; RUN: opt < %s -basicaa -licm -S | FileCheck %s ; RUN: opt < %s -debugify -basicaa -licm -S | FileCheck %s -check-prefix=DEBUGIFY declare i32 @strlen(i8*) readonly nounwind declare void @foo() ; Sink readonly function. define i32 @test1(i8* %P) { br label %Loop Loop: ; preds = %Loop, %0 %A = call i32 @strlen( i8* %P ) readonly br i1 false, label %Loop, label %Out Out: ; preds = %Loop ret i32 %A ; CHECK-LABEL: @test1( ; CHECK: Out: ; CHECK-NEXT: call i32 @strlen ; CHECK-NEXT: ret i32 %A } declare double @sin(double) readnone nounwind ; Sink readnone function out of loop with unknown memory behavior. define double @test2(double %X) { br label %Loop Loop: ; preds = %Loop, %0 call void @foo( ) %A = call double @sin( double %X ) readnone br i1 true, label %Loop, label %Out Out: ; preds = %Loop ret double %A ; CHECK-LABEL: @test2( ; CHECK: Out: ; CHECK-NEXT: call double @sin ; CHECK-NEXT: ret double %A } ; This testcase checks to make sure the sinker does not cause problems with ; critical edges. define void @test3() { Entry: br i1 false, label %Loop, label %Exit Loop: %X = add i32 0, 1 br i1 false, label %Loop, label %Exit Exit: %Y = phi i32 [ 0, %Entry ], [ %X, %Loop ] ret void ; CHECK-LABEL: @test3( ; CHECK: Exit.loopexit: ; CHECK-NEXT: %X.le = add i32 0, 1 ; CHECK-NEXT: br label %Exit } ; If the result of an instruction is only used outside of the loop, sink ; the instruction to the exit blocks instead of executing it on every ; iteration of the loop. ; define i32 @test4(i32 %N) { Entry: br label %Loop Loop: ; preds = %Loop, %Entry %N_addr.0.pn = phi i32 [ %dec, %Loop ], [ %N, %Entry ] %tmp.6 = mul i32 %N, %N_addr.0.pn ; [#uses=1] %tmp.7 = sub i32 %tmp.6, %N ; [#uses=1] %dec = add i32 %N_addr.0.pn, -1 ; [#uses=1] %tmp.1 = icmp ne i32 %N_addr.0.pn, 1 ; [#uses=1] br i1 %tmp.1, label %Loop, label %Out Out: ; preds = %Loop ret i32 %tmp.7 ; CHECK-LABEL: @test4( ; CHECK: Out: ; CHECK-NEXT: %[[LCSSAPHI:.*]] = phi i32 [ %N_addr.0.pn ; CHECK-NEXT: mul i32 %N, %[[LCSSAPHI]] ; CHECK-NEXT: sub i32 %tmp.6.le, %N ; CHECK-NEXT: ret i32 } ; To reduce register pressure, if a load is hoistable out of the loop, and the ; result of the load is only used outside of the loop, sink the load instead of ; hoisting it! ; @X = global i32 5 ; [#uses=1] define i32 @test5(i32 %N) { Entry: br label %Loop Loop: ; preds = %Loop, %Entry %N_addr.0.pn = phi i32 [ %dec, %Loop ], [ %N, %Entry ] %tmp.6 = load i32, i32* @X ; [#uses=1] %dec = add i32 %N_addr.0.pn, -1 ; [#uses=1] %tmp.1 = icmp ne i32 %N_addr.0.pn, 1 ; [#uses=1] br i1 %tmp.1, label %Loop, label %Out Out: ; preds = %Loop ret i32 %tmp.6 ; CHECK-LABEL: @test5( ; CHECK: Out: ; CHECK-NEXT: %tmp.6.le = load i32, i32* @X ; CHECK-NEXT: ret i32 %tmp.6.le } ; The loop sinker was running from the bottom of the loop to the top, causing ; it to miss opportunities to sink instructions that depended on sinking other ; instructions from the loop. Instead they got hoisted, which is better than ; leaving them in the loop, but increases register pressure pointlessly. %Ty = type { i32, i32 } @X2 = external global %Ty define i32 @test6() { br label %Loop Loop: %dead = getelementptr %Ty, %Ty* @X2, i64 0, i32 0 %sunk2 = load i32, i32* %dead br i1 false, label %Loop, label %Out Out: ; preds = %Loop ret i32 %sunk2 ; CHECK-LABEL: @test6( ; CHECK: Out: ; CHECK-NEXT: %dead.le = getelementptr %Ty, %Ty* @X2, i64 0, i32 0 ; CHECK-NEXT: %sunk2.le = load i32, i32* %dead.le ; CHECK-NEXT: ret i32 %sunk2.le } ; This testcase ensures that we can sink instructions from loops with ; multiple exits. ; define i32 @test7(i32 %N, i1 %C) { Entry: br label %Loop Loop: ; preds = %ContLoop, %Entry %N_addr.0.pn = phi i32 [ %dec, %ContLoop ], [ %N, %Entry ] %tmp.6 = mul i32 %N, %N_addr.0.pn %tmp.7 = sub i32 %tmp.6, %N ; [#uses=2] %dec = add i32 %N_addr.0.pn, -1 ; [#uses=1] br i1 %C, label %ContLoop, label %Out1 ContLoop: %tmp.1 = icmp ne i32 %N_addr.0.pn, 1 br i1 %tmp.1, label %Loop, label %Out2 Out1: ; preds = %Loop ret i32 %tmp.7 Out2: ; preds = %ContLoop ret i32 %tmp.7 ; CHECK-LABEL: @test7( ; CHECK: Out1: ; CHECK-NEXT: %[[LCSSAPHI:.*]] = phi i32 [ %N_addr.0.pn ; CHECK-NEXT: mul i32 %N, %[[LCSSAPHI]] ; CHECK-NEXT: sub i32 %tmp.6.le, %N ; CHECK-NEXT: ret ; CHECK: Out2: ; CHECK-NEXT: %[[LCSSAPHI:.*]] = phi i32 [ %N_addr.0.pn ; CHECK-NEXT: mul i32 %N, %[[LCSSAPHI]] ; CHECK-NEXT: sub i32 %tmp.6.le4, %N ; CHECK-NEXT: ret } ; This testcase checks to make sure we can sink values which are only live on ; some exits out of the loop, and that we can do so without breaking dominator ; info. define i32 @test8(i1 %C1, i1 %C2, i32* %P, i32* %Q) { Entry: br label %Loop Loop: ; preds = %Cont, %Entry br i1 %C1, label %Cont, label %exit1 Cont: ; preds = %Loop %X = load i32, i32* %P ; [#uses=2] store i32 %X, i32* %Q %V = add i32 %X, 1 ; [#uses=1] br i1 %C2, label %Loop, label %exit2 exit1: ; preds = %Loop ret i32 0 exit2: ; preds = %Cont ret i32 %V ; CHECK-LABEL: @test8( ; CHECK: exit1: ; CHECK-NEXT: ret i32 0 ; CHECK: exit2: ; CHECK-NEXT: %[[LCSSAPHI:.*]] = phi i32 [ %X ; CHECK-NEXT: %V.le = add i32 %[[LCSSAPHI]], 1 ; CHECK-NEXT: ret i32 %V.le } define void @test9() { loopentry.2.i: br i1 false, label %no_exit.1.i.preheader, label %loopentry.3.i.preheader no_exit.1.i.preheader: ; preds = %loopentry.2.i br label %no_exit.1.i no_exit.1.i: ; preds = %endif.8.i, %no_exit.1.i.preheader br i1 false, label %return.i, label %endif.8.i endif.8.i: ; preds = %no_exit.1.i %inc.1.i = add i32 0, 1 ; [#uses=1] br i1 false, label %no_exit.1.i, label %loopentry.3.i.preheader.loopexit loopentry.3.i.preheader.loopexit: ; preds = %endif.8.i br label %loopentry.3.i.preheader loopentry.3.i.preheader: ; preds = %loopentry.3.i.preheader.loopexit, %loopentry.2.i %arg_num.0.i.ph13000 = phi i32 [ 0, %loopentry.2.i ], [ %inc.1.i, %loopentry.3.i.preheader.loopexit ] ; [#uses=0] ret void return.i: ; preds = %no_exit.1.i ret void ; CHECK-LABEL: @test9( ; CHECK: loopentry.3.i.preheader.loopexit: ; CHECK-NEXT: %inc.1.i.le = add i32 0, 1 ; CHECK-NEXT: br label %loopentry.3.i.preheader } ; Potentially trapping instructions may be sunk as long as they are guaranteed ; to be executed. define i32 @test10(i32 %N) { Entry: br label %Loop Loop: ; preds = %Loop, %Entry %N_addr.0.pn = phi i32 [ %dec, %Loop ], [ %N, %Entry ] ; [#uses=3] %tmp.6 = sdiv i32 %N, %N_addr.0.pn ; [#uses=1] %dec = add i32 %N_addr.0.pn, -1 ; [#uses=1] %tmp.1 = icmp ne i32 %N_addr.0.pn, 0 ; [#uses=1] br i1 %tmp.1, label %Loop, label %Out Out: ; preds = %Loop ret i32 %tmp.6 ; CHECK-LABEL: @test10( ; CHECK: Out: ; CHECK-NEXT: %[[LCSSAPHI:.*]] = phi i32 [ %N_addr.0.pn ; CHECK-NEXT: %tmp.6.le = sdiv i32 %N, %[[LCSSAPHI]] ; CHECK-NEXT: ret i32 %tmp.6.le } ; Should delete, not sink, dead instructions. define void @test11() { br label %Loop Loop: %dead1 = getelementptr %Ty, %Ty* @X2, i64 0, i32 0 %dead2 = getelementptr %Ty, %Ty* @X2, i64 0, i32 1 br i1 false, label %Loop, label %Out Out: ret void ; CHECK-LABEL: @test11( ; CHECK: Out: ; CHECK-NEXT: ret void ; The GEP in dead1 is adding a zero offset, so the DIExpression can be kept as ; a "register location". ; The GEP in dead2 is adding a 4 bytes to the pointer, so the DIExpression is ; turned into an "implicit location" using DW_OP_stack_value. ; ; DEBUGIFY-LABEL: @test11( ; DEBUGIFY: call void @llvm.dbg.value(metadata %Ty* @X2, metadata {{.*}}, metadata !DIExpression()) ; DEBUGIFY: call void @llvm.dbg.value(metadata %Ty* @X2, metadata {{.*}}, metadata !DIExpression(DW_OP_plus_uconst, 4, DW_OP_stack_value)) } @c = common global [1 x i32] zeroinitializer, align 4 ; Test a *many* way nested loop with multiple exit blocks both of which exit ; multiple loop nests. This exercises LCSSA corner cases. define i32 @PR18753(i1* %a, i1* %b, i1* %c, i1* %d) { entry: br label %l1.header l1.header: %iv = phi i64 [ %iv.next, %l1.latch ], [ 0, %entry ] %arrayidx.i = getelementptr inbounds [1 x i32], [1 x i32]* @c, i64 0, i64 %iv br label %l2.header l2.header: %x0 = load i1, i1* %c, align 4 br i1 %x0, label %l1.latch, label %l3.preheader l3.preheader: br label %l3.header l3.header: %x1 = load i1, i1* %d, align 4 br i1 %x1, label %l2.latch, label %l4.preheader l4.preheader: br label %l4.header l4.header: %x2 = load i1, i1* %a br i1 %x2, label %l3.latch, label %l4.body l4.body: call void @f(i32* %arrayidx.i) %x3 = load i1, i1* %b %l = trunc i64 %iv to i32 br i1 %x3, label %l4.latch, label %exit l4.latch: call void @g() %x4 = load i1, i1* %b, align 4 br i1 %x4, label %l4.header, label %exit l3.latch: br label %l3.header l2.latch: br label %l2.header l1.latch: %iv.next = add nsw i64 %iv, 1 br label %l1.header exit: %lcssa = phi i32 [ %l, %l4.latch ], [ %l, %l4.body ] ; CHECK-LABEL: @PR18753( ; CHECK: exit: ; CHECK-NEXT: %[[LCSSAPHI:.