; Test the basic functionality of speculating around PHI nodes based on reduced ; cost of the constant operands to the PHI nodes using the x86 cost model. ; ; REQUIRES: x86-registered-target ; RUN: opt -S -passes=spec-phis < %s | FileCheck %s target triple = "x86_64-unknown-unknown" define i32 @test_basic(i1 %flag, i32 %arg) { ; CHECK-LABEL: define i32 @test_basic( entry: br i1 %flag, label %a, label %b ; CHECK: br i1 %flag, label %a, label %b a: br label %exit ; CHECK: a: ; CHECK-NEXT: %[[SUM_A:.*]] = add i32 %arg, 7 ; CHECK-NEXT: br label %exit b: br label %exit ; CHECK: b: ; CHECK-NEXT: %[[SUM_B:.*]] = add i32 %arg, 11 ; CHECK-NEXT: br label %exit exit: %p = phi i32 [ 7, %a ], [ 11, %b ] %sum = add i32 %arg, %p ret i32 %sum ; CHECK: exit: ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ %[[SUM_A]], %a ], [ %[[SUM_B]], %b ] ; CHECK-NEXT: ret i32 %[[PHI]] } ; Check that we handle commuted operands and get the constant onto the RHS. define i32 @test_commuted(i1 %flag, i32 %arg) { ; CHECK-LABEL: define i32 @test_commuted( entry: br i1 %flag, label %a, label %b ; CHECK: br i1 %flag, label %a, label %b a: br label %exit ; CHECK: a: ; CHECK-NEXT: %[[SUM_A:.*]] = add i32 %arg, 7 ; CHECK-NEXT: br label %exit b: br label %exit ; CHECK: b: ; CHECK-NEXT: %[[SUM_B:.*]] = add i32 %arg, 11 ; CHECK-NEXT: br label %exit exit: %p = phi i32 [ 7, %a ], [ 11, %b ] %sum = add i32 %p, %arg ret i32 %sum ; CHECK: exit: ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ %[[SUM_A]], %a ], [ %[[SUM_B]], %b ] ; CHECK-NEXT: ret i32 %[[PHI]] } define i32 @test_split_crit_edge(i1 %flag, i32 %arg) { ; CHECK-LABEL: define i32 @test_split_crit_edge( entry: br i1 %flag, label %exit, label %a ; CHECK: entry: ; CHECK-NEXT: br i1 %flag, label %[[ENTRY_SPLIT:.*]], label %a ; ; CHECK: [[ENTRY_SPLIT]]: ; CHECK-NEXT: %[[SUM_ENTRY_SPLIT:.*]] = add i32 %arg, 7 ; CHECK-NEXT: br label %exit a: br label %exit ; CHECK: a: ; CHECK-NEXT: %[[SUM_A:.*]] = add i32 %arg, 11 ; CHECK-NEXT: br label %exit exit: %p = phi i32 [ 7, %entry ], [ 11, %a ] %sum = add i32 %arg, %p ret i32 %sum ; CHECK: exit: ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ %[[SUM_ENTRY_SPLIT]], %[[ENTRY_SPLIT]] ], [ %[[SUM_A]], %a ] ; CHECK-NEXT: ret i32 %[[PHI]] } define i32 @test_no_spec_dominating_inst(i1 %flag, i32* %ptr) { ; CHECK-LABEL: define i32 @test_no_spec_dominating_inst( entry: %load = load i32, i32* %ptr br i1 %flag, label %a, label %b ; CHECK: %[[LOAD:.*]] = load i32, i32* %ptr ; CHECK-NEXT: br i1 %flag, label %a, label %b a: br label %exit ; CHECK: a: ; CHECK-NEXT: %[[SUM_A:.*]] = add i32 %[[LOAD]], 7 ; CHECK-NEXT: br label %exit b: br label %exit ; CHECK: b: ; CHECK-NEXT: %[[SUM_B:.*]] = add i32 %[[LOAD]], 11 ; CHECK-NEXT: br label %exit exit: %p = phi i32 [ 7, %a ], [ 11, %b ] %sum = add i32 %load, %p ret i32 %sum ; CHECK: exit: ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ %[[SUM_A]], %a ], [ %[[SUM_B]], %b ] ; CHECK-NEXT: ret i32 %[[PHI]] } ; We have special logic handling PHI nodes, make sure it doesn't get confused ; by a dominating PHI. define i32 @test_no_spec_dominating_phi(i1 %flag1, i1 %flag2, i32 %x, i32 %y) { ; CHECK-LABEL: define i32 @test_no_spec_dominating_phi( entry: br i1 %flag1, label %x.block, label %y.block ; CHECK: entry: ; CHECK-NEXT: br i1 %flag1, label %x.block, label %y.block x.block: br label %merge ; CHECK: x.block: ; CHECK-NEXT: br label %merge y.block: br label %merge ; CHECK: y.block: ; CHECK-NEXT: br label %merge merge: %xy.phi = phi i32 [ %x, %x.block ], [ %y, %y.block ] br i1 %flag2, label %a, label %b ; CHECK: merge: ; CHECK-NEXT: %[[XY_PHI:.