgs = F.arg_size(); VN.setDomTree(DT); VN.setAliasAnalysis(AA); VN.setMemDep(MD); bool Res = false; // Perform DFS Numbering of instructions. unsigned BBI = 0; for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) { DFSNumber[BB] = ++BBI; unsigned I = 0; for (auto &Inst : *BB) DFSNumber[&Inst] = ++I; } int ChainLength = 0; // FIXME: use lazy evaluation of VN to avoid the fix-point computation. while (true) { if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength) return Res; auto HoistStat = hoistExpressions(F); if (HoistStat.first + HoistStat.second == 0) return Res; if (HoistStat.second > 0) // To address a limitation of the current GVN, we need to rerun the // hoisting after we hoisted loads or stores in order to be able to // hoist all scalars dependent on the hoisted ld/st. VN.clear(); Res = true; } return Res; } // Copied from NewGVN.cpp // This function provides global ranking of operations so that we can place // them in a canonical order. Note that rank alone is not necessarily enough // for a complete ordering, as constants all have the same rank. However, // generally, we will simplify an operation with all constants so that it // doesn't matter what order they appear in. unsigned int rank(const Value *V) const { // Prefer constants to undef to anything else // Undef is a constant, have to check it first. // Prefer smaller constants to constantexprs if (isa(V)) return 2; if (isa(V)) return 1; if (isa(V)) return 0; else if (auto *A = dyn_cast(V)) return 3 + A->getArgNo(); // Need to shift the instruction DFS by number of arguments + 3 to account // for the constant and argument ranking above. auto Result = DFSNumber.lookup(V); if (Result > 0) return 4 + NumFuncArgs + Result; // Unreachable or something else, just return a really large number. return ~0; } private: GVN::ValueTable VN; DominatorTree *DT; PostDominatorTree *PDT; AliasAnalysis *AA; MemoryDependenceResults *MD; MemorySSA *MSSA; std::unique_ptr MSSAUpdater; DenseMap DFSNumber; BBSideEffectsSet BBSideEffects; DenseSet HoistBarrier; SmallVector IDFBlocks; unsigned NumFuncArgs; const bool HoistingGeps = false; enum InsKind { Unknown, Scalar, Load, Store }; // Return true when there are exception handling in BB. bool hasEH(const BasicBlock *BB) { auto It = BBSideEffects.find(BB); if (It != BBSideEffects.end()) return It->second; if (BB->isEHPad() || BB->hasAddressTaken()) { BBSideEffects[BB] = true; return true; } if (BB->getTerminator()->mayThrow()) { BBSideEffects[BB] = true; return true; } BBSideEffects[BB] = false; return false; } // Return true when a successor of BB dominates A. bool successorDominate(const BasicBlock *BB, const BasicBlock *A) { for (const BasicBlock *Succ : BB->getTerminator()->successors()) if (DT->dominates(Succ, A)) return true; return false; } // Return true when I1 appears before I2 in the instructions of BB. bool firstInBB(const Instruction *I1, const Instruction *I2) { assert(I1->getParent() == I2->getParent()); unsigned I1DFS = DFSNumber.lookup(I1); unsigned I2DFS = DFSNumber.lookup(I2); assert(I1DFS && I2DFS); return I1DFS < I2DFS; } // Return true when there are memory uses of Def in BB. bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def, const BasicBlock *BB) { const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); if (!Acc) return false; Instruction *OldPt = Def->getMemoryInst(); const BasicBlock *OldBB = OldPt->getParent(); const BasicBlock *NewBB = NewPt->getParent(); bool ReachedNewPt = false; for (const MemoryAccess &MA : *Acc) if (const MemoryUse *MU = dyn_cast(&MA)) { Instruction *Insn = MU->getMemoryInst(); // Do not check whether MU aliases Def when MU occurs after OldPt. if (BB == OldBB && firstInBB(OldPt, Insn)) break; // Do not check whether MU aliases Def when MU occurs before NewPt. if (BB == NewBB) { if (!ReachedNewPt) { if (firstInBB(Insn, NewPt)) continue; ReachedNewPt = true; } } if (MemorySSAUtil::defClobbersUseOrDef(Def, MU, *AA)) return true; } return false; } bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB, int &NBBsOnAllPaths) { // Stop walk once the limit