; RUN: opt -S -instcombine %s -o - | FileCheck %s target datalayout = "e-p:32:32:32-p1:64:64:64-p2:8:8:8-p3:16:16:16-p4:16:16:16-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:32" @g = addrspace(3) global i32 89 @const_zero_i8_as1 = addrspace(1) constant i8 0 @const_zero_i32_as1 = addrspace(1) constant i32 0 @const_zero_i8_as2 = addrspace(2) constant i8 0 @const_zero_i32_as2 = addrspace(2) constant i32 0 @const_zero_i8_as3 = addrspace(3) constant i8 0 @const_zero_i32_as3 = addrspace(3) constant i32 0 ; Test constant folding of inttoptr (ptrtoint constantexpr) ; The intermediate integer size is the same as the pointer size define i32 addrspace(3)* @test_constant_fold_inttoptr_as_pointer_same_size() { ; CHECK-LABEL: @test_constant_fold_inttoptr_as_pointer_same_size( ; CHECK-NEXT: ret i32 addrspace(3)* @const_zero_i32_as3 %x = ptrtoint i32 addrspace(3)* @const_zero_i32_as3 to i32 %y = inttoptr i32 %x to i32 addrspace(3)* ret i32 addrspace(3)* %y } ; The intermediate integer size is larger than the pointer size define i32 addrspace(2)* @test_constant_fold_inttoptr_as_pointer_smaller() { ; CHECK-LABEL: @test_constant_fold_inttoptr_as_pointer_smaller( ; CHECK-NEXT: ret i32 addrspace(2)* @const_zero_i32_as2 %x = ptrtoint i32 addrspace(2)* @const_zero_i32_as2 to i16 %y = inttoptr i16 %x to i32 addrspace(2)* ret i32 addrspace(2)* %y } ; Different address spaces that are the same size, but they are ; different so nothing should happen define i32 addrspace(4)* @test_constant_fold_inttoptr_as_pointer_smaller_different_as() { ; CHECK-LABEL: @test_constant_fold_inttoptr_as_pointer_smaller_different_as( ; CHECK-NEXT: ret i32 addrspace(4)* inttoptr (i16 ptrtoint (i32 addrspace(3)* @const_zero_i32_as3 to i16) to i32 addrspace(4)*) %x = ptrtoint i32 addrspace(3)* @const_zero_i32_as3 to i16 %y = inttoptr i16 %x to i32 addrspace(4)* ret i32 addrspace(4)* %y } ; Make sure we don't introduce a bitcast between different sized ; address spaces when folding this define i32 addrspace(2)* @test_constant_fold_inttoptr_as_pointer_smaller_different_size_as() { ; CHECK-LABEL: @test_constant_fold_inttoptr_as_pointer_smaller_different_size_as( ; CHECK-NEXT: ret i32 addrspace(2)* inttoptr (i32 ptrtoint (i32 addrspace(3)* @const_zero_i32_as3 to i32) to i32 addrspace(2)*) %x = ptrtoint i32 addrspace(3)* @const_zero_i32_as3 to i32 %y = inttoptr i32 %x to i32 addrspace(2)* ret i32 addrspace(2)* %y } ; The intermediate integer size is too small, nothing should happen define i32 addrspace(3)* @test_constant_fold_inttoptr_as_pointer_larger() { ; CHECK-LABEL: @test_constant_fold_inttoptr_as_pointer_larger( ; CHECK-NEXT: ret i32 addrspace(3)* inttoptr (i8 ptrtoint (i32 addrspace(3)* @const_zero_i32_as3 to i8) to i32 addrspace(3)*) %x = ptrtoint i32 addrspace(3)* @const_zero_i32_as3 to i8 %y = inttoptr i8 %x to i32 addrspace(3)* ret i32 addrspace(3)* %y } define i8 @const_fold_ptrtoint() { ; CHECK-LABEL: @const_fold_ptrtoint( ; CHECK-NEXT: ret i8 4 ret i8 ptrtoint (i32 addrspace(2)* inttoptr (i4 4 to i32 addrspace(2)*) to i8) } ; Test that mask happens when the destination pointer is smaller than ; the original define i8 @const_fold_ptrtoint_mask() { ; CHECK-LABEL: @const_fold_ptrtoint_mask( ; CHECK-NEXT: ret i8 1 ret i8 ptrtoint (i32 addrspace(3)* inttoptr (i32 257 to i32 addrspace(3)*) to i8) } ; Address