#include "llvm/ADT/DenseMap.h" #include "llvm/DebugInfo/DIContext.h" #include "llvm/DebugInfo/DWARF/DWARFContext.h" #include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h" #include "llvm/Object/ObjectFile.h" #define DEBUG_TYPE "dwarfdump" using namespace llvm; using namespace object; /// Holds statistics for one function (or other entity that has a PC range and /// contains variables, such as a compile unit). struct PerFunctionStats { /// Number of inlined instances of this function. unsigned NumFnInlined = 0; /// Number of variables with location across all inlined instances. unsigned TotalVarWithLoc = 0; /// Number of constants with location across all inlined instances. unsigned ConstantMembers = 0; /// List of all Variables in this function. SmallDenseSet VarsInFunction; /// Compile units also cover a PC range, but have this flag set to false. bool IsFunction = false; }; /// Holds accumulated global statistics about local variables. struct GlobalStats { /// Total number of PC range bytes covered by DW_AT_locations. unsigned ScopeBytesCovered = 0; /// Total number of PC range bytes in each variable's enclosing scope, /// starting from the first definition of the variable. unsigned ScopeBytesFromFirstDefinition = 0; }; /// Extract the low pc from a Die. static uint64_t getLowPC(DWARFDie Die) { auto RangesOrError = Die.getAddressRanges(); DWARFAddressRangesVector Ranges; if (RangesOrError) Ranges = RangesOrError.get(); else llvm::consumeError(RangesOrError.takeError()); if (Ranges.size()) return Ranges[0].LowPC; return dwarf::toAddress(Die.find(dwarf::DW_AT_low_pc), 0); } /// Collect debug info quality metrics for one DIE. static void collectStatsForDie(DWARFDie Die, std::string Prefix, uint64_t ScopeLowPC, uint64_t BytesInScope, StringMap &FnStatMap, GlobalStats &GlobalStats) { bool HasLoc = false; uint64_t BytesCovered = 0; uint64_t OffsetToFirstDefinition = 0; if (Die.find(dwarf::DW_AT_const_value)) { // This catches constant members *and* variables. HasLoc = true; BytesCovered = BytesInScope; } else if (Die.getTag() == dwarf::DW_TAG_variable || Die.getTag() == dwarf::DW_TAG_formal_parameter) { // Handle variables and function arguments. auto FormValue = Die.find(dwarf::DW_AT_location); HasLoc = FormValue.hasValue(); if (HasLoc) { // Get PC coverage. if (auto DebugLocOffset = FormValue->getAsSectionOffset()) { auto *DebugLoc = Die.getDwarfUnit()->getContext().getDebugLoc(); if (auto List = DebugLoc->getLocationListAtOffset(*DebugLocOffset)) { for (auto Entry : List->Entries) BytesCovered += Entry.End - Entry.Begin; if (List->Entries.size()) { uint64_t FirstDef = List->Entries[0].Begin; uint64_t UnitOfs = getLowPC(Die.getDwarfUnit()->getUnitDIE()); // Ranges sometimes start before the lexical scope. if (UnitOfs + FirstDef >= ScopeLowPC) OffsetToFirstDefinition = UnitOfs + FirstDef - ScopeLowPC; // Or even after it. Count that as a failure. if (OffsetToFirstDefinition > BytesInScope) OffsetToFirstDefinition = 0; } } assert(BytesInScope); } else { // Assume the entire range is covered by a single location. BytesCovered = BytesInScope; } } } else { // Not a variable or constant member. return; } // Collect PC range coverage data. auto &FnStats = FnStatMap[Prefix]; if (DWARFDie D = Die.getAttributeValueAsReferencedDie(dwarf::DW_AT_abstract_origin)) Die = D; // This is a unique ID for the variable inside the current object file. unsigned CanonicalDieOffset = Die.getOffset(); FnStats.VarsInFunction.insert(CanonicalDieOffset); if (BytesInScope) { FnStats.TotalVarWithLoc += (unsigned)HasLoc; // Adjust for the fact the variables often start their lifetime in the // middle of the scope. BytesInScope -= OffsetToFirstDefinition; // Turns out we have a lot of ranges that extend past the lexical scope. GlobalStats.ScopeBytesCovered += std::min(BytesInScope, BytesCovered); GlobalStats.ScopeBytesFromFirstDefinition += BytesInScope; assert(GlobalStats.ScopeBytesCovered <= GlobalStats.ScopeBytesFromFirstDefinition); } else { FnStats.ConstantMembers++; } } /// Recursively collect debug info quality metrics. static void collectStatsRecursive(DWARFDie Die, std::string Prefix, uint64_t ScopeLowPC, uint64_t BytesInScope, StringMap &FnStatMap, GlobalStats &GlobalStats) { // Handle