//===- SSAUpdaterBulk.cpp - Unstructured SSA Update Tool ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the SSAUpdaterBulk class. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/SSAUpdaterBulk.h" #include "llvm/Analysis/IteratedDominanceFrontier.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Use.h" #include "llvm/IR/Value.h" using namespace llvm; #define DEBUG_TYPE "ssaupdaterbulk" /// Helper function for finding a block which should have a value for the given /// user. For PHI-nodes this block is the corresponding predecessor, for other /// instructions it's their parent block. static BasicBlock *getUserBB(Use *U) { auto *User = cast(U->getUser()); if (auto *UserPN = dyn_cast(User)) return UserPN->getIncomingBlock(*U); else return User->getParent(); } /// Add a new variable to the SSA rewriter. This needs to be called before /// AddAvailableValue or AddUse calls. unsigned SSAUpdaterBulk::AddVariable(StringRef Name, Type *Ty) { unsigned Var = Rewrites.size(); LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var << ": initialized with Ty = " << *Ty << ", Name = " << Name << "\n"); RewriteInfo RI(Name, Ty); Rewrites.push_back(RI); return Var; } /// Indicate that a rewritten value is available in the specified block with the /// specified value. void SSAUpdaterBulk::AddAvailableValue(unsigned Var, BasicBlock *BB, Value *V) { assert(Var < Rewrites.size() && "Variable not found!"); LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var << ": added new available value" << *V << " in " << BB->getName() << "\n"); Rewrites[Var].Defines[BB] = V; } /// Record a use of the symbolic value. This use will be updated with a /// rewritten value when RewriteAllUses is called. void SSAUpdaterBulk::AddUse(unsigned Var, Use *U) { assert(Var < Rewrites.size() && "Variable not found!"); LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var << ": added a use" << *U->get() << " in " << getUserBB(U)->getName() << "\n"); Rewrites[Var].Uses.push_back(U); } /// Return true if the SSAUpdater already has a value for the specified variable /// in the specified block. bool SSAUpdaterBulk::HasValueForBlock(unsigned Var, BasicBlock *BB) { return (Var < Rewrites.size()) ? Rewrites[Var].Defines.count(BB) : false; } // Compute value at the given block BB. We either should already know it, or we // should be able to recursively reach it going up dominator tree. Value *SSAUpdaterBulk::computeValueAt(BasicBlock *BB, RewriteInfo &R, DominatorTree *DT) { if (!R.Defines.count(BB)) { if (DT->isReachableFromEntry(BB) && PredCache.get(BB).size()) { BasicBlock *IDom = DT->getNode(BB)->getIDom()->getBlock(); Value *V = computeValueAt(IDom, R, DT); R.Defines[BB] = V; } else R.Defines[BB] = UndefValue::get(R.Ty); } return R.Defines[BB]; } /// Given sets of UsingBlocks and DefBlocks, compute the set of LiveInBlocks. /// This is basically a subgraph limited by DefBlocks and UsingBlocks. static void ComputeLiveInBlocks(const SmallPtrSetImpl &UsingBlocks, const SmallPtrSetImpl &DefBlocks, SmallPtrSetImpl &LiveInBlocks, PredIteratorCache &PredCache) { // To determine liveness, we must iterate through the predecessors of blocks // where the def is live. Blocks are added to the worklist if we need to // check their predecessors. Start with all the using blocks. SmallVector LiveInBlockWorklist(UsingBlocks.begin(), UsingBlocks.end()); // Now that we have a set of blocks where the phi is live-in, recursively add // their predecessors until we find the full region the value is live. while (!LiveInBlockWorklist.empty()) { BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); // The block really is live in here, insert it into the set. If already in // the set, then it has already been processed. if (!LiveInBlocks.insert(BB).second) continue; // Since the value is live into BB, it is either defined in a predecessor or // live into it to. Add the preds to the worklist unless they are a // defining block. for (BasicBlock *P : PredCache.get(BB)) { // The value is not live into a predecessor if it defines the value. if (DefBlocks.count(P)) continue; // Otherwise it is, add to the worklist. LiveInBlockWorklist.push_back(P); } } } /// Perform all the necessary updates, including new PHI-nodes insertion and the /// requested uses update. void SSAUpdaterBulk::RewriteAllUses(DominatorTree *DT, SmallVectorImpl *InsertedPHIs) { for (auto &R : Rewrites) { // Compute locations for new phi-nodes. // For that we need to initialize DefBlocks from definitions in R.Defines, // UsingBlocks from uses in R.Uses, then compute LiveInBlocks, and then use // this set for computing iterated dominance frontier (IDF). // The IDF blocks are the blocks where we need to insert new phi-nodes. ForwardIDFCalculator IDF(*DT); LLVM_DEBUG(dbgs() << "SSAUpdater: rewriting " << R.Uses.size() << " use(s)\n"); SmallPtrSet DefBlocks; for (auto &Def : R.Defines) DefBlocks.insert(Def.first); IDF.setDefiningBlocks(DefBlocks); SmallPtrSet UsingBlocks; for (Use *U : R.Uses) UsingBlocks.insert(getUserBB(U)); SmallVector IDFBlocks; SmallPtrSet LiveInBlocks; ComputeLiveInBlocks(UsingBlocks, DefBlocks, LiveInBlocks, PredCache); IDF.resetLiveInBlocks(); IDF.setLiveInBlocks(LiveInBlocks); IDF.calculate(IDFBlocks); // We've computed IDF, now insert new phi-nodes there. SmallVector InsertedPHIsForVar; for (auto *FrontierBB : IDFBlocks) { IRBuilder<> B(FrontierBB, FrontierBB->begin()); PHINode *PN = B.CreatePHI(R.Ty, 0, R.Name); R.Defines[FrontierBB] = PN; InsertedPHIsForVar.push_back(PN); if (InsertedPHIs) InsertedPHIs->push_back(PN); } // Fill in arguments of the inserted PHIs. for (auto *PN : InsertedPHIsForVar) { BasicBlock *PBB = PN->getParent(); for (BasicBlock *Pred : PredCache.get(PBB)) PN->addIncoming(computeValueAt(Pred, R, DT), Pred); } // Rewrite actual uses with the inserted definitions. SmallPtrSet ProcessedUses; for (Use *U : R.Uses) { if (!ProcessedUses.insert(U).second) continue; Value *V = computeValueAt(getUserBB(U), R, DT); Value *OldVal = U->get(); assert(OldVal && "Invalid use!"); // Notify that users of the existing value that it is being replaced. if (OldVal != V && OldVal->hasValueHandle()) ValueHandleBase::ValueIsRAUWd(OldVal, V); LLVM_DEBUG(dbgs() << "SSAUpdater: replacing " << *OldVal << " with " << *V << "\n"); U->set(V); } } }