//===-- LoopUtils.cpp - Loop Utility functions -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines common loop utility functions. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/MustExecute.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/Support/KnownBits.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "loop-utils" bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, SmallPtrSetImpl &Set) { for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) if (!Set.count(dyn_cast(*Use))) return false; return true; } bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) { switch (Kind) { default: break; case RK_IntegerAdd: case RK_IntegerMult: case RK_IntegerOr: case RK_IntegerAnd: case RK_IntegerXor: case RK_IntegerMinMax: return true; } return false; } bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) { return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind); } bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) { switch (Kind) { default: break; case RK_IntegerAdd: case RK_IntegerMult: case RK_FloatAdd: case RK_FloatMult: return true; } return false; } /// Determines if Phi may have been type-promoted. If Phi has a single user /// that ANDs the Phi with a type mask, return the user. RT is updated to /// account for the narrower bit width represented by the mask, and the AND /// instruction is added to CI. static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT, SmallPtrSetImpl &Visited, SmallPtrSetImpl &CI) { if (!Phi->hasOneUse()) return Phi; const APInt *M = nullptr; Instruction *I, *J = cast(Phi->use_begin()->getUser()); // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT // with a new integer type of the corresponding bit width. if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) { int32_t Bits = (*M + 1).exactLogBase2(); if (Bits > 0) { RT = IntegerType::get(Phi->getContext(), Bits); Visited.insert(Phi); CI.insert(J); return J; } } return Phi; } /// Compute the minimal bit width needed to represent a reduction whose exit /// instruction is given by Exit. static std::pair computeRecurrenceType(Instruction *Exit, DemandedBits *DB, AssumptionCache *AC, DominatorTree *DT) { bool IsSigned = false; const DataLayout &DL = Exit->getModule()->getDataLayout(); uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType()); if (DB) { // Use the demanded bits analysis to determine the bits that are live out // of the exit instruction, rounding up to the nearest power of two. If the // use of demanded bits results in a smaller bit width, we know the value // must be positive (i.e., IsSigned = false), because if this were not the // case, the sign bit would have been demanded. auto Mask = DB->getDemandedBits(Exit); MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros(); } if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) { // If demanded bits wasn't able to limit the bit width, we can try to use // value tracking instead. This can be the case, for example, if the value // may be negative. auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT); auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType()); MaxBitWidth = NumTypeBits - NumSignBits; KnownBits Bits = computeKnownBits(Exit, DL); if (!Bits.isNonNegative()) { // If the value is not known to be non-negative, we set IsSigned to true, // meaning that we will use sext instructions instead of zext // instructions to restore the original type. IsSigned = true; if (!Bits.isNegative()) // If the value is not known to be negative, we don't known what the // upper bit is, and therefore, we don't know what kind of extend we // will need. In this case, just increase the bit width by one bit and // use sext. ++MaxBitWidth; } } if (!isPowerOf2_64(MaxBitWidth)) MaxBitWidth = NextPowerOf2(MaxBitWidth); return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth), IsSigned); } /// Collect cast instructions that can be ignored in the vectorizer's cost /// model, given a reduction exit value and the minimal type in which the /// reduction can be represented. static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit, Type *RecurrenceType, SmallPtrSetImpl &Casts) { SmallVector Worklist; SmallPtrSet Visited; Worklist.push_back(Exit); while (!Worklist.empty()) { Instruction *Val = Worklist.pop_back_val(); Visited.insert(Val); if (auto *Cast = dyn_cast(Val)) if (Cast->getSrcTy() == RecurrenceType) { // If the source type of a cast instruction is equal to the recurrence // type, it will be eliminated, and should be ignored in the vectorizer // cost model. Casts.insert(Cast); continue; } // Add all operands to the work list if they are loop-varying values that // we haven't yet visited. for (Value *O : cast(Val)->operands()) if (auto *I = dyn_cast(O)) if (TheLoop->contains(I) && !Visited.count(I)) Worklist.push_back(I); } } bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind, Loop *TheLoop, bool HasFunNoNaNAttr, RecurrenceDescriptor &RedDes, DemandedBits *DB, AssumptionCache *AC, DominatorTree *DT) { if (Phi->getNumIncomingValues() != 2) return false; // Reduction variables are only found in the loop header block. if (Phi->getParent() != TheLoop->getHeader()) return false; // Obtain the reduction start value from the value that comes from the loop // preheader. Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); // ExitInstruction is the single value which is used outside the loop. // We only allow for a single reduction value to be used outside the loop. // This includes users of the reduction, variables (which form a cycle // which ends in the phi node). Instruction *ExitInstruction = nullptr; // Indicates that we found a reduction operation in our scan. bool FoundReduxOp = false; // We start with the PHI node and scan for all of the users of this // instruction. All users must be instructions that can be used as reduction // variables (such as ADD). We must have a single out-of-block user. The cycle // must include the original PHI. bool FoundStartPHI = false; // To recognize min/max patterns formed by a icmp select sequence, we store // the number of instruction we saw from the recognized min/max pattern, // to make sure we only see exactly the two instructions. unsigned NumCmpSelectPatternInst = 0; InstDesc ReduxDesc(false, nullptr); // Data used for determining if the recurrence has been type-promoted. Type *RecurrenceType = Phi->getType(); SmallPtrSet CastInsts; Instruction *Start = Phi; bool IsSigned = false; SmallPtrSet VisitedInsts; SmallVector Worklist; // Return early if the recurrence kind does not match the type of Phi. If the // recurrence kind is arithmetic, we attempt to look through AND operations // resulting from the type promotion performed by InstCombine. Vector // operations