is reached. if (NBBsOnAllPaths == 0) return true; // Impossible to hoist with exceptions on the path. if (hasEH(BB)) return true; // No such instruction after HoistBarrier in a basic block was // selected for hoisting so instructions selected within basic block with // a hoist barrier can be hoisted. if ((BB != SrcBB) && HoistBarrier.count(BB)) return true; return false; } // Return true when there are exception handling or loads of memory Def // between Def and NewPt. This function is only called for stores: Def is // the MemoryDef of the store to be hoisted. // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and // return true when the counter NBBsOnAllPaths reaces 0, except when it is // initialized to -1 which is unlimited. bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def, int &NBBsOnAllPaths) { const BasicBlock *NewBB = NewPt->getParent(); const BasicBlock *OldBB = Def->getBlock(); assert(DT->dominates(NewBB, OldBB) && "invalid path"); assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) && "def does not dominate new hoisting point"); // Walk all basic blocks reachable in depth-first iteration on the inverse // CFG from OldBB to NewBB. These blocks are all the blocks that may be // executed between the execution of NewBB and OldBB. Hoisting an expression // from OldBB into NewBB has to be safe on all execution paths. for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) { const BasicBlock *BB = *I; if (BB == NewBB) { // Stop traversal when reaching HoistPt. I.skipChildren(); continue; } if (hasEHhelper(BB, OldBB, NBBsOnAllPaths)) return true; // Check that we do not move a store past loads. if (hasMemoryUse(NewPt, Def, BB)) return true; // -1 is unlimited number of blocks on all paths. if (NBBsOnAllPaths != -1) --NBBsOnAllPaths; ++I; } return false; } // Return true when there are exception handling between HoistPt and BB. // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and // return true when the counter NBBsOnAllPaths reaches 0, except when it is // initialized to -1 which is unlimited. bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB, int &NBBsOnAllPaths) { assert(DT->dominates(HoistPt, SrcBB) && "Invalid path"); // Walk all basic blocks reachable in depth-first iteration on // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the // blocks that may be executed between the execution of NewHoistPt and // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe // on all execution paths. for (auto I = idf_begin(SrcBB), E = idf_end(SrcBB); I != E;) { const BasicBlock *BB = *I; if (BB == HoistPt) { // Stop traversal when reaching NewHoistPt. I.skipChildren(); continue; } if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths)) return true; // -1 is unlimited number of blocks on all paths. if (NBBsOnAllPaths != -1) --NBBsOnAllPaths; ++I; } return false; } // Return true when it is safe to hoist a memory load or store U from OldPt // to NewPt. bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt, MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) { // In place hoisting is safe. if (NewPt == OldPt) return true; const BasicBlock *NewBB = NewPt->getParent(); const BasicBlock *OldBB = OldPt->getParent(); const BasicBlock *UBB = U->getBlock(); // Check for dependences on the Memory SSA. MemoryAccess *D = U->getDefiningAccess(); BasicBlock *DBB = D->getBlock(); if (DT->properlyDominates(NewBB, DBB)) // Cannot move the load or store to NewBB above its definition in DBB. return false; if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D)) if (auto *UD = dyn_cast(D)) if (!firstInBB(UD->getMemoryInst(), NewPt)) // Cannot move the load or store to NewPt above its definition in D. return false; // Check for unsafe hoistings due to side effects. if (K == InsKind::Store) { if (hasEHOrLoadsOnPath(NewPt, dyn_cast(U), NBBsOnAllPaths)) return false; } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths)) return false; if (UBB == NewBB) { if (DT->properlyDominates(DBB, NewBB)) return true; assert(UBB == DBB); assert(MSSA->locallyDominates(D, U)); } // No side effects: it