*]] = phi i64 [ %iv, %l4.latch ], [ %iv, %l4.body ] ; CHECK-NEXT: %l.le = trunc i64 %[[LCSSAPHI]] to i32 ; CHECK-NEXT: ret i32 %l.le ret i32 %lcssa } ; Can't sink stores out of exit blocks containing indirectbr instructions ; because loop simplify does not create dedicated exits for such blocks. Test ; that by sinking the store from lab21 to lab22, but not further. define void @test12() { ; CHECK-LABEL: @test12 br label %lab4 lab4: br label %lab20 lab5: br label %lab20 lab6: br label %lab4 lab7: br i1 undef, label %lab8, label %lab13 lab8: br i1 undef, label %lab13, label %lab10 lab10: br label %lab7 lab13: ret void lab20: br label %lab21 lab21: ; CHECK: lab21: ; CHECK-NOT: store ; CHECK: br i1 false, label %lab21, label %lab22 store i32 36127957, i32* undef, align 4 br i1 undef, label %lab21, label %lab22 lab22: ; CHECK: lab22: ; CHECK: store ; CHECK-NEXT: indirectbr i8* undef indirectbr i8* undef, [label %lab5, label %lab6, label %lab7] } ; Test that we don't crash when trying to sink stores and there's no preheader ; available (which is used for creating loads that may be used by the SSA ; updater) define void @test13() { ; CHECK-LABEL: @test13 br label %lab59 lab19: br i1 undef, label %lab20, label %lab38 lab20: br label %lab60 lab21: br i1 undef, label %lab22, label %lab38 lab22: br label %lab38 lab38: ret void lab59: indirectbr i8* undef, [label %lab60, label %lab38] lab60: ; CHECK: lab60: ; CHECK: store ; CHECK-NEXT: indirectbr store i32 2145244101, i32* undef, align 4 indirectbr i8* undef, [label %lab21, label %lab19] } ; Check if LICM can sink a sinkable instruction the exit blocks through ; a non-trivially replacable PHI node. ; ; CHECK-LABEL: @test14 ; CHECK-LABEL: Loop: ; CHECK-NOT: mul ; CHECK-NOT: sub ; ; CHECK-LABEL: Out12.split.loop.exit: ; CHECK: %[[LCSSAPHI:.*]] = phi i32 [ %N_addr.0.pn, %ContLoop ] ; CHECK: %[[MUL:.*]] = mul i32 %N, %[[LCSSAPHI]] ; CHECK: br label %Out12 ; ; CHECK-LABEL: Out12.split.loop.exit1: ; CHECK: %[[LCSSAPHI2:.*]] = phi i32 [ %N_addr.0.pn, %Loop ] ; CHECK: %[[MUL2:.*]] = mul i32 %N, %[[LCSSAPHI2]] ; CHECK: %[[SUB:.*]] = sub i32 %[[MUL2]], %N ; CHECK: br label %Out12 ; ; CHECK-LABEL: Out12: ; CHECK: phi i32 [ %[[MUL]], %Out12.split.loop.exit ], [ %[[SUB]], %Out12.split.loop.exit1 ] define i32 @test14(i32 %N, i32 %N2, i1 %C) { Entry: br label %Loop Loop: %N_addr.0.pn = phi i32 [ %dec, %ContLoop ], [ %N, %Entry ] %sink.mul = mul i32 %N, %N_addr.0.pn %sink.sub = sub i32 %sink.mul, %N %dec = add i32 %N_addr.0.pn, -1 br i1 %C, label %ContLoop, label %Out12 ContLoop: %tmp.1 = icmp ne i32 %N_addr.0.pn, 1 br i1 %tmp.1, label %Loop, label %Out12 Out12: %tmp = phi i32 [%sink.mul, %ContLoop], [%sink.sub, %Loop] ret i32 %tmp } ; In this test, splitting predecessors is not really required because the ; operations of sinkable