are not limited to the legal integer widths, so we may be able // to evaluate the reduction in the narrower width. if (RecurrenceType->isFloatingPointTy()) { if (!isFloatingPointRecurrenceKind(Kind)) return false; } else { if (!isIntegerRecurrenceKind(Kind)) return false; if (isArithmeticRecurrenceKind(Kind)) Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); } Worklist.push_back(Start); VisitedInsts.insert(Start); // A value in the reduction can be used: // - By the reduction: // - Reduction operation: // - One use of reduction value (safe). // - Multiple use of reduction value (not safe). // - PHI: // - All uses of the PHI must be the reduction (safe). // - Otherwise, not safe. // - By instructions outside of the loop (safe). // * One value may have several outside users, but all outside // uses must be of the same value. // - By an instruction that is not part of the reduction (not safe). // This is either: // * An instruction type other than PHI or the reduction operation. // * A PHI in the header other than the initial PHI. while (!Worklist.empty()) { Instruction *Cur = Worklist.back(); Worklist.pop_back(); // No Users. // If the instruction has no users then this is a broken chain and can't be // a reduction variable. if (Cur->use_empty()) return false; bool IsAPhi = isa(Cur); // A header PHI use other than the original PHI. if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) return false; // Reductions of instructions such as Div, and Sub is only possible if the // LHS is the reduction variable. if (!Cur->isCommutative() && !IsAPhi && !isa(Cur) && !isa(Cur) && !isa(Cur) && !VisitedInsts.count(dyn_cast(Cur->getOperand(0)))) return false; // Any reduction instruction must be of one of the allowed kinds. We ignore // the starting value (the Phi or an AND instruction if the Phi has been // type-promoted). if (Cur != Start) { ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); if (!ReduxDesc.isRecurrence()) return false; } // A reduction operation must only have one use of the reduction value. if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && hasMultipleUsesOf(Cur, VisitedInsts)) return false; // All inputs to a PHI node must be a reduction value. if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) return false; if (Kind == RK_IntegerMinMax && (isa(Cur) || isa(Cur))) ++NumCmpSelectPatternInst; if (Kind == RK_FloatMinMax && (isa(Cur) || isa(Cur))) ++NumCmpSelectPatternInst; // Check whether we found a reduction operator. FoundReduxOp |= !IsAPhi && Cur != Start; // Process users of current instruction. Push non-PHI nodes after PHI nodes // onto the stack. This way we are going to have seen all inputs to PHI // nodes once we get to them. SmallVector NonPHIs; SmallVector PHIs; for (User *U : Cur->users()) { Instruction *UI = cast(U); // Check if we found the exit user. BasicBlock *Parent = UI->getParent(); if (!TheLoop->contains(Parent)) { // If we already know this instruction is used externally, move on to // the next user. if (ExitInstruction == Cur) continue; // Exit if you find multiple values used outside or if the header phi // node is being used. In this case the user uses the value of the // previous iteration, in which case we would loose "VF-1" iterations of // the reduction operation if we vectorize. if (ExitInstruction != nullptr || Cur == Phi) return false; // The instruction used by an outside user must be the last instruction // before we feed back to the reduction phi. Otherwise, we loose VF-1 // operations on the value. if (!is_contained(Phi->operands(), Cur)) return false; ExitInstruction = Cur; continue; } // Process instructions only once (termination). Each reduction cycle // value must only be used once, except by phi nodes and min/max // reductions which are represented as a cmp followed by a select. InstDesc IgnoredVal(false, nullptr); if (VisitedInsts.insert(UI).second) { if (isa(UI)) PHIs.push_back(UI); else NonPHIs.push_back(UI); } else if (!isa(UI) && ((!isa(UI) && !isa(UI) && !isa(UI)) || !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())) return false; // Remember that we completed the cycle. if (UI == Phi) FoundStartPHI = true; } Worklist.append(PHIs.begin(), PHIs.end()); Worklist.append(NonPHIs.begin(), NonPHIs.end()); } // This means we have seen one but not the other instruction of the // pattern or more than just a select and cmp. if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && NumCmpSelectPatternInst != 2) return false; if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) return false; if (Start != Phi) { // If the starting value is not the same as the phi node, we speculatively // looked through an 'and' instruction when evaluating a potential // arithmetic reduction to determine if it may have been type-promoted. // // We now compute the minimal bit width that is required to represent the // reduction. If this is the same width that was indicated by the 'and', we // can represent the reduction in the smaller type. The 'and' instruction // will be eliminated since it will essentially be a cast instruction that // can be ignore in the cost model. If we compute a different type than we // did when evaluating the 'and', the 'and' will not be eliminated, and we // will end up with different kinds of operations in the recurrence // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is // the case. // // The vectorizer relies on InstCombine to perform the actual // type-shrinking. It does this by inserting instructions to truncate the // exit value of the reduction to the width indicated by RecurrenceType and // then extend this value back to the original width. If IsSigned is false, // a 'zext' instruction will be generated; otherwise, a 'sext' will be // used. // // TODO: We should not rely on InstCombine to rewrite the reduction in the // smaller type. We should just generate a correctly typed expression // to begin with. Type *ComputedType; std::tie(ComputedType, IsSigned) = computeRecurrenceType(ExitInstruction, DB, AC, DT); if (ComputedType != RecurrenceType) return false; // The recurrence expression will be represented in a narrower type. If // there are any cast instructions that will be unnecessary, collect them // in CastInsts. Note that the 'and' instruction was already included in // this list. // // TODO: A better way to represent this may be to tag in some way all the // instructions that are a part of the reduction. The vectorizer cost // model could then apply the recurrence type to these instructions, // without needing a white list of instructions to ignore. collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts); } // We found a reduction var if we have reached the original phi node and we // only have a single instruction with out-of-loop users. // The ExitInstruction(Instruction which is allowed to have out-of-loop users) // is saved as part of the RecurrenceDescriptor. // Save the description of this reduction variable. RecurrenceDescriptor RD( RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(), ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts); RedDes = RD; return true; } /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction /// pattern corresponding to a min(X, Y) or max(X, Y). RecurrenceDescriptor::InstDesc RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) { assert((isa(I) || isa(I) || isa(I)) && "Expect a select instruction"); Instruction *Cmp = nullptr; SelectInst *Select = nullptr; // We must handle the select(cmp()) as a single instruction. Advance to the // select. if ((Cmp = dyn_cast(I)) || (Cmp = dyn_cast(I))) { if (!Cmp->hasOneUse() || !