is safe to hoist. return true; } // Return true when it is safe to hoist scalar instructions from all blocks in // WL to HoistBB. bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB, int &NBBsOnAllPaths) { return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths); } // In the inverse CFG, the dominance frontier of basic block (BB) is the // point where ANTIC needs to be computed for instructions which are going // to be hoisted. Since this point does not change during gvn-hoist, // we compute it only once (on demand). // The ides is inspired from: // "Partial Redundancy Elimination in SSA Form" // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW // They use similar idea in the forward graph to find fully redundant and // partially redundant expressions, here it is used in the inverse graph to // find fully anticipable instructions at merge point (post-dominator in // the inverse CFG). // Returns the edge via which an instruction in BB will get the values from. // Returns true when the values are flowing out to each edge. bool valueAnticipable(CHIArgs C, TerminatorInst *TI) const { if (TI->getNumSuccessors() > (unsigned)size(C)) return false; // Not enough args in this CHI. for (auto CHI : C) { BasicBlock *Dest = CHI.Dest; // Find if all the edges have values flowing out of BB. bool Found = llvm::any_of(TI->successors(), [Dest](const BasicBlock *BB) { return BB == Dest; }); if (!Found) return false; } return true; } // Check if it is safe to hoist values tracked by CHI in the range // [Begin, End) and accumulate them in Safe. void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K, SmallVectorImpl &Safe) { int NumBBsOnAllPaths = MaxNumberOfBBSInPath; for (auto CHI : C) { Instruction *Insn = CHI.I; if (!Insn) // No instruction was inserted in this CHI. continue; if (K == InsKind::Scalar) { if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths)) Safe.push_back(CHI); } else { MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn); if (safeToHoistLdSt(BB->getTerminator(), Insn, UD, K, NumBBsOnAllPaths)) Safe.push_back(CHI); } } } using RenameStackType = DenseMap>; // Push all the VNs corresponding to BB into RenameStack. void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs, RenameStackType &RenameStack) { auto it1 = ValueBBs.find(BB); if (it1 != ValueBBs.end()) { // Iterate in reverse order to keep lower ranked values on the top. for (std::pair &VI : reverse(it1->second)) { // Get the value of instruction I LLVM_DEBUG(dbgs() << "\nPushing on stack: " << *VI.second); RenameStack[VI.first].push_back(VI.second); } } } void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs, RenameStackType &RenameStack) { // For each *predecessor* (because Post-DOM) of BB check if it has a CHI for (auto Pred : predecessors(BB)) { auto P = CHIBBs.find(Pred); if (P == CHIBBs.end()) { continue; } LLVM_DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName();); // A CHI is found (BB -> Pred is an edge in the CFG) // Pop the stack until Top(V) = Ve. auto &VCHI = P->second; for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) { CHIArg &C = *It; if (!C.Dest) { auto si = RenameStack.find(C.VN); // The Basic Block where CHI is must dominate the value we want to // track in a CHI. In the PDom walk, there can be values in the // stack which are not control dependent e.g., nested loop. if (si != RenameStack.end() && si->second.size() && DT->properlyDominates(Pred, si->second.back()->getParent())) { C.Dest = BB; // Assign the edge C.I = si->second.pop_back_val(); // Assign the argument LLVM_DEBUG(dbgs() << "\nCHI Inserted in BB: " << C.Dest->getName() << *C.I << ", VN: " << C.VN.first << ", " << C.VN.second); } // Move to next CHI of a different value It = std::find_if(It, VCHI.end(), [It](CHIArg &A) { return A != *It; }); } else ++It; } } } // Walk the post-dominator tree top-down and use a stack for each value to // store the last value you see. When you hit a CHI from a given edge, the // value to use as the argument is at the top of the stack, add the value to // CHI and