instructions (sub and mul) are same. In this case, we ; can sink the same sinkable operations and modify the PHI to pass the operands ; to the shared operations. As of now, we split predecessors of non-trivially ; replicalbe PHIs by default in LICM because all incoming edges of a ; non-trivially replacable PHI in LCSSA is critical. ; ; CHECK-LABEL: @test15 ; CHECK-LABEL: Loop: ; CHECK-NOT: mul ; CHECK-NOT: sub ; ; CHECK-LABEL: Out12.split.loop.exit: ; CHECK: %[[LCSSAPHI:.*]] = phi i32 [ %N_addr.0.pn, %ContLoop ] ; CHECK: %[[MUL:.*]] = mul i32 %N, %[[LCSSAPHI]] ; CHECK: %[[SUB:.*]] = sub i32 %[[MUL]], %N2 ; CHECK: br label %Out12 ; ; CHECK-LABEL: Out12.split.loop.exit1: ; CHECK: %[[LCSSAPHI2:.*]] = phi i32 [ %N_addr.0.pn, %Loop ] ; CHECK: %[[MUL2:.*]] = mul i32 %N, %[[LCSSAPHI2]] ; CHECK: %[[SUB2:.*]] = sub i32 %[[MUL2]], %N ; CHECK: br label %Out12 ; ; CHECK-LABEL: Out12: ; CHECK: phi i32 [ %[[SUB]], %Out12.split.loop.exit ], [ %[[SUB2]], %Out12.split.loop.exit1 ] define i32 @test15(i32 %N, i32 %N2, i1 %C) { Entry: br label %Loop Loop: %N_addr.0.pn = phi i32 [ %dec, %ContLoop ], [ %N, %Entry ] %sink.mul = mul i32 %N, %N_addr.0.pn %sink.sub = sub i32 %sink.mul, %N %sink.sub2 = sub i32 %sink.mul, %N2 %dec = add i32 %N_addr.0.pn, -1 br i1 %C, label %ContLoop, label %Out12 ContLoop: %tmp.1 = icmp ne i32 %N_addr.0.pn, 1 br i1 %tmp.1, label %Loop, label %Out12 Out12: %tmp = phi i32 [%sink.sub2, %ContLoop], [%sink.sub, %Loop] ret i32 %tmp } ; Sink through a non-trivially replacable PHI node which use the same sinkable ; instruction multiple times. ; ; CHECK-LABEL: @test16 ; CHECK-LABEL: Loop: ; CHECK-NOT: mul ; ; CHECK-LABEL: Out.split.loop.exit: ; CHECK: %[[PHI:.*]] = phi i32 [ %l2, %ContLoop ] ; CHECK: br label %Out ; ; CHECK-LABEL: Out.split.loop.exit1: ; CHECK: %[[SINKABLE:.*]] = mul i32 %l2.lcssa, %t.le ; CHECK: br label %Out ; ; CHECK-LABEL: Out: ; CHECK: %idx = phi i32 [ %[[PHI]], %Out.split.loop.exit ], [ %[[SINKABLE]], %Out.split.loop.exit1 ] define i32 @test16(i1 %c, i8** %P, i32* %P2, i64 %V) { entry: br label %loop.ph loop.ph: br label %Loop Loop: %iv = phi i64 [ 0, %loop.ph ], [ %next, %ContLoop ] %l2 = call i32 @getv() %t = trunc i64 %iv to i32 %sinkable = mul i32 %l2, %t switch i32 %l2, label %ContLoop [ i32 32, label %Out i32 46, label %Out i32 95, label %Out ] ContLoop: %next = add nuw i64 %iv, 1 %c1 = call i1 @getc() br i1 %c1, label %Loop, label %Out Out: %idx = phi i32 [ %l2, %ContLoop ], [ %sinkable, %Loop ], [ %sinkable, %Loop ], [ %sinkable, %Loop ] ret i32 %idx } ; Sink a sinkable instruction through multiple non-trivially replacable PHIs in ; differect exit blocks. ; ; CHECK-LABEL: @test17 ; CHECK-LABEL: Loop: ; CHECK-NOT: mul ; ; CHECK-LABEL:OutA.split.loop.exit{{.*}}: ; CHECK: %[[OP1:.*]] = phi i32 [ %N_addr.0.pn, %ContLoop1 ] ; CHECK: %[[SINKABLE:.*]] = mul i32 %N, %[[OP1]] ; CHECK: br label %OutA ; ; CHECK-LABEL:OutA: ; CHECK: phi i32{{.