(Select = dyn_cast(*I->user_begin()))) return InstDesc(false, I); return InstDesc(Select, Prev.getMinMaxKind()); } // Only handle single use cases for now. if (!(Select = dyn_cast(I))) return InstDesc(false, I); if (!(Cmp = dyn_cast(I->getOperand(0))) && !(Cmp = dyn_cast(I->getOperand(0)))) return InstDesc(false, I); if (!Cmp->hasOneUse()) return InstDesc(false, I); Value *CmpLeft; Value *CmpRight; // Look for a min/max pattern. if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return InstDesc(Select, MRK_UIntMin); else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return InstDesc(Select, MRK_UIntMax); else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return InstDesc(Select, MRK_SIntMax); else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return InstDesc(Select, MRK_SIntMin); else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return InstDesc(Select, MRK_FloatMin); else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return InstDesc(Select, MRK_FloatMax); else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return InstDesc(Select, MRK_FloatMin); else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return InstDesc(Select, MRK_FloatMax); return InstDesc(false, I); } RecurrenceDescriptor::InstDesc RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind, InstDesc &Prev, bool HasFunNoNaNAttr) { bool FP = I->getType()->isFloatingPointTy(); Instruction *UAI = Prev.getUnsafeAlgebraInst(); if (!UAI && FP && !I->isFast()) UAI = I; // Found an unsafe (unvectorizable) algebra instruction. switch (I->getOpcode()) { default: return InstDesc(false, I); case Instruction::PHI: return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst()); case Instruction::Sub: case Instruction::Add: return InstDesc(Kind == RK_IntegerAdd, I); case Instruction::Mul: return InstDesc(Kind == RK_IntegerMult, I); case Instruction::And: return InstDesc(Kind == RK_IntegerAnd, I); case Instruction::Or: return InstDesc(Kind == RK_IntegerOr, I); case Instruction::Xor: return InstDesc(Kind == RK_IntegerXor, I); case Instruction::FMul: return InstDesc(Kind == RK_FloatMult, I, UAI); case Instruction::FSub: case Instruction::FAdd: return InstDesc(Kind == RK_FloatAdd, I, UAI); case Instruction::FCmp: case Instruction::ICmp: case Instruction::Select: if (Kind != RK_IntegerMinMax && (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) return InstDesc(false, I); return isMinMaxSelectCmpPattern(I, Prev); } } bool RecurrenceDescriptor::hasMultipleUsesOf( Instruction *I, SmallPtrSetImpl &Insts) { unsigned NumUses = 0; for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { if (Insts.count(dyn_cast(*Use))) ++NumUses; if (NumUses > 1) return true; } return false; } bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, RecurrenceDescriptor &RedDes, DemandedBits *DB, AssumptionCache *AC, DominatorTree *DT) { BasicBlock *Header = TheLoop->getHeader(); Function &F = *Header->getParent(); bool HasFunNoNaNAttr = F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB, AC, DT)) { LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB, AC, DT)) { LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB, AC, DT)) { LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB, AC, DT)) { LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB, AC, DT)) { LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB, AC, DT)) { LLVM_DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB, AC, DT)) { LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB, AC, DT)) { LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB, AC, DT)) { LLVM_DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n"); return true; } // Not a reduction of known type. return false; } bool RecurrenceDescriptor::isFirstOrderRecurrence( PHINode *Phi, Loop *TheLoop, DenseMap &SinkAfter, DominatorTree *DT) { // Ensure the phi node is in the loop header and has two incoming values. if (Phi->getParent() != TheLoop->getHeader() || Phi->getNumIncomingValues() != 2) return false; // Ensure the loop has a preheader and a single latch block. The loop // vectorizer will need the latch to set up the next iteration of the loop. auto *Preheader = TheLoop->getLoopPreheader(); auto *Latch = TheLoop->getLoopLatch(); if (!Preheader || !Latch) return false; // Ensure the phi node's incoming blocks are the loop preheader and latch. if (Phi->getBasicBlockIndex(Preheader) < 0 || Phi->getBasicBlockIndex(Latch) < 0) return false; // Get the previous value. The previous value comes from the latch edge while // the initial value comes form the preheader edge. auto *Previous = dyn_cast(Phi->getIncomingValueForBlock(Latch)); if (!Previous || !TheLoop->contains(Previous) || isa(Previous) || SinkAfter.count(Previous)) // Cannot rely on dominance due to motion. return false; // Ensure every user of the phi node is dominated by the previous value. // The dominance requirement ensures the loop vectorizer will not need to // vectorize the initial value prior to the first iteration of the loop. // TODO: Consider extending this sinking to handle other kinds of instructions // and expressions, beyond sinking a single cast past Previous. if (Phi->hasOneUse()) { auto *I = Phi->user_back(); if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() && DT->dominates(Previous, I->user_back())) { if (!DT->dominates(Previous, I)) // Otherwise we're good w/o sinking. SinkAfter[I] = Previous; return true; } } for (User *U : Phi->users()) if (auto *I = dyn_cast(U)) { if (!DT->dominates(Previous, I)) return false; } return true; } /// This function returns the identity element (or neutral element) for /// the operation K. Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K, Type *Tp) { switch (K) { case RK_IntegerXor: case RK_IntegerAdd: case RK_IntegerOr: // Adding, Xoring, Oring zero to a number does not change it. return ConstantInt::get(Tp, 0); case RK_IntegerMult: // Multiplying a number by 1 does not change it. return ConstantInt::get(Tp, 1); case RK_IntegerAnd: // AND-ing a number with an all-1 value does not change it. return ConstantInt::get(Tp, -1, true); case RK_FloatMult: // Multiplying a number by 1 does not change it. return ConstantFP::get(Tp, 1.0L); case RK_FloatAdd: // Adding zero to a number does not change it. return ConstantFP::get(Tp, 0.0L); default: llvm_unreachable("Unknown recurrence kind"); } } /// This function translates the recurrence kind to an LLVM binary operator. unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) { switch (Kind) { case RK_IntegerAdd: return Instruction::Add; case RK_IntegerMult: return Instruction::Mul; case RK_IntegerOr: return Instruction::Or; case RK_IntegerAnd: return Instruction::And; case RK_IntegerXor: return Instruction::Xor; case RK_FloatMult: return Instruction::FMul; case RK_FloatAdd: return Instruction::FAdd; case RK_IntegerMinMax: return Instruction::ICmp; case RK_FloatMinMax: return Instruction::FCmp; default: llvm_unreachable("Unknown recurrence operation"); } } Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder, MinMaxRecurrenceKind RK, Value *Left, Value *Right) { CmpInst::Predicate P = CmpInst::ICMP_NE; switch (RK) { default: llvm_unreachable("Unknown min/max recurrence kind"); case MRK_UIntMin: P = CmpInst::ICMP_ULT; break; case MRK_UIntMax: P = CmpInst::ICMP_UGT; break; case MRK_SIntMin: P = CmpInst::ICMP_SLT; break; case MRK_SIntMax: P = CmpInst::ICMP_SGT; break; case MRK_FloatMin: P = CmpInst::FCMP_OLT; break; case MRK_FloatMax: P = CmpInst::FCMP_OGT; break; } // We only match FP sequences that are 'fast', so we can unconditionally // set it on any generated instructions. IRBuilder<>::FastMathFlagGuard FMFG(Builder); FastMathFlags FMF; FMF.setFast(); Builder.setFastMathFlags(FMF); Value *Cmp; if (RK == MRK_FloatMin || RK == MRK_FloatMax) Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); else Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); return Select; } InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, const SCEV *Step, BinaryOperator *BOp, SmallVectorImpl *Casts) : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) { assert(IK != IK_NoInduction && "Not an induction"); // Start value type should match the induction kind and the value // itself should not be null. assert(StartValue && "StartValue is null"); assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && "StartValue is not a pointer for pointer induction"); assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && "StartValue is not an integer for integer induction"); // Check the Step Value. It should be non-zero integer value. assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && "Step value is zero"); assert((IK != IK_PtrInduction || getConstIntStepValue()) && "Step value should be constant for pointer induction"); assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && "StepValue is not an integer"); assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && "StepValue is not FP for FpInduction"); assert((IK != IK_FpInduction || (InductionBinOp && (InductionBinOp->getOpcode() == Instruction::FAdd || InductionBinOp->getOpcode() == Instruction::FSub))) && "Binary opcode should be specified for FP induction"); if (Casts) { for (auto &Inst : *Casts) { RedundantCasts.push_back(Inst); } } } int InductionDescriptor::getConsecutiveDirection() const { ConstantInt *ConstStep = getConstIntStepValue(); if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne())) return ConstStep->getSExtValue(); return 0; } ConstantInt *InductionDescriptor::getConstIntStepValue() const { if (isa(Step)) return dyn_cast(cast(Step)->getValue()); return nullptr; } Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout& DL) const { SCEVExpander Exp(*SE, DL, "induction"); assert(Index->getType() == Step->getType() && "Index type does not match StepValue type"); switch (IK) { case IK_IntInduction: { assert(Index->getType() == StartValue->getType() && "Index type does not match StartValue type"); // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution // and calculate (Start + Index * Step) for all cases, without // special handling for "isOne" and "isMinusOne". // But in the real life the result code getting worse. We mix SCEV // expressions and ADD/SUB operations and receive redundant // intermediate values being calculated in different ways and // Instcombine is unable to reduce them all. if (getConstIntStepValue() && getConstIntStepValue()->isMinusOne()) return B.CreateSub(StartValue, Index); if (getConstIntStepValue() && getConstIntStepValue()->isOne()) return B.CreateAdd(StartValue, Index); const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue), SE->getMulExpr(Step, SE->getSCEV(Index))); return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint()); } case IK_PtrInduction: { assert(isa(Step) && "Expected constant step for pointer induction"); const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step); Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint()); return B.CreateGEP(nullptr, StartValue, Index); } case IK_FpInduction: { assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); assert(InductionBinOp && (InductionBinOp->getOpcode() == Instruction::FAdd || InductionBinOp->getOpcode() == Instruction::FSub) && "Original bin op should be defined for FP induction"); Value *StepValue = cast(Step)->getValue(); // Floating point operations had to be 'fast' to enable the induction. FastMathFlags Flags; Flags.setFast(); Value *MulExp = B.CreateFMul(StepValue, Index); if (isa(MulExp)) // We have to check, the MulExp may be a constant. cast(MulExp)->setFastMathFlags(Flags); Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue, MulExp, "induction"); if (isa(BOp)) cast(BOp)->setFastMathFlags(Flags); return BOp; } case IK_NoInduction: return nullptr; } llvm_unreachable("invalid enum"); } bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE, InductionDescriptor &D) { // Here we only handle FP induction variables. assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type"); if (TheLoop->getHeader() != Phi->getParent()) return false; // The loop may have multiple entrances or multiple exits; we can analyze // this phi if it has a unique entry value and a unique backedge value. if (Phi->getNumIncomingValues() != 2) return false; Value *BEValue = nullptr, *StartValue = nullptr; if (TheLoop->contains(Phi->getIncomingBlock(0))) { BEValue = Phi->getIncomingValue(0); StartValue = Phi->getIncomingValue(1); } else { assert(TheLoop->contains(Phi->getIncomingBlock(1)) && "Unexpected Phi node in the loop"); BEValue = Phi->getIncomingValue(1); StartValue = Phi->getIncomingValue(0); } BinaryOperator *BOp = dyn_cast(BEValue); if (!BOp) return false; Value *Addend = nullptr; if (BOp->getOpcode() == Instruction::FAdd) { if (BOp->getOperand(0) == Phi) Addend = BOp->getOperand(1); else if (BOp->getOperand(1) == Phi) Addend = BOp->getOperand(0); } else if (BOp->getOpcode() == Instruction::FSub) if (BOp->getOperand(0) == Phi) Addend = BOp->getOperand(1); if (!Addend) return false; // The addend should be loop invariant if (auto *I = dyn_cast(Addend)) if (TheLoop->contains(I)) return false; // FP Step has unknown SCEV const SCEV *Step = SE->getUnknown(Addend); D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); return true; } /// This function is called when we suspect that the update-chain of a phi node /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts, /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime /// predicate P under which the SCEV expression for the phi can be the /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the /// cast instructions that are involved in the update-chain of this induction. /// A caller that adds the required runtime predicate can be free to drop these /// cast instructions, and compute the phi using \p AR (instead of some scev /// expression with casts). /// /// For example, without a predicate the scev expression can take the following /// form: /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy) /// /// It corresponds to the following IR sequence: /// %for.body: /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ] /// %casted_phi = "ExtTrunc i64 %x" /// %add = add i64 %casted_phi, %step /// /// where %x is given in \p PN, /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate, /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of /// several forms, for example, such as: /// ExtTrunc1: %casted_phi = and %x, 2^n-1 /// or: /// ExtTrunc2: %t = shl %x, m /// %casted_phi = ashr %t, m /// /// If we are able to find such sequence, we return the instructions /// we found, namely %casted_phi and the instructions on its use-def chain up /// to the phi (not including the phi). static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE, const SCEVUnknown *PhiScev, const SCEVAddRecExpr *AR, SmallVectorImpl &CastInsts) { assert(CastInsts.empty() && "CastInsts is expected to be empty."); auto *PN = cast(PhiScev->getValue()); assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression"); const Loop *L = AR->getLoop(); // Find any cast instructions that participate in the def-use chain of // PhiScev in the loop. // FORNOW/TODO: We currently expect the def-use chain to include only // two-operand instructions, where one of the operands is an invariant. // createAddRecFromPHIWithCasts() currently does not support anything more // involved than that, so we keep the search simple. This can be // extended/generalized as needed. auto getDef = [&](const Value *Val) -> Value * { const BinaryOperator *BinOp = dyn_cast(Val); if (!BinOp) return nullptr; Value *Op0 = BinOp->getOperand(0); Value *Op1 = BinOp->getOperand(1); Value *Def = nullptr; if (L->isLoopInvariant(Op0)) Def = Op1; else if (L->isLoopInvariant(Op1)) Def = Op0; return Def; }; // Look for the instruction that defines the induction via the // loop backedge. BasicBlock *Latch = L->getLoopLatch(); if (!Latch) return false; Value *Val = PN->getIncomingValueForBlock(Latch); if (!Val) return false; // Follow the def-use chain until the induction phi is reached. // If on the way we encounter a Value that has the same SCEV Expr as the // phi node, we can consider the instructions we visit from that point // as part of the cast-sequence that can be ignored. bool InCastSequence = false; auto *Inst = dyn_cast(Val); while (Val != PN) { // If we encountered a phi node other than PN, or if we left the loop, // we bail out. if (!Inst || !L->contains(Inst)) { return false; } auto *AddRec = dyn_cast(PSE.getSCEV(Val)); if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR)) InCastSequence = true; if (InCastSequence) { // Only the last instruction in the cast sequence is expected to have // uses outside the induction def-use chain. if (!CastInsts.empty()) if (!Inst->hasOneUse()) return false; CastInsts.push_back(Inst); } Val = getDef(Val); if (!Val) return false; Inst = dyn_cast(Val); } return InCastSequence; } bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, PredicatedScalarEvolution &PSE, InductionDescriptor &D, bool Assume) { Type *PhiTy = Phi->getType(); // Handle integer and pointer inductions variables. // Now we handle also FP induction but not trying to make a // recurrent expression from the PHI node in-place. if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) return false; if (PhiTy->isFloatingPointTy()) return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D); const SCEV *PhiScev = PSE.getSCEV(Phi); const auto *AR = dyn_cast(PhiScev); // We need this expression to be an AddRecExpr. if (Assume && !AR) AR = PSE.getAsAddRec(Phi); if (!AR) { LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); return false; } // Record any Cast instructions that participate in the induction update const auto *SymbolicPhi = dyn_cast(PhiScev); // If we started from an UnknownSCEV, and managed to build an addRecurrence // only after enabling Assume with PSCEV, this means we may have encountered // cast instructions that required adding a runtime check in order to // guarantee the correctness of the AddRecurence respresentation of the // induction. if (PhiScev != AR && SymbolicPhi) { SmallVector Casts; if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts)) return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts); } return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR); } bool InductionDescriptor::isInductionPHI( PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE, InductionDescriptor &D, const SCEV *Expr, SmallVectorImpl *CastsToIgnore) { Type *PhiTy = Phi->getType(); // We only handle integer and pointer inductions variables. if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) return false; // Check that the PHI is consecutive. const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi); const SCEVAddRecExpr *AR = dyn_cast(PhiScev); if (!AR) { LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); return false; } if (AR->getLoop() != TheLoop) { // FIXME: We should treat this as a uniform. Unfortunately, we // don't currently know how to handled uniform PHIs. LLVM_DEBUG( dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n"); return false; } Value *StartValue = Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); const SCEV *Step = AR->getStepRecurrence(*SE); // Calculate the pointer stride and check if it is consecutive. // The