pop. void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) { auto Root = PDT->getNode(nullptr); if (!Root) return; // Depth first walk on PDom tree to fill the CHIargs at each PDF. RenameStackType RenameStack; for (auto Node : depth_first(Root)) { BasicBlock *BB = Node->getBlock(); if (!BB) continue; // Collect all values in BB and push to stack. fillRenameStack(BB, ValueBBs, RenameStack); // Fill outgoing values in each CHI corresponding to BB. fillChiArgs(BB, CHIBBs, RenameStack); } } // Walk all the CHI-nodes to find ones which have a empty-entry and remove // them Then collect all the instructions which are safe to hoist and see if // they form a list of anticipable values. OutValues contains CHIs // corresponding to each basic block. void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K, HoistingPointList &HPL) { auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; }; // CHIArgs now have the outgoing values, so check for anticipability and // accumulate hoistable candidates in HPL. for (std::pair> &A : CHIBBs) { BasicBlock *BB = A.first; SmallVectorImpl &CHIs = A.second; // Vector of PHIs contains PHIs for different instructions. // Sort the args according to their VNs, such that identical // instructions are together. std::stable_sort(CHIs.begin(), CHIs.end(), cmpVN); auto TI = BB->getTerminator(); auto B = CHIs.begin(); // [PreIt, PHIIt) form a range of CHIs which have identical VNs. auto PHIIt = std::find_if(CHIs.begin(), CHIs.end(), [B](CHIArg &A) { return A != *B; }); auto PrevIt = CHIs.begin(); while (PrevIt != PHIIt) { // Collect values which satisfy safety checks. SmallVector Safe; // We check for safety first because there might be multiple values in // the same path, some of which are not safe to be hoisted, but overall // each edge has at least one value which can be hoisted, making the // value anticipable along that path. checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe); // List of safe values should be anticipable at TI. if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) { HPL.push_back({BB, SmallVecInsn()}); SmallVecInsn &V = HPL.back().second; for (auto B : Safe) V.push_back(B.I); } // Check other VNs PrevIt = PHIIt; PHIIt = std::find_if(PrevIt, CHIs.end(), [PrevIt](CHIArg &A) { return A != *PrevIt; }); } } } // Compute insertion points for each values which can be fully anticipated at // a dominator. HPL contains all such values. void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL, InsKind K) { // Sort VNs based on their rankings std::vector Ranks; for (const auto &Entry : Map) { Ranks.push_back(Entry.first); } // TODO: Remove fully-redundant expressions. // Get instruction from the Map, assume that all the Instructions // with same VNs have same rank (this is an approximation). llvm::sort(Ranks.begin(), Ranks.end(), [this, &Map](const VNType &r1, const VNType &r2) { return (rank(*Map.lookup(r1).begin()) < rank(*Map.lookup(r2).begin())); }); // - Sort VNs according to their rank, and start with lowest ranked VN // - Take a VN and for each instruction with same VN // - Find the dominance frontier in the inverse graph (PDF) // - Insert the chi-node at PDF // - Remove the chi-nodes with missing entries // - Remove values from CHI-nodes which do not truly flow out, e.g., // modified along the path. // - Collect the remaining values that are still anticipable SmallVector IDFBlocks; ReverseIDFCalculator IDFs(*PDT); OutValuesType OutValue; InValuesType InValue; for (const auto &R : Ranks) { const SmallVecInsn &V = Map.lookup(R); if (V.size() < 2) continue; const VNType &VN = R; SmallPtrSet VNBlocks; for (auto &I : V) { BasicBlock *BBI = I->getParent(); if (!hasEH(BBI)) VNBlocks.insert(BBI); } // Compute the Post Dominance Frontiers of each basic block // The dominance frontier of a live block X in the reverse // control graph is the set of blocks upon which X is control // dependent. The following sequence computes the set of blocks // which currently have dead terminators that are control // dependence sources of a block which is in NewLiveBlocks. IDFs.setDefiningBlocks(VNBlocks); IDFs.calculate(IDFBlocks); // Make