*}}[ %[[SINKABLE]], %OutA.split.loop.exit{{.*}} ] ; ; CHECK-LABEL:OutB.split.loop.exit{{.*}}: ; CHECK: %[[OP2:.*]] = phi i32 [ %N_addr.0.pn, %ContLoop2 ] ; CHECK: %[[SINKABLE2:.*]] = mul i32 %N, %[[OP2]] ; CHECK: br label %OutB ; ; CHECK-LABEL:OutB: ; CHECK: phi i32 {{.*}}[ %[[SINKABLE2]], %OutB.split.loop.exit{{.*}} ] define i32 @test17(i32 %N, i32 %N2) { Entry: br label %Loop Loop: %N_addr.0.pn = phi i32 [ %dec, %ContLoop3 ], [ %N, %Entry ] %sink.mul = mul i32 %N, %N_addr.0.pn %c0 = call i1 @getc() br i1 %c0 , label %ContLoop1, label %OutA ContLoop1: %c1 = call i1 @getc() br i1 %c1, label %ContLoop2, label %OutA ContLoop2: %c2 = call i1 @getc() br i1 %c2, label %ContLoop3, label %OutB ContLoop3: %c3 = call i1 @getc() %dec = add i32 %N_addr.0.pn, -1 br i1 %c3, label %Loop, label %OutB OutA: %tmp1 = phi i32 [%sink.mul, %ContLoop1], [%N2, %Loop] br label %Out12 OutB: %tmp2 = phi i32 [%sink.mul, %ContLoop2], [%dec, %ContLoop3] br label %Out12 Out12: %tmp = phi i32 [%tmp1, %OutA], [%tmp2, %OutB] ret i32 %tmp } ; Sink a sinkable instruction through both trivially and non-trivially replacable PHIs. ; ; CHECK-LABEL: @test18 ; CHECK-LABEL: Loop: ; CHECK-NOT: mul ; CHECK-NOT: sub ; ; CHECK-LABEL:Out12.split.loop.exit: ; CHECK: %[[OP:.*]] = phi i32 [ %iv, %ContLoop ] ; CHECK: %[[DEC:.*]] = phi i32 [ %dec, %ContLoop ] ; CHECK: %[[SINKMUL:.*]] = mul i32 %N, %[[OP]] ; CHECK: %[[SINKSUB:.*]] = sub i32 %[[SINKMUL]], %N2 ; CHECK: br label %Out12 ; ; CHECK-LABEL:Out12.split.loop.exit1: ; CHECK: %[[OP2:.*]] = phi i32 [ %iv, %Loop ] ; CHECK: %[[SINKMUL2:.*]] = mul i32 %N, %[[OP2]] ; CHECK: %[[SINKSUB2:.*]] = sub i32 %[[SINKMUL2]], %N2 ; CHECK: br label %Out12 ; ; CHECK-LABEL:Out12: ; CHECK: %tmp1 = phi i32 [ %[[SINKSUB]], %Out12.split.loop.exit ], [ %[[SINKSUB2]], %Out12.split.loop.exit1 ] ; CHECK: %tmp2 = phi i32 [ %[[DEC]], %Out12.split.loop.exit ], [ %[[SINKSUB2]], %Out12.split.loop.exit1 ] ; CHECK: %add = add i32 %tmp1, %tmp2 define i32 @test18(i32 %N, i32 %N2) { Entry: br label %Loop Loop: %iv = phi i32 [ %dec, %ContLoop ], [ %N, %Entry ] %sink.mul = mul i32 %N, %iv %sink.sub = sub i32 %sink.mul, %N2 %c0 = call i1 @getc() br i1 %c0, label %ContLoop, label %Out12 ContLoop: %dec = add i32 %iv, -1 %c1 = call i1 @getc() br i1 %c1, label %Loop, label %Out12 Out12: %tmp1 = phi i32 [%sink.sub, %ContLoop], [%sink.sub, %Loop] %tmp2 = phi i32 [%dec, %ContLoop], [%sink.sub, %Loop] %add = add i32 %tmp1, %tmp2 ret i32 %add } ; Do not sink an instruction through a non-trivially replacable PHI, to avoid ; assert while splitting predecessors, if the terminator of predecessor is an ; indirectbr. ; CHECK-LABEL: @test19 ; CHECK-LABEL: L0: ; CHECK: %sinkable = mul ; CHECK: %sinkable2 = add define i32 @test19(i1 %cond, i1 %cond2, i8* %address, i32 %v1) nounwind { entry: br label %L0 L0: %indirect.goto.dest = select i1 %cond, i8* blockaddress(@test19, %exit), i8* %address %v2 = call i32 @getv() %sinkable = mul i32 %v1, %v2 %sinkable2 = add i32 %v1, %v2 indirectbr i8* %indirect.goto.dest, [label %L1, label %exit] L1: %indirect.goto.dest2 = select i1 %cond2, i8* blockaddress(@test19, %exit), i8* %address indirectbr i8* %indirect.goto.dest2, [label %L0, label %exit] exit: %r = phi i32 [%sinkable, %L0], [%sinkable2, %L1] ret i32 %r } ; Do not sink through a non-trivially replacable PHI if splitting predecessors ; not allowed in SplitBlockPredecessors(). ; ; CHECK-LABEL: @test20 ; CHECK-LABEL: while.cond ; CHECK: %sinkable = mul ; CHECK: %sinkable2 = add define void @test20(i32* %s, i1 %b, i32 %v1, i32 %v2) personality i32 (...)* @__CxxFrameHandler3 { entry: br label %while.cond while.cond: %v = call i32 @getv() %sinkable = mul i32 %v, %v2 %sinkable2 = add i32 %v, %v2 br i1 %b, label %try.cont, label %while.body while.body: invoke void @may_throw() to label %while.body2 unwind label %catch.dispatch while.body2: invoke void @may_throw2() to label %while.cond unwind label %catch.dispatch catch.dispatch: %.lcssa1 = phi i32 [ %sinkable, %while.body ], [ %sinkable2, %while.body2 ] %cp = cleanuppad within none [] store i32 %.lcssa1, i32* %s cleanupret from %cp unwind to caller try.cont: ret void } ; The sinkable call should be sunk into an exit block split. After splitting ; the exit block, BlockColor for new blocks should be added properly so ; that we should be able to access valid ColorVector. ; ; CHECK-LABEL:@test21_pr36184 ; CHECK-LABEL: Loop ; CHECK-NOT: %sinkableCall ; CHECK-LABEL:Out.split.loop.exit ; CHECK: %sinkableCall define i32 @test21_pr36184(i8* %P) personality i32 (...)* @__CxxFrameHandler3 { entry: br label %loop.ph loop.ph: br label %Loop Loop: %sinkableCall = call i32 @strlen( i8* %P ) readonly br i1 undef, label %ContLoop, label %Out ContLoop: br i1 undef, label %Loop, label %Out Out: %idx = phi i32 [ %sinkableCall, %Loop ], [0, %ContLoop ] ret i32 %idx } ; We do not support splitting a landingpad block if BlockColors is not empty. ; CHECK-LABEL: @test22 ; CHECK-LABEL: while.body2 ; CHECK-LABEL: %mul ; CHECK-NOT: lpadBB.split{{.*}} define void @test22(i1 %b, i32 %v1, i32 %v2) personality i32 (...)* @__CxxFrameHandler3 { entry: br label %while.cond while.cond: br i1 %b, label %try.cont, label %while.body while.body: invoke void @may_throw() to label %while.body2 unwind label %lpadBB while.body2: %v = call i32 @getv() %mul = mul i32 %v, %v2 invoke void @may_throw2() to label %while.cond unwind label %lpadBB lpadBB: %.lcssa1 = phi i32 [ 0, %while.body ], [ %mul, %while.body2 ] landingpad { i8*, i32 } catch i8* null br label %lpadBBSucc1 lpadBBSucc1: ret void try.cont: ret void } declare void @may_throw() declare void @may_throw2() declare i32 @__CxxFrameHandler3(...) declare i32 @getv() declare i1 @getc() declare void @f(i32*) declare void @g()