stride may be a constant or a loop invariant integer value. const SCEVConstant *ConstStep = dyn_cast(Step); if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop)) return false; if (PhiTy->isIntegerTy()) { D = InductionDescriptor(StartValue, IK_IntInduction, Step, /*BOp=*/ nullptr, CastsToIgnore); return true; } assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); // Pointer induction should be a constant. if (!ConstStep) return false; ConstantInt *CV = ConstStep->getValue(); Type *PointerElementType = PhiTy->getPointerElementType(); // The pointer stride cannot be determined if the pointer element type is not // sized. if (!PointerElementType->isSized()) return false; const DataLayout &DL = Phi->getModule()->getDataLayout(); int64_t Size = static_cast(DL.getTypeAllocSize(PointerElementType)); if (!Size) return false; int64_t CVSize = CV->getSExtValue(); if (CVSize % Size) return false; auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size, true /* signed */); D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue); return true; } bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, bool PreserveLCSSA) { bool Changed = false; // We re-use a vector for the in-loop predecesosrs. SmallVector InLoopPredecessors; auto RewriteExit = [&](BasicBlock *BB) { assert(InLoopPredecessors.empty() && "Must start with an empty predecessors list!"); auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); // See if there are any non-loop predecessors of this exit block and // keep track of the in-loop predecessors. bool IsDedicatedExit = true; for (auto *PredBB : predecessors(BB)) if (L->contains(PredBB)) { if (isa(PredBB->getTerminator())) // We cannot rewrite exiting edges from an indirectbr. return false; InLoopPredecessors.push_back(PredBB); } else { IsDedicatedExit = false; } assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); // Nothing to do if this is already a dedicated exit. if (IsDedicatedExit) return false; auto *NewExitBB = SplitBlockPredecessors( BB, InLoopPredecessors, ".loopexit", DT, LI, PreserveLCSSA); if (!NewExitBB) LLVM_DEBUG( dbgs() << "WARNING: Can't create a dedicated exit block for loop: " << *L << "\n"); else LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " << NewExitBB->getName() << "\n"); return true; }; // Walk the exit blocks directly rather than building up a data structure for // them, but only visit each one once. SmallPtrSet Visited; for (auto *BB : L->blocks()) for (auto *SuccBB : successors(BB)) { // We're looking for exit blocks so skip in-loop successors. if (L->contains(SuccBB)) continue; // Visit each exit block exactly once. if (!Visited.insert(SuccBB).second) continue; Changed |= RewriteExit(SuccBB); } return Changed; } /// Returns the instructions that use values defined in the loop. SmallVector llvm::findDefsUsedOutsideOfLoop(Loop *L) { SmallVector UsedOutside; for (auto *Block : L->getBlocks()) // FIXME: I believe that this could use copy_if if the Inst reference could // be adapted into a pointer. for (auto &Inst : *Block) { auto Users = Inst.users(); if (any_of(Users, [&](User *U) { auto *Use = cast(U); return !L->contains(Use->getParent()); })) UsedOutside.push_back(&Inst); } return UsedOutside; } void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { // By definition, all loop passes need the LoopInfo analysis and the // Dominator tree it depends on. Because they all participate in the loop // pass manager, they must also preserve these. AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); // We must also preserve LoopSimplify and LCSSA. We locally access their IDs // here because users shouldn't directly get them from this header. extern char &LoopSimplifyID; extern char &LCSSAID; AU.addRequiredID(LoopSimplifyID); AU.addPreservedID(LoopSimplifyID); AU.addRequiredID(LCSSAID); AU.addPreservedID(LCSSAID); // This is used in the LPPassManager to perform LCSSA verification on passes // which preserve lcssa form AU.addRequired(); AU.addPreserved(); // Loop passes are designed to run inside of a loop pass manager which means // that any function analyses they require must be required by the first loop // pass in the manager (so that it is computed before the loop pass manager // runs) and preserved by all loop pasess in the manager. To make this // reasonably robust, the set needed for most loop passes is maintained here. // If your loop pass requires an analysis not listed here, you will need to // carefully audit the loop pass manager nesting structure that results. AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); } /// Manually defined generic "LoopPass" dependency initialization. This is used /// to initialize the exact set of passes from above in \c /// getLoopAnalysisUsage. It can be used within a loop pass's initialization /// with: /// /// INITIALIZE_PASS_DEPENDENCY(LoopPass) /// /// As-if "LoopPass" were a pass. void llvm::initializeLoopPassPass(PassRegistry &Registry) { INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) } /// Find string metadata for loop /// /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an /// operand or null otherwise. If the string metadata is not found return /// Optional's not-a-value. Optional llvm::findStringMetadataForLoop(Loop *TheLoop, StringRef Name) { MDNode *LoopID = TheLoop->getLoopID(); // Return none if LoopID is false. if (!LoopID) return None; // First operand should refer to the loop id itself. assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); // Iterate over LoopID operands and look for MDString Metadata for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { MDNode *MD = dyn_cast(LoopID->getOperand(i)); if (!MD) continue; MDString *S = dyn_cast(MD->getOperand(0)); if (!S) continue; // Return true if MDString holds expected MetaData. if (Name.equals(S->getString())) switch (MD->getNumOperands()) { case 1: return nullptr; case 2: return &MD->getOperand(1); default: llvm_unreachable("loop metadata has 0 or 1 operand"); } } return None; } /// Does a BFS from a given node to all of its children inside a given loop. /// The returned vector of nodes includes the starting point. SmallVector llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { SmallVector Worklist; auto AddRegionToWorklist = [&](DomTreeNode *DTN) { // Only include subregions in the top level loop. BasicBlock *BB = DTN->getBlock(); if (CurLoop->contains(BB)) Worklist.push_back(DTN); }; AddRegionToWorklist(N); for (size_t I = 0; I < Worklist.size(); I++) for (DomTreeNode *Child : Worklist[I]->getChildren()) AddRegionToWorklist(Child); return Worklist; } void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr, ScalarEvolution *SE = nullptr, LoopInfo *LI = nullptr) { assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); auto *Preheader = L->getLoopPreheader(); assert(Preheader && "Preheader should exist!"); // Now that we know the removal is safe, remove the loop by changing the // branch from the preheader to go to the single exit block. // // Because we're deleting a large chunk of code at once, the sequence in which // we remove things is very important to avoid invalidation issues. // Tell ScalarEvolution that the loop is deleted. Do this before // deleting the loop so that ScalarEvolution can look at the loop // to determine what it needs to clean up. if (SE) SE->forgetLoop(L); auto *ExitBlock = L->getUniqueExitBlock(); assert(ExitBlock && "Should have a unique exit block!"); assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); auto *OldBr = dyn_cast(Preheader->getTerminator()); assert(OldBr && "Preheader must end with a branch"); assert(OldBr->isUnconditional() && "Preheader must have a single successor"); // Connect the preheader to the exit block. Keep the old edge to the header // around to perform the dominator tree update in two separate steps // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge // preheader -> header. // // // 0. Preheader 1. Preheader 2. Preheader // | | | | // V | V | // Header <--\ | Header <--\ | Header <--\ // | | | | | | | | | | | // | V | | | V | | | V | // | Body --/ | | Body --/ | | Body --/ // V V V V V // Exit Exit Exit // // By doing this is two separate steps we can perform the dominator tree // update without using the batch update API. // // Even when the loop is never executed, we cannot remove the edge from the // source block to the exit block. Consider the case where the unexecuted loop // branches back to an outer loop. If we deleted the loop and removed the edge // coming to this inner loop, this will break the outer loop structure (by // deleting the backedge of the outer loop). If the outer loop is indeed a // non-loop, it will be deleted in a future iteration of loop deletion pass. IRBuilder<> Builder(OldBr); Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); // Remove the old branch. The conditional branch becomes a new terminator. OldBr->eraseFromParent(); // Rewrite phis in the exit block to get their inputs from the Preheader // instead of the exiting block. for (PHINode &P : ExitBlock->phis()) { // Set the zero'th element of Phi to be from the preheader and remove all // other incoming values. Given the loop has dedicated exits, all other // incoming values must be from the exiting blocks. int PredIndex = 0; P.setIncomingBlock(PredIndex, Preheader); // Removes all incoming values from all other exiting blocks (including // duplicate values from an exiting block). // Nuke all entries except the zero'th entry which is the preheader entry. // NOTE! We need to remove Incoming Values in the reverse order as done // below, to keep the indices valid for deletion (removeIncomingValues // updates getNumIncomingValues and shifts all values down into the operand // being deleted). for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) P.removeIncomingValue(e - i, false); assert((P.getNumIncomingValues() == 1 && P.getIncomingBlock(PredIndex) == Preheader) && "Should have exactly one value and that's from the preheader!"); } // Disconnect the loop body by branching directly to its exit. Builder.SetInsertPoint(Preheader->getTerminator()); Builder.CreateBr(ExitBlock); // Remove the old branch. Preheader->getTerminator()->eraseFromParent(); if (DT) { // Update the dominator tree by informing it about the new edge from the // preheader to the exit. DT->insertEdge(Preheader, ExitBlock); // Inform the dominator tree about the removed edge. DT->deleteEdge(Preheader, L->getHeader()); } // Given LCSSA form is satisfied, we should not have users of instructions // within the dead loop outside of the loop. However, LCSSA doesn't take // unreachable uses into account. We handle them here. // We could do it after drop all references (in this case all users in the // loop will be already eliminated and we have less work to do but according // to API doc of User::dropAllReferences only valid operation after dropping // references, is deletion. So let's substitute all usages of // instruction from the loop with undef value of corresponding type first. for (auto *Block : L->blocks()) for (Instruction &I : *Block) { auto *Undef = UndefValue::get(I.getType()); for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) { Use &U = *UI; ++UI; if (auto *Usr = dyn_cast(U.getUser())) if (L->contains(Usr->getParent())) continue; // If we have a DT then we can check that uses outside a loop only in // unreachable block. if (DT) assert(!DT->isReachableFromEntry(U) && "Unexpected user in reachable block"); U.set(Undef); } } // Remove the block from the reference counting scheme, so that we can // delete it freely later. for (auto *Block : L->blocks()) Block->dropAllReferences(); if (LI) { // Erase the instructions and the blocks without having to worry // about ordering because we already dropped the references. // NOTE: This iteration is safe because erasing the block does not remove // its entry from the loop's block list. We do that in the next section. for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); LpI != LpE; ++LpI) (*LpI)->eraseFromParent(); // Finally, the blocks from loopinfo. This has to happen late because // otherwise our loop iterators won't work. SmallPtrSet blocks; blocks.insert(L->block_begin(), L->block_end()); for (BasicBlock *BB : blocks) LI->removeBlock(BB); // The last step is to update LoopInfo now that we've eliminated this loop. LI->erase(L); } } Optional llvm::getLoopEstimatedTripCount(Loop *L) { // Only support loops with a unique exiting block, and a latch. if (!L->getExitingBlock()) return None; // Get the branch weights for the loop's backedge. BranchInst *LatchBR = dyn_cast(L->getLoopLatch()->getTerminator()); if (!LatchBR || LatchBR->getNumSuccessors() != 2) return None; assert((LatchBR->getSuccessor(0) == L->getHeader() || LatchBR->getSuccessor(1) == L->getHeader()) && "At least one edge out of the latch must go to the header"); // To estimate the number of times the loop body was executed, we want to // know the number of times the backedge was taken, vs. the number of times // we exited the loop. uint64_t TrueVal, FalseVal; if (!LatchBR->extractProfMetadata(TrueVal, FalseVal)) return None; if (!TrueVal || !FalseVal) return 0; // Divide the count of the backedge by the count of the edge exiting the loop, // rounding to nearest. if (LatchBR->getSuccessor(0) == L->getHeader()) return (TrueVal + (FalseVal / 2)) / FalseVal; else return (FalseVal + (TrueVal / 2)) / TrueVal; } /// Adds a 'fast' flag to floating