a map of BB vs instructions to be hoisted. for (unsigned i = 0; i < V.size(); ++i) { InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i])); } // Insert empty CHI node for this VN. This is used to factor out // basic blocks where the ANTIC can potentially change. for (auto IDFB : IDFBlocks) { // TODO: Prune out useless CHI insertions. for (unsigned i = 0; i < V.size(); ++i) { CHIArg C = {VN, nullptr, nullptr}; // Ignore spurious PDFs. if (DT->properlyDominates(IDFB, V[i]->getParent())) { OutValue[IDFB].push_back(C); LLVM_DEBUG(dbgs() << "\nInsertion a CHI for BB: " << IDFB->getName() << ", for Insn: " << *V[i]); } } } } // Insert CHI args at each PDF to iterate on factored graph of // control dependence. insertCHI(InValue, OutValue); // Using the CHI args inserted at each PDF, find fully anticipable values. findHoistableCandidates(OutValue, K, HPL); } // Return true when all operands of Instr are available at insertion point // HoistPt. When limiting the number of hoisted expressions, one could hoist // a load without hoisting its access function. So before hoisting any // expression, make sure that all its operands are available at insert point. bool allOperandsAvailable(const Instruction *I, const BasicBlock *HoistPt) const { for (const Use &Op : I->operands()) if (const auto *Inst = dyn_cast(&Op)) if (!DT->dominates(Inst->getParent(), HoistPt)) return false; return true; } // Same as allOperandsAvailable with recursive check for GEP operands. bool allGepOperandsAvailable(const Instruction *I, const BasicBlock *HoistPt) const { for (const Use &Op : I->operands()) if (const auto *Inst = dyn_cast(&Op)) if (!DT->dominates(Inst->getParent(), HoistPt)) { if (const GetElementPtrInst *GepOp = dyn_cast(Inst)) { if (!allGepOperandsAvailable(GepOp, HoistPt)) return false; // Gep is available if all operands of GepOp are available. } else { // Gep is not available if it has operands other than GEPs that are // defined in blocks not dominating HoistPt. return false; } } return true; } // Make all operands of the GEP available. void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt, const SmallVecInsn &InstructionsToHoist, Instruction *Gep) const { assert(allGepOperandsAvailable(Gep, HoistPt) && "GEP operands not available"); Instruction *ClonedGep = Gep->clone(); for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i) if (Instruction *Op = dyn_cast(Gep->getOperand(i))) { // Check whether the operand is already available. if (DT->dominates(Op->getParent(), HoistPt)) continue; // As a GEP can refer to other GEPs, recursively make all the operands // of this GEP available at HoistPt. if (GetElementPtrInst *GepOp = dyn_cast(Op)) makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp); } // Copy Gep and replace its uses in Repl with ClonedGep. ClonedGep->insertBefore(HoistPt->getTerminator()); // Conservatively discard any optimization hints, they may differ on the // other paths. ClonedGep->dropUnknownNonDebugMetadata(); // If we have optimization hints which agree with each other along different // paths, preserve them. for (const Instruction *OtherInst : InstructionsToHoist) { const GetElementPtrInst *OtherGep; if (auto *OtherLd = dyn_cast(OtherInst)) OtherGep = cast(OtherLd->getPointerOperand()); else OtherGep = cast( cast(OtherInst)->getPointerOperand()); ClonedGep->andIRFlags(OtherGep); } // Replace uses of Gep with ClonedGep in Repl. Repl->replaceUsesOfWith(Gep, ClonedGep); } void updateAlignment(Instruction *I, Instruction *Repl) { if (auto *ReplacementLoad = dyn_cast(Repl)) { ReplacementLoad->setAlignment( std::min(ReplacementLoad->getAlignment(), cast(I)->getAlignment())); ++NumLoadsRemoved; } else if (auto *ReplacementStore = dyn_cast(Repl)) { ReplacementStore->setAlignment( std::min(ReplacementStore->getAlignment(), cast(I)->getAlignment())); ++NumStoresRemoved; } else if (auto *ReplacementAlloca = dyn_cast(Repl)) { ReplacementAlloca->setAlignment( std::max(ReplacementAlloca->getAlignment(), cast(I)->getAlignment())); } else if (isa(Repl)) { ++NumCallsRemoved; } } // Remove