; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -instsimplify -S | FileCheck %s ; If any bits of the shift amount are known to make it exceed or equal ; the number of bits in the type, the shift causes undefined behavior. define i32 @shl_amount_is_known_bogus(i32 %a, i32 %b) { ; CHECK-LABEL: @shl_amount_is_known_bogus( ; CHECK-NEXT: ret i32 undef ; %or = or i32 %b, 32 %shl = shl i32 %a, %or ret i32 %shl } ; Check some weird types and the other shift ops. define i31 @lshr_amount_is_known_bogus(i31 %a, i31 %b) { ; CHECK-LABEL: @lshr_amount_is_known_bogus( ; CHECK-NEXT: ret i31 undef ; %or = or i31 %b, 31 %shr = lshr i31 %a, %or ret i31 %shr } define i33 @ashr_amount_is_known_bogus(i33 %a, i33 %b) { ; CHECK-LABEL: @ashr_amount_is_known_bogus( ; CHECK-NEXT: ret i33 undef ; %or = or i33 %b, 33 %shr = ashr i33 %a, %or ret i33 %shr } ; If all valid bits of the shift amount are known 0, there's no shift. ; It doesn't matter if high bits are set because that would be undefined. ; Therefore, the only possible valid result of these shifts is %a. define i16 @ashr_amount_is_zero(i16 %a, i16 %b) { ; CHECK-LABEL: @ashr_amount_is_zero( ; CHECK-NEXT: ret i16 %a ; %and = and i16 %b, 65520 ; 0xfff0 %shr = ashr i16 %a, %and ret i16 %shr } define i300 @lshr_amount_is_zero(i300 %a, i300 %b) { ; CHECK-LABEL: @lshr_amount_is_zero( ; CHECK-NEXT: ret i300 %a ; %and = and i300 %b, 2048 %shr = lshr i300 %a, %and ret i300 %shr } define i9 @shl_amount_is_zero(i9 %a, i9 %b) { ; CHECK-LABEL: @shl_amount_is_zero( ; CHECK-NEXT: ret i9 %a ; %and = and i9 %b, 496 ; 0x1f0 %shl = shl i9 %a, %and ret i9 %shl } ; Verify that we've calculated the log2 boundary of valid bits correctly for a weird type. define i9 @shl_amount_is_not_known_zero(i9 %a, i9 %b) { ; CHECK-LABEL: @shl_amount_is_not_known_zero( ; CHECK-NEXT: [[AND:%.*]] = and i9 %b, -8 ; CHECK-NEXT: [[SHL:%.*]] = shl i9 %a, [[AND]] ; CHECK-NEXT: ret i9 [[SHL]] ; %and = and i9 %b, 504 ; 0x1f8 %shl = shl i9 %a, %and ret i9 %shl } ; For vectors, we need all scalar elements to meet the requirements to optimize. define <2 x i32> @ashr_vector_bogus(<2 x i32> %a, <2 x i32> %b) { ; CHECK-LABEL: @ashr_vector_bogus( ; CHECK-NEXT: ret <2 x i32> undef ; %or = or <2 x i32> %b, %shr = ashr <2 x i32> %a, %or ret <2 x i32> %shr } ; FIXME: This is undef, but computeKnownBits doesn't handle the union. define <2 x i32> @shl_vector_bogus(<2 x i32> %a, <2 x i32> %b) { ; CHECK-LABEL: @shl_vector_bogus( ; CHECK-NEXT: [[OR:%.*]] = or <2 x i32> %b, ; CHECK-NEXT: [[SHL:%.*]] = shl <2 x i32> %a, [[OR]] ; CHECK-NEXT: ret <2 x i32> [[SHL]] ; %or = or <2 x i32> %b, %shl = shl <2 x i32> %a, %or ret <2 x i32> %shl } define <2 x i32> @lshr_vector_zero(<2 x i32> %a, <2 x i32> %b) { ; CHECK-LABEL: @lshr_vector_zero( ; CHECK-NEXT: ret <2 x i32> %a ; %and = and <2 x i32> %b, %shr = lshr <2 x i32> %a, %and ret <2 x i32> %shr } ; Make sure that weird vector types work too. define <2 x i15> @shl_vector_zero(<2 x i15> %a, <2 x i15> %b) { ; CHECK-LABEL: @shl_vector_zero( ; CHECK-NEXT: ret <2 x i15> %a ; %and = and <2 x i15> %b, %shl = shl <2 x i15> %a, %and ret <2 x i15> %shl } define <2 x i32> @shl_vector_for_real(<2 x i32> %a, <2 x i32> %b) { ; CHECK-LABEL: @shl_vector_for_real( ; CHECK-NEXT: [[AND:%.*]] = and <2 x i32> %b, ; CHECK-NEXT: [[SHL:%.*]] = shl <2 x i32> %a, [[AND]] ; CHECK-NEXT: ret <2 x i32> [[SHL]] ; %and = and <2 x i32> %b, ; a necessary mask op %shl = shl <2 x i32> %a, %and ret <2 x i32> %shl } ; We calculate the valid bits of the shift using log2, and log2 of 1 (the type width) is 0. ; That should be ok. Either the shift amount is 0 or invalid (1), so we can always return %a. define i1 @shl_i1(i1 %a, i1 %b) { ; CHECK-LABEL: @shl_i1( ; CHECK-NEXT: ret i1 %a ; %shl = shl i1 %a, %b ret i1 %shl } ; Simplify count leading/trailing zeros to zero if all valid bits are shifted out. declare i32 @llvm.cttz.i32(i32, i1) nounwind readnone declare i32 @llvm.ctlz.i32(i32, i1) nounwind readnone declare <2 x i8> @llvm.cttz.v2i8(<2 x i8>, i1) nounwind readnone declare <2 x i8> @llvm.ctlz.v2i8(<2 x i8>, i1) nounwind readnone define i32 @lshr_ctlz_zero_is_undef(i32 %x) { ; CHECK-LABEL: @lshr_ctlz_zero_is_undef( ; CHECK-NEXT: ret i32 0 ; %ct = call i32 @llvm.ctlz.i32(i32 %x, i1 true) %sh = lshr i32 %ct, 5 ret i32 %sh } define i32 @lshr_cttz_zero_is_undef(i32 %x) { ; CHECK-LABEL: @lshr_cttz_zero_is_undef( ; CHECK-NEXT: ret i32 0 ; %ct = call i32 @llvm.cttz.i32(i32 %x, i1 true) %sh = lshr i32 %ct, 5 ret i32 %sh } define <2 x i8> @lshr_ctlz_zero_is_undef_splat_vec(<2 x i8> %x) { ; CHECK-LABEL: @lshr_ctlz_zero_is_undef_splat_vec( ; CHECK-NEXT: ret <2 x i8> zeroinitializer ; %ct = call <2 x i8> @llvm.ctlz.v2i8(<2 x i8> %x, i1 true) %sh = lshr <2 x i8> %ct, ret <2 x i8> %sh } define <2 x i8> @lshr_cttz_zero_is_undef_splat_vec(<2 x i8> %x) { ; CHECK-LABEL: @lshr_cttz_zero_is_undef_splat_vec( ; CHECK-NEXT: ret <2 x i8> zeroinitializer ; %ct = call <2 x i8> @llvm.cttz.v2i8(<2 x i8> %x, i1 true) %sh = lshr <2 x i8> %ct, ret <2 x i8> %sh }