point operations. static Value *addFastMathFlag(Value *V) { if (isa(V)) { FastMathFlags Flags; Flags.setFast(); cast(V)->setFastMathFlags(Flags); } return V; } // Helper to generate an ordered reduction. Value * llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src, unsigned Op, RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, ArrayRef RedOps) { unsigned VF = Src->getType()->getVectorNumElements(); // Extract and apply reduction ops in ascending order: // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] Value *Result = Acc; for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { Value *Ext = Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); if (Op != Instruction::ICmp && Op != Instruction::FCmp) { Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, "bin.rdx"); } else { assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && "Invalid min/max"); Result = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, Result, Ext); } if (!RedOps.empty()) propagateIRFlags(Result, RedOps); } return Result; } // Helper to generate a log2 shuffle reduction. Value * llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op, RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, ArrayRef RedOps) { unsigned VF = Src->getType()->getVectorNumElements(); // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles // and vector ops, reducing the set of values being computed by half each // round. assert(isPowerOf2_32(VF) && "Reduction emission only supported for pow2 vectors!"); Value *TmpVec = Src; SmallVector ShuffleMask(VF, nullptr); for (unsigned i = VF; i != 1; i >>= 1) { // Move the upper half of the vector to the lower half. for (unsigned j = 0; j != i / 2; ++j) ShuffleMask[j] = Builder.getInt32(i / 2 + j); // Fill the rest of the mask with undef. std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), UndefValue::get(Builder.getInt32Ty())); Value *Shuf = Builder.CreateShuffleVector( TmpVec, UndefValue::get(TmpVec->getType()), ConstantVector::get(ShuffleMask), "rdx.shuf"); if (Op != Instruction::ICmp && Op != Instruction::FCmp) { // Floating point operations had to be 'fast' to enable the reduction. TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); } else { assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && "Invalid min/max"); TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf); } if (!RedOps.empty()) propagateIRFlags(TmpVec, RedOps); } // The result is in the first element of the vector. return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); } /// Create a simple vector reduction specified by an opcode and some /// flags (if generating min/max reductions). Value *llvm::createSimpleTargetReduction( IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode, Value *Src, TargetTransformInfo::ReductionFlags Flags, ArrayRef RedOps) { assert(isa(Src->getType()) && "Type must be a vector"); Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType()); std::function BuildFunc; using RD = RecurrenceDescriptor; RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid; // TODO: Support creating ordered reductions. FastMathFlags FMFFast; FMFFast.setFast(); switch (Opcode) { case Instruction::Add: BuildFunc = [&]() { return Builder.CreateAddReduce(Src); }; break; case Instruction::Mul: BuildFunc = [&]() { return Builder.CreateMulReduce(Src); }; break; case Instruction::And: BuildFunc = [&]() { return Builder.CreateAndReduce(Src); }; break; case Instruction::Or: BuildFunc = [&]() { return Builder.CreateOrReduce(Src); }; break; case Instruction::Xor: BuildFunc = [&]() { return Builder.CreateXorReduce(Src); }; break; case Instruction::FAdd: BuildFunc = [&]() { auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src); cast(Rdx)->setFastMathFlags(FMFFast); return Rdx; }; break; case Instruction::FMul: BuildFunc = [&]() { auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src); cast(Rdx)->setFastMathFlags(FMFFast); return Rdx; }; break; case Instruction::ICmp: if (Flags.IsMaxOp) { MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax; BuildFunc = [&]() { return Builder.CreateIntMaxReduce(Src, Flags.IsSigned); }; } else { MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin; BuildFunc = [&]() { return Builder.CreateIntMinReduce(Src, Flags.IsSigned); }; } break; case Instruction::FCmp: if (Flags.IsMaxOp) { MinMaxKind = RD::MRK_FloatMax; BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); }; } else { MinMaxKind = RD::MRK_FloatMin; BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); }; } break; default: llvm_unreachable("Unhandled opcode"); break; } if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags)) return BuildFunc(); return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps); } /// Create a vector reduction using a given recurrence descriptor. Value *llvm::createTargetReduction(IRBuilder<> &B, const TargetTransformInfo *TTI, RecurrenceDescriptor &Desc, Value *Src, bool NoNaN) { // TODO: Support in-order reductions based on the recurrence descriptor. using RD = RecurrenceDescriptor; RD::RecurrenceKind RecKind = Desc.getRecurrenceKind(); TargetTransformInfo::ReductionFlags Flags; Flags.NoNaN = NoNaN; switch (RecKind) { case RD::RK_FloatAdd: return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags); case RD::RK_FloatMult: return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags); case RD::RK_IntegerAdd: return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags); case RD::RK_IntegerMult: return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags); case RD::RK_IntegerAnd: return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags); case RD::RK_IntegerOr: return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags); case RD::RK_IntegerXor: return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags); case RD::RK_IntegerMinMax: { RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind(); Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax); Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin); return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags); } case RD::RK_FloatMinMax: { Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax; return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags); } default: llvm_unreachable("Unhandled RecKind"); } } void llvm::propagateIRFlags(Value *I, ArrayRef VL, Value *OpValue) { auto *VecOp = dyn_cast(I); if (!VecOp) return; auto *Intersection = (OpValue == nullptr) ? dyn_cast(VL[0]) : dyn_cast(OpValue); if (!Intersection) return; const unsigned Opcode = Intersection->getOpcode(); VecOp->copyIRFlags(Intersection); for (auto *V : VL) { auto *Instr = dyn_cast(V); if (!Instr) continue; if (OpValue == nullptr || Opcode == Instr->getOpcode()) VecOp->andIRFlags(V); } }