all the instructions in Candidates and replace their usage with Repl. // Returns the number of instructions removed. unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl, MemoryUseOrDef *NewMemAcc) { unsigned NR = 0; for (Instruction *I : Candidates) { if (I != Repl) { ++NR; updateAlignment(I, Repl); if (NewMemAcc) { // Update the uses of the old MSSA access with NewMemAcc. MemoryAccess *OldMA = MSSA->getMemoryAccess(I); OldMA->replaceAllUsesWith(NewMemAcc); MSSAUpdater->removeMemoryAccess(OldMA); } Repl->andIRFlags(I); combineKnownMetadata(Repl, I); I->replaceAllUsesWith(Repl); // Also invalidate the Alias Analysis cache. MD->removeInstruction(I); I->eraseFromParent(); } } return NR; } // Replace all Memory PHI usage with NewMemAcc. void raMPHIuw(MemoryUseOrDef *NewMemAcc) { SmallPtrSet UsePhis; for (User *U : NewMemAcc->users()) if (MemoryPhi *Phi = dyn_cast(U)) UsePhis.insert(Phi); for (MemoryPhi *Phi : UsePhis) { auto In = Phi->incoming_values(); if (llvm::all_of(In, [&](Use &U) { return U == NewMemAcc; })) { Phi->replaceAllUsesWith(NewMemAcc); MSSAUpdater->removeMemoryAccess(Phi); } } } // Remove all other instructions and replace them with Repl. unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl, BasicBlock *DestBB, bool MoveAccess) { MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl); if (MoveAccess && NewMemAcc) { // The definition of this ld/st will not change: ld/st hoisting is // legal when the ld/st is not moved past its current definition. MSSAUpdater->moveToPlace(NewMemAcc, DestBB, MemorySSA::End); } // Replace all other instructions with Repl with memory access NewMemAcc. unsigned NR = rauw(Candidates, Repl, NewMemAcc); // Remove MemorySSA phi nodes with the same arguments. if (NewMemAcc) raMPHIuw(NewMemAcc); return NR; } // In the case Repl is a load or a store, we make all their GEPs // available: GEPs are not hoisted by default to avoid the address // computations to be hoisted without the associated load or store. bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt, const SmallVecInsn &InstructionsToHoist) const { // Check whether the GEP of a ld/st can be synthesized at HoistPt. GetElementPtrInst *Gep = nullptr; Instruction *Val = nullptr; if (auto *Ld = dyn_cast(Repl)) { Gep = dyn_cast(Ld->getPointerOperand()); } else if (auto *St = dyn_cast(Repl)) { Gep = dyn_cast(St->getPointerOperand()); Val = dyn_cast(St->getValueOperand()); // Check that the stored value is available. if (Val) { if (isa(Val)) { // Check whether we can compute the GEP at HoistPt. if (!allGepOperandsAvailable(Val, HoistPt)) return false; } else if (!DT->dominates(Val->getParent(), HoistPt)) return false; } } // Check whether we can compute the Gep at HoistPt. if (!Gep || !allGepOperandsAvailable(Gep, HoistPt)) return false; makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep); if (Val && isa(Val)) makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val); return true; } std::pair hoist(HoistingPointList &HPL) { unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0; for (const HoistingPointInfo &HP : HPL) { // Find out whether we already have one of the instructions in HoistPt, // in which case we do not have to move it. BasicBlock *DestBB = HP.first; const SmallVecInsn &InstructionsToHoist = HP.second; Instruction *Repl = nullptr; for (Instruction *I : InstructionsToHoist) if (I->getParent() == DestBB) // If there are two instructions in HoistPt to be hoisted in place: // update Repl to be the first one, such that we can rename the uses // of the second based on the first. if (!Repl || firstInBB(I, Repl)) Repl = I; // Keep track of whether we moved the instruction so we know whether we // should move the MemoryAccess. bool MoveAccess = true; if (Repl) { // Repl is already in HoistPt: it remains in place. assert(allOperandsAvailable(Repl, DestBB) && "instruction depends on operands that are not available"); MoveAccess = false; } else { // When we do not find Repl in HoistPt, select the first in the list // and move it to HoistPt. Repl = InstructionsToHoist.front(); // We can move