space 0 is too small for the correct mask, should mask with ; 64-bits instead of 32 define i64 @const_fold_ptrtoint_mask_small_as0() { ; CHECK-LABEL: @const_fold_ptrtoint_mask_small_as0( ; CHECK: ret i64 -1 ret i64 ptrtoint (i32 addrspace(1)* inttoptr (i128 -1 to i32 addrspace(1)*) to i64) } define i32 addrspace(3)* @const_inttoptr() { ; CHECK-LABEL: @const_inttoptr( ; CHECK-NEXT: ret i32 addrspace(3)* inttoptr (i16 4 to i32 addrspace(3)*) %p = inttoptr i16 4 to i32 addrspace(3)* ret i32 addrspace(3)* %p } define i16 @const_ptrtoint() { ; CHECK-LABEL: @const_ptrtoint( ; CHECK-NEXT: ret i16 ptrtoint (i32 addrspace(3)* @g to i16) %i = ptrtoint i32 addrspace(3)* @g to i16 ret i16 %i } define i16 @const_inttoptr_ptrtoint() { ; CHECK-LABEL: @const_inttoptr_ptrtoint( ; CHECK-NEXT: ret i16 9 ret i16 ptrtoint (i32 addrspace(3)* inttoptr (i16 9 to i32 addrspace(3)*) to i16) } define i1 @constant_fold_cmp_constantexpr_inttoptr() { ; CHECK-LABEL: @constant_fold_cmp_constantexpr_inttoptr( ; CHECK-NEXT: ret i1 true %x = icmp eq i32 addrspace(3)* inttoptr (i16 0 to i32 addrspace(3)*), null ret i1 %x } define i1 @constant_fold_inttoptr_null(i16 %i) { ; CHECK-LABEL: @constant_fold_inttoptr_null( ; CHECK-NEXT: ret i1 false %x = icmp eq i32 addrspace(3)* inttoptr (i16 99 to i32 addrspace(3)*), inttoptr (i16 0 to i32 addrspace(3)*) ret i1 %x } define i1 @constant_fold_ptrtoint_null() { ; CHECK-LABEL: @constant_fold_ptrtoint_null( ; CHECK-NEXT: ret i1 icmp eq (i32 addrspace(3)* @g, i32 addrspace(3)* null) %x = icmp eq i16 ptrtoint (i32 addrspace(3)* @g to i16), ptrtoint (i32 addrspace(3)* null to i16) ret i1 %x } define i1 @constant_fold_ptrtoint_null_2() { ; CHECK-LABEL: @constant_fold_ptrtoint_null_2( ; CHECK-NEXT: ret i1 icmp eq (i32 addrspace(3)* @g, i32 addrspace(3)* null) %x = icmp eq i16 ptrtoint (i32 addrspace(3)* null to i16), ptrtoint (i32 addrspace(3)* @g to i16) ret i1 %x } define i1 @constant_fold_ptrtoint() { ; CHECK-LABEL: @constant_fold_ptrtoint( ; CHECK-NEXT: ret i1 true %x = icmp eq i16 ptrtoint (i32 addrspace(3)* @g to i16), ptrtoint (i32 addrspace(3)* @g to i16) ret i1 %x } define i1 @constant_fold_inttoptr() { ; CHECK-LABEL: @constant_fold_inttoptr( ; CHECK-NEXT: ret i1 false %x = icmp eq i32 addrspace(3)* inttoptr (i16 99 to i32 addrspace(3)*), inttoptr (i16 27 to i32 addrspace(3)*) ret i1 %x } @g_float_as3 = addrspace(3) global float zeroinitializer @g_v4f_as3 = addrspace(3) global <4 x float> zeroinitializer define float @constant_fold_bitcast_ftoi_load() { ; CHECK-LABEL: @constant_fold_bitcast_ftoi_load( ; CHECK: load float, float addrspace(3)* bitcast (i32 addrspace(3)* @g to float addrspace(3)*), align 4 %a = load float, float addrspace(3)* bitcast (i32 addrspace(3)* @g to float addrspace(3)*), align 4 ret float %a } define i32 @constant_fold_bitcast_itof_load() { ; CHECK-LABEL: @constant_fold_bitcast_itof_load( ; CHECK: load i32, i32 addrspace(3)* bitcast (float addrspace(3)* @g_float_as3 to i32 addrspace(3)*), align 4 %a = load i32, i32 addrspace(3)* bitcast (float addrspace(3)* @g_float_as3 to i32 addrspace(3)*), align 4 ret i32 %a } define <4 x float> @constant_fold_bitcast_vector_as() { ; CHECK-LABEL: @constant_fold_bitcast_vector_as( ; CHECK: load <4 x float>, <4 x float> addrspace(3)* @g_v4f_as3, align 16 %a = load <4 x float>, <4 x float> addrspace(3)* bitcast (<4 x i32> addrspace(3)* bitcast (<4 x float> addrspace(3)* @g_v4f_as3 to <4 x i32> addrspace(3)*) to <4 x float> addrspace(3)*), align 4 ret <4 x float> %a } @i32_array_as3 = addrspace(3) global [10 x i32] zeroinitializer define i32 @test_cast_gep_small_indices_as() { ; CHECK-LABEL: @test_cast_gep_small_indices_as( ; CHECK: load i32, i32 addrspace(3)* getelementptr inbounds ([10 x i32], [10 x i32] addrspace(3)* @i32_array_as3, i16 0, i16 0), align 16 %p = getelementptr [10 x i32], [10 x i32] addrspace(3)* @i32_array_as3, i7 0, i7 0 %x = load i32, i32 addrspace(3)* %p, align 4 ret i32 %x } %struct.foo = type { float, float, [4 x i32], i32 addrspace(3)* } @constant_fold_global_ptr = addrspace(3) global %struct.foo { float 0.0, float 0.0, [4 x i32] zeroinitializer, i32 addrspace(3)* getelementptr ([10 x i32], [10 x i32] addrspace(3)* @i32_array_as3, i64 0, i64 0) } define i32 @test_cast_gep_large_indices_as() { ; CHECK-LABEL: @test_cast_gep_large_indices_as( ; CHECK: load i32, i32 addrspace(3)* getelementptr inbounds ([10 x i32], [10 x i32] addrspace(3)* @i32_array_as3, i16 0, i16 0), align 16 %p = getelementptr [10 x i32], [10 x i32] addrspace(3)* @i32_array_as3, i64 0, i64 0 %x = load i32, i32 addrspace(3)* %p, align 4 ret i32 %x } define i32 @test_constant_cast_gep_struct_indices_as() { ; CHECK-LABEL: @test_constant_cast_gep_struct_indices_as( ; CHECK: load i32, i32 addrspace(3)* getelementptr inbounds (%struct.foo, %struct.foo addrspace(3)* @constant_fold_global_ptr, i16 0, i32 2, i16 2), align 8 %x = getelementptr %struct.foo, %struct.foo addrspace(3)* @constant_fold_global_ptr, i18 0, i32 2, i12 2 %y = load i32, i32 addrspace(3)* %x, align 4 ret i32 %y } @constant_data_as3 = addrspace(3) constant [5 x i32] [i32 1, i32 2, i32 3, i32 4, i32 5] define i32 @test_read_data_from_global_as3() { ; CHECK-LABEL: @test_read_data_from_global_as3( ; CHECK-NEXT: ret i32 2 %x = getelementptr [5 x i32], [5 x i32] addrspace(3)* @constant_data_as3, i32 0, i32 1 %y = load i32, i32 addrspace(3)* %x, align 4 ret i32 %y } @a = addrspace(1) constant i32 9 @b = addrspace(1) constant i32 23 @c = addrspace(1) constant i32 34 @d = addrspace(1) constant i32 99 @ptr_array = addrspace(2) constant [4 x i32 addrspace(1)*] [ i32 addrspace(1)* @a, i32 addrspace(1)* @b, i32 addrspace(1)* @c, i32 addrspace(1)* @d] @indirect = addrspace(0) constant i32 addrspace(1)* addrspace(2)* getelementptr inbounds ([4 x i32 addrspace(1)*], [4 x i32 addrspace(1)*] addrspace(2)* @ptr_array, i1 0, i32 2) define i32 @constant_through_array_as_ptrs() { ; CHECK-LABEL: @constant_through_array_as_ptrs( ; CHECK-NEXT: ret i32 34 %p = load i32 addrspace(1)* addrspace(2)*, i32 addrspace(1)* addrspace(2)* addrspace(0)* @indirect, align 4 %a = load i32 addrspace(1)*, i32 addrspace(1)* addrspace(2)* %p, align 4 %b = load i32, i32 addrspace(1)* %a, align 4 ret i32 %b } @shared_mem = external addrspace(3) global [0 x i8] define float @canonicalize_addrspacecast(i32 %i) { ; CHECK-LABEL: @canonicalize_addrspacecast ; CHECK-NEXT: getelementptr inbounds float, float* addrspacecast (float addrspace(3)* bitcast ([0 x i8] addrspace(3)* @shared_mem to float addrspace(3)*) to float*), i32 %i %p = getelementptr inbounds float, float* addrspacecast ([0 x i8] addrspace(3)* @shared_mem to float*), i32 %i %v = load float, float* %p ret float %v }