any kind of lexical scope. if (Die.getTag() == dwarf::DW_TAG_subprogram || Die.getTag() == dwarf::DW_TAG_inlined_subroutine || Die.getTag() == dwarf::DW_TAG_lexical_block) { // Ignore forward declarations. if (Die.find(dwarf::DW_AT_declaration)) return; // Count the function. if (Die.getTag() != dwarf::DW_TAG_lexical_block) { StringRef Name = Die.getName(DINameKind::LinkageName); if (Name.empty()) Name = Die.getName(DINameKind::ShortName); Prefix = Name; // Skip over abstract origins. if (Die.find(dwarf::DW_AT_inline)) return; // We've seen an (inlined) instance of this function. auto &FnStats = FnStatMap[Name]; FnStats.NumFnInlined++; FnStats.IsFunction = true; } // PC Ranges. auto RangesOrError = Die.getAddressRanges(); if (!RangesOrError) { llvm::consumeError(RangesOrError.takeError()); return; } auto Ranges = RangesOrError.get(); uint64_t BytesInThisScope = 0; for (auto Range : Ranges) BytesInThisScope += Range.HighPC - Range.LowPC; ScopeLowPC = getLowPC(Die); if (BytesInThisScope) BytesInScope = BytesInThisScope; } else { // Not a scope, visit the Die itself. It could be a variable. collectStatsForDie(Die, Prefix, ScopeLowPC, BytesInScope, FnStatMap, GlobalStats); } // Traverse children. DWARFDie Child = Die.getFirstChild(); while (Child) { collectStatsRecursive(Child, Prefix, ScopeLowPC, BytesInScope, FnStatMap, GlobalStats); Child = Child.getSibling(); } } /// Print machine-readable output. /// The machine-readable format is single-line JSON output. /// \{ static void printDatum(raw_ostream &OS, const char *Key, StringRef Value) { OS << ",\"" << Key << "\":\"" << Value << '"'; LLVM_DEBUG(llvm::dbgs() << Key << ": " << Value << '\n'); } static void printDatum(raw_ostream &OS, const char *Key, uint64_t Value) { OS << ",\"" << Key << "\":" << Value; LLVM_DEBUG(llvm::dbgs() << Key << ": " << Value << '\n'); } /// \} /// Collect debug info quality metrics for an entire DIContext. /// /// Do the impossible and reduce the quality of the debug info down to a few /// numbers. The idea is to condense the data into numbers that can be tracked /// over time to identify trends in newer compiler versions and gauge the effect /// of particular optimizations. The raw numbers themselves are not particularly /// useful, only the delta between compiling the same program with different /// compilers is. bool collectStatsForObjectFile(ObjectFile &Obj, DWARFContext &DICtx, Twine Filename, raw_ostream &OS) { StringRef FormatName = Obj.getFileFormatName(); GlobalStats GlobalStats; StringMap Statistics; for (const auto &CU : static_cast(&DICtx)->compile_units()) if (DWARFDie CUDie = CU->getUnitDIE(false)) collectStatsRecursive(CUDie, "/", 0, 0, Statistics, GlobalStats); /// The version number should be increased every time the algorithm is changed /// (including bug fixes). New metrics may be added without increasing the /// version. unsigned Version = 1; unsigned VarTotal = 0; unsigned VarUnique = 0; unsigned VarWithLoc = 0; unsigned NumFunctions = 0; unsigned NumInlinedFunctions = 0; for (auto &Entry : Statistics) { PerFunctionStats &Stats = Entry.getValue(); unsigned TotalVars = Stats.VarsInFunction.size() * Stats.NumFnInlined; unsigned Constants = Stats.ConstantMembers; VarWithLoc += Stats.TotalVarWithLoc + Constants; VarTotal += TotalVars + Constants; VarUnique += Stats.VarsInFunction.size(); LLVM_DEBUG(for (auto V : Stats.VarsInFunction) llvm::dbgs() << Entry.getKey() << ": " << V << "\n"); NumFunctions += Stats.IsFunction; NumInlinedFunctions += Stats.IsFunction * Stats.NumFnInlined; } // Print summary. OS.SetBufferSize(1024); OS << "{\"version\":\"" << Version << '"'; LLVM_DEBUG(llvm::dbgs() << "Variable location quality metrics\n"; llvm::dbgs() << "---------------------------------\n"); printDatum(OS, "file", Filename.str()); printDatum(OS, "format", FormatName); printDatum(OS, "source functions", NumFunctions); printDatum(OS, "inlined functions", NumInlinedFunctions); printDatum(OS, "unique source variables", VarUnique); printDatum(OS, "source variables", VarTotal); printDatum(OS, "variables with location", VarWithLoc); printDatum(OS, "scope bytes total", GlobalStats.ScopeBytesFromFirstDefinition); printDatum(OS, "scope bytes covered", GlobalStats.ScopeBytesCovered); OS << "}