Repl in HoistPt only when all operands are available. // The order in which hoistings are done may influence the availability // of operands. if (!allOperandsAvailable(Repl, DestBB)) { // When HoistingGeps there is nothing more we can do to make the // operands available: just continue. if (HoistingGeps) continue; // When not HoistingGeps we need to copy the GEPs. if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist)) continue; } // Move the instruction at the end of HoistPt. Instruction *Last = DestBB->getTerminator(); MD->removeInstruction(Repl); Repl->moveBefore(Last); DFSNumber[Repl] = DFSNumber[Last]++; } NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess); if (isa(Repl)) ++NL; else if (isa(Repl)) ++NS; else if (isa(Repl)) ++NC; else // Scalar ++NI; } NumHoisted += NL + NS + NC + NI; NumRemoved += NR; NumLoadsHoisted += NL; NumStoresHoisted += NS; NumCallsHoisted += NC; return {NI, NL + NC + NS}; } // Hoist all expressions. Returns Number of scalars hoisted // and number of non-scalars hoisted. std::pair hoistExpressions(Function &F) { InsnInfo II; LoadInfo LI; StoreInfo SI; CallInfo CI; for (BasicBlock *BB : depth_first(&F.getEntryBlock())) { int InstructionNb = 0; for (Instruction &I1 : *BB) { // If I1 cannot guarantee progress, subsequent instructions // in BB cannot be hoisted anyways. if (!isGuaranteedToTransferExecutionToSuccessor(&I1)) { HoistBarrier.insert(BB); break; } // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting // deeper may increase the register pressure and compilation time. if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB) break; // Do not value number terminator instructions. if (isa(&I1)) break; if (auto *Load = dyn_cast(&I1)) LI.insert(Load, VN); else if (auto *Store = dyn_cast(&I1)) SI.insert(Store, VN); else if (auto *Call = dyn_cast(&I1)) { if (auto *Intr = dyn_cast(Call)) { if (isa(Intr) || Intr->getIntrinsicID() == Intrinsic::assume || Intr->getIntrinsicID() == Intrinsic::sideeffect) continue; } if (Call->mayHaveSideEffects()) break; if (Call->isConvergent()) break; CI.insert(Call, VN); } else if (HoistingGeps || !isa(&I1)) // Do not hoist scalars past calls that may write to memory because // that could result in spills later. geps are handled separately. // TODO: We can relax this for targets like AArch64 as they have more // registers than X86. II.insert(&I1, VN); } } HoistingPointList HPL; computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar); computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load); computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store); computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar); computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load); computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store); return hoist(HPL); } }; class GVNHoistLegacyPass : public FunctionPass { public: static char ID; GVNHoistLegacyPass() : FunctionPass(ID) { initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; auto &DT = getAnalysis().getDomTree(); auto &PDT = getAnalysis().getPostDomTree(); auto &AA = getAnalysis().getAAResults(); auto &MD = getAnalysis().getMemDep(); auto &MSSA = getAnalysis().getMSSA(); GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA); return G.run(F); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); } }; } // end namespace llvm PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) { DominatorTree &DT = AM.getResult(F); PostDominatorTree &PDT = AM.getResult(F); AliasAnalysis &AA = AM.getResult(F); MemoryDependenceResults &MD = AM.getResult(F); MemorySSA &MSSA = AM.getResult(F).getMSSA(); GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA); if (!G.run(F)) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve(); PA.preserve(); PA.preserve(); return PA; } char GVNHoistLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist", "Early GVN Hoisting of Expressions", false, false) INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist", "Early GVN Hoisting of Expressions", false, false) FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); }