*]] = phi i32 [ %x, %x.block ], [ %y, %y.block ] ; CHECK-NEXT: br i1 %flag2, label %a, label %b a: br label %exit ; CHECK: a: ; CHECK-NEXT: %[[SUM_A:.*]] = add i32 %[[XY_PHI]], 7 ; CHECK-NEXT: br label %exit b: br label %exit ; CHECK: b: ; CHECK-NEXT: %[[SUM_B:.*]] = add i32 %[[XY_PHI]], 11 ; CHECK-NEXT: br label %exit exit: %p = phi i32 [ 7, %a ], [ 11, %b ] %sum = add i32 %xy.phi, %p ret i32 %sum ; CHECK: exit: ; CHECK-NEXT: %[[SUM_PHI:.*]] = phi i32 [ %[[SUM_A]], %a ], [ %[[SUM_B]], %b ] ; CHECK-NEXT: ret i32 %[[SUM_PHI]] } ; Ensure that we will speculate some number of "free" instructions on the given ; architecture even though they are unrelated to the PHI itself. define i32 @test_speculate_free_insts(i1 %flag, i64 %arg) { ; CHECK-LABEL: define i32 @test_speculate_free_insts( entry: br i1 %flag, label %a, label %b ; CHECK: br i1 %flag, label %a, label %b a: br label %exit ; CHECK: a: ; CHECK-NEXT: %[[T1_A:.*]] = trunc i64 %arg to i48 ; CHECK-NEXT: %[[T2_A:.*]] = trunc i48 %[[T1_A]] to i32 ; CHECK-NEXT: %[[SUM_A:.*]] = add i32 %[[T2_A]], 7 ; CHECK-NEXT: br label %exit b: br label %exit ; CHECK: b: ; CHECK-NEXT: %[[T1_B:.*]] = trunc i64 %arg to i48 ; CHECK-NEXT: %[[T2_B:.*]] = trunc i48 %[[T1_B]] to i32 ; CHECK-NEXT: %[[SUM_B:.*]] = add i32 %[[T2_B]], 11 ; CHECK-NEXT: br label %exit exit: %p = phi i32 [ 7, %a ], [ 11, %b ] %t1 = trunc i64 %arg to i48 %t2 = trunc i48 %t1 to i32 %sum = add i32 %t2, %p ret i32 %sum ; CHECK: exit: ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ %[[SUM_A]], %a ], [ %[[SUM_B]], %b ] ; CHECK-NEXT: ret i32 %[[PHI]] } define i32 @test_speculate_free_phis(i1 %flag, i32 %arg1, i32 %arg2) { ; CHECK-LABEL: define i32 @test_speculate_free_phis( entry: br i1 %flag, label %a, label %b ; CHECK: br i1 %flag, label %a, label %b a: br label %exit ; CHECK: a: ; CHECK-NEXT: %[[SUM_A:.*]] = add i32 %arg1, 7 ; CHECK-NEXT: br label %exit b: br label %exit ; CHECK: b: ; CHECK-NEXT: %[[SUM_B:.*]] = add i32 %arg2, 11 ; CHECK-NEXT: br label %exit exit: %p1 = phi i32 [ 7, %a ], [ 11, %b ] %p2 = phi i32 [ %arg1, %a ], [ %arg2, %b ] %sum = add i32 %p2, %p1 ret i32 %sum ; CHECK: exit: ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ %[[SUM_A]], %a ], [ %[[SUM_B]], %b ] ; We don't DCE the now unused PHI node... ; CHECK-NEXT: %{{.*}} = phi i32 [ %arg1, %a ], [ %arg2, %b ] ; CHECK-NEXT: ret i32 %[[PHI]] } ; We shouldn't speculate multiple uses even if each individually looks ; profitable because of the total cost. define i32 @test_no_spec_multi_uses(i1 %flag, i32 %arg1, i32 %arg2, i32 %arg3) { ; CHECK-LABEL: define i32 @test_no_spec_multi_uses( entry: br i1 %flag, label %a, label %b ; CHECK: br i1 %flag, label %a, label %b a: br label %exit ; CHECK: a: ; CHECK-NEXT: br label %exit b: br label %exit ; CHECK: b: ; CHECK-NEXT: br label %exit exit: %p = phi i32 [ 7, %a ], [ 11, %b ] %add1 = add i32 %arg1, %p %add2 = add i32 %arg2, %p %add3 = add i32 %arg3, %p %sum1 = add i32 %add1, %add2 %sum2 = add i32 %sum1, %add3 ret i32 %sum2 ; CHECK: exit: ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ 7, %a ], [ 11, %b ] ; CHECK-NEXT: %[[ADD1:.*]] = add i32 %arg1, %[[PHI]] ; CHECK-NEXT: %[[ADD2:.*]] = add i32 %arg2, %[[PHI]] ; CHECK-NEXT: %[[ADD3:.*]] = add i32 %arg3, %[[PHI]] ; CHECK-NEXT: %[[SUM1:.*]] = add i32 %[[ADD1]], %[[ADD2]] ; CHECK-NEXT: %[[SUM2:.*]] = add i32 %[[SUM1]], %[[ADD3]] ; CHECK-NEXT: ret i32 %[[SUM2]] } define i32 @test_multi_phis1(i1 %flag, i32 %arg) { ; CHECK-LABEL: define i32 @test_multi_phis1( entry: br i1 %flag, label %a, label %b ; CHECK: br i1 %flag, label %a, label %b a: br label %exit ; CHECK: a: ; CHECK-NEXT: %[[SUM_A1:.*]] = add i32 %arg, 1 ; CHECK-NEXT: %[[SUM_A2:.*]] = add i32 %[[SUM_A1]], 3 ; CHECK-NEXT: %[[SUM_A3:.*]] = add i32 %[[SUM_A2]], 5 ; CHECK-NEXT: br label %exit b: br label %exit ; CHECK: b: ; CHECK-NEXT: %[[SUM_B1:.*]] = add i32 %arg, 2 ; CHECK-NEXT: %[[SUM_B2:.*]] = add i32 %[[SUM_B1]], 4 ; CHECK-NEXT: %[[SUM_B3:.*]] = add i32 %[[SUM_B2]], 6 ; CHECK-NEXT: br label %exit exit: %p1 = phi i32 [ 1, %a ], [ 2, %b ] %p2 = phi i32 [ 3, %a ], [ 4, %b ] %p3 = phi i32 [ 5, %a ], [ 6, %b ] %sum1 = add i32 %arg, %p1 %sum2 = add i32 %sum1, %p2 %sum3 = add i32 %sum2, %p3 ret i32 %sum3 ; CHECK: exit: ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ %[[SUM_A3]], %a ], [ %[[SUM_B3]], %b ] ; CHECK-NEXT: ret i32 %[[PHI]] } ; Check that the order of the PHIs doesn't impact the behavior. define i32 @test_multi_phis2(i1 %flag, i32 %arg) { ; CHECK-LABEL: define i32 @test_multi_phis2( entry: br i1 %flag, label %a, label %b ; CHECK: br i1 %flag, label %a, label %b a: br label %exit ; CHECK: a: ; CHECK-NEXT: %[[SUM_A1:.*]] = add i32 %arg, 1 ; CHECK-NEXT: %[[SUM_A2:.*]] = add i32 %[[SUM_A1]], 3 ; CHECK-NEXT: %[[SUM_A3:.*]] = add i32 %[[SUM_A2]], 5 ; CHECK-NEXT: br label %exit b: br label %exit ; CHECK: b: ; CHECK-NEXT: %[[SUM_B1:.*]] = add i32 %arg, 2 ; CHECK-NEXT: %[[SUM_B2:.*]] = add i32 %[[SUM_B1]], 4 ; CHECK-NEXT: %[[SUM_B3:.*]] = add i32 %[[SUM_B2]], 6 ; CHECK-NEXT: br label %exit exit: %p3 = phi i32 [ 5, %a ], [ 6, %b ] %p2 = phi i32 [ 3, %a ], [ 4, %b ] %p1 = phi i32 [ 1, %a ], [ 2, %b ] %sum1 = add i32 %arg, %p1 %sum2 = add i32 %sum1, %p2 %sum3 = add i32 %sum2, %p3 ret i32 %sum3 ; CHECK: exit: ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ %[[SUM_A3]], %a ], [ %[[SUM_B3]], %b ] ; CHECK-NEXT: ret i32 %[[PHI]] } define i32 @test_no_spec_indirectbr(i1 %flag, i32 %arg) { ; CHECK-LABEL: define i32 @test_no_spec_indirectbr( entry: br i1 %flag, label %a, label %b ; CHECK: entry: ; CHECK-NEXT: br i1 %flag, label %a, label %b a: indirectbr i8* undef, [label %exit] ; CHECK: a: ; CHECK-NEXT: indirectbr i8* undef, [label %exit] b: indirectbr i8* undef, [label %exit] ; CHECK: b: ; CHECK-NEXT: indirectbr i8* undef, [label %exit] exit: %p = phi i32 [ 7, %a ], [ 11, %b ] %sum = add i32 %arg, %p ret i32 %sum ; CHECK: exit: ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ 7, %a ], [ 11, %b ] ; CHECK-NEXT: %[[SUM:.*]] = add i32 %arg, %[[PHI]] ; CHECK-NEXT: ret i32 %[[SUM]] } declare void @g() declare i32 @__gxx_personality_v0(...) ; FIXME: We should be able to handle this case -- only the exceptional edge is ; impossible to split. define i32 @test_no_spec_invoke_continue(i1 %flag, i32 %arg) personality i8* bitcast (i32 (...)* @__gxx_personality_v0 to i8*) { ; CHECK-LABEL: define i32 @test_no_spec_invoke_continue( entry: br i1 %flag, label %a, label %b ; CHECK: entry: ; CHECK-NEXT: br i1 %flag, label %a, label %b a: invoke void @g() to label %exit unwind label %lpad ; CHECK: a: ; CHECK-NEXT: invoke void @g() ; CHECK-NEXT: to label %exit unwind label %lpad b: invoke void @g() to label %exit unwind label %lpad ; CHECK: b: ; CHECK-NEXT: invoke void @g() ; CHECK-NEXT: to label %exit unwind label %lpad exit: %p = phi i32 [ 7, %a ], [ 11, %b ] %sum = add i32 %arg, %p ret i32 %sum ; CHECK: exit: ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ 7, %a ], [ 11, %b ] ; CHECK-NEXT: %[[SUM:.*]] = add i32 %arg, %[[PHI]] ; CHECK-NEXT: ret i32 %[[SUM]] lpad: %lp = landingpad { i8*, i32 } cleanup resume { i8*, i32 } undef } define i32 @test_no_spec_landingpad(i32 %arg, i32* %ptr) personality i8* bitcast (i32 (...)* @__gxx_personality_v0 to i8*) { ; CHECK-LABEL: define i32 @test_no_spec_landingpad( entry: invoke void @g() to label %invoke.cont unwind label %lpad ; CHECK: entry: ; CHECK-NEXT: invoke void @g() ; CHECK-NEXT: to label %invoke.cont unwind label %lpad invoke.cont: invoke void @g() to label %exit unwind label %lpad ; CHECK: invoke.cont: ; CHECK-NEXT: invoke void @g() ; CHECK-NEXT: to label %exit unwind label %lpad lpad: %p = phi i32 [ 7, %entry ], [ 11, %invoke.cont ] %lp = landingpad { i8*, i32 } cleanup %sum = add i32 %arg, %p store i32 %sum, i32* %ptr resume { i8*, i32 } undef ; CHECK: lpad: ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ 7, %entry ], [ 11, %invoke.cont ] exit: ret i32 0 } declare i32 @__CxxFrameHandler3(...) define i32 @test_no_spec_cleanuppad(i32 %arg, i32* %ptr) personality i32 (...)* @__CxxFrameHandler3 { ; CHECK-LABEL: define i32 @test_no_spec_cleanuppad( entry: invoke void @g() to label %invoke.cont unwind label %lpad ; CHECK: entry: ; CHECK-NEXT: invoke void @g() ; CHECK-NEXT: to label %invoke.cont unwind label %lpad invoke.cont: invoke void @g() to label %exit unwind label %lpad ; CHECK: invoke.cont: ; CHECK-NEXT: invoke void @g() ; CHECK-NEXT: to label %exit unwind label %lpad lpad: %p = phi i32 [ 7, %entry ], [ 11, %invoke.cont ] %cp = cleanuppad within none [] %sum = add i32 %arg, %p store i32 %sum, i32* %ptr cleanupret from %cp unwind to caller ; CHECK: lpad: ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ 7, %entry ], [ 11, %invoke.cont ] exit: ret i32 0 } ; Check that we don't fall over when confronted with seemingly reasonable code ; for us to handle but in an unreachable region and with non-PHI use-def ; cycles. define i32 @test_unreachable_non_phi_cycles(i1 %flag, i32 %arg) { ; CHECK-LABEL: define i32 @test_unreachable_non_phi_cycles( entry: ret i32 42 ; CHECK: entry: ; CHECK-NEXT: ret i32 42 a: br label %exit ; CHECK: a: ; CHECK-NEXT: br label %exit b: br label %exit ; CHECK: b: ; CHECK-NEXT: br label %exit exit: %p = phi i32 [ 7, %a ], [ 11, %b ] %zext = zext i32 %sum to i64 %trunc = trunc i64 %zext to i32 %sum = add i32 %trunc, %p br i1 %flag, label %a, label %b ; CHECK: exit: ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ 7, %a ], [ 11, %b ] ; CHECK-NEXT: %[[ZEXT:.*]] = zext i32 %[[SUM:.*]] to i64 ; CHECK-NEXT: %[[TRUNC:.*]] = trunc i64 %[[ZEXT]] to i32 ; CHECK-NEXT: %[[SUM]] = add i32 %[[TRUNC]], %[[PHI]] ; CHECK-NEXT: br i1 %flag, label %a, label %b } ; Check that we don't speculate in the face of an expensive immediate. There ; are two reasons this should never speculate. First, even a local analysis ; should fail because it makes some paths (%a) potentially more expensive due ; to multiple uses of the immediate. Additionally, when we go to speculate the ; instructions, their cost will also be too high. ; FIXME: The goal is really to test the first property, but there doesn't ; happen to be any way to use free-to-speculate instructions here so that it ; would be the only interesting property. define i64 @test_expensive_imm(i32 %flag, i64 %arg) { ; CHECK-LABEL: define i64 @test_expensive_imm( entry: switch i32 %flag, label %a [ i32 1, label %b i32 2, label %c i32 3, label %d ] ; CHECK: switch i32 %flag, label %a [ ; CHECK-NEXT: i32 1, label %b ; CHECK-NEXT: i32 2, label %c ; CHECK-NEXT: i32 3, label %d ; CHECK-NEXT: ] a: br label %exit ; CHECK: a: ; CHECK-NEXT: br label %exit b: br label %exit ; CHECK: b: ; CHECK-NEXT: br label %exit c: br label %exit ; CHECK: c: ; CHECK-NEXT: br label %exit d: br label %exit ; CHECK: d: ; CHECK-NEXT: br label %exit exit: %p = phi i64 [ 4294967296, %a ], [ 1, %b ], [ 1, %c ], [ 1, %d ] %sum1 = add i64 %arg, %p %sum2 = add i64 %sum1, %p ret i64 %sum2 ; CHECK: exit: ; CHECK-NEXT: %[[PHI:.*]] = phi i64 [ {{[0-9]+}}, %a ], [ 1, %b ], [ 1, %c ], [ 1, %d ] ; CHECK-NEXT: %[[SUM1:.*]] = add i64 %arg, %[[PHI]] ; CHECK-NEXT: %[[SUM2:.*]] = add i64 %[[SUM1]], %[[PHI]] ; CHECK-NEXT: ret i64 %[[SUM2]] } define i32 @test_no_spec_non_postdominating_uses(i1 %flag1, i1 %flag2, i32 %arg) { ; CHECK-LABEL: define i32 @test_no_spec_non_postdominating_uses( entry: br i1 %flag1, label %a, label %b ; CHECK: br i1 %flag1, label %a, label %b a: br label %merge ; CHECK: a: ; CHECK-NEXT: %[[SUM_A:.*]] = add i32 %arg, 7 ; CHECK-NEXT: br label %merge b: br label %merge ; CHECK: b: ; CHECK-NEXT: %[[SUM_B:.*]] = add i32 %arg, 11 ; CHECK-NEXT: br label %merge merge: %p1 = phi i32 [ 7, %a ], [ 11, %b ] %p2 = phi i32 [ 13, %a ], [ 42, %b ] %sum1 = add i32 %arg, %p1 br i1 %flag2, label %exit1, label %exit2 ; CHECK: merge: ; CHECK-NEXT: %[[PHI1:.*]] = phi i32 [ %[[SUM_A]], %a ], [ %[[SUM_B]], %b ] ; CHECK-NEXT: %[[PHI2:.*]] = phi i32 [ 13, %a ], [ 42, %b ] ; CHECK-NEXT: br i1 %flag2, label %exit1, label %exit2 exit1: ret i32 %sum1 ; CHECK: exit1: ; CHECK-NEXT: ret i32 %[[PHI1]] exit2: %sum2 = add i32 %arg, %p2 ret i32 %sum2 ; CHECK: exit2: ; CHECK-NEXT: %[[SUM2:.*]] = add i32 %arg, %[[PHI2]] ; CHECK-NEXT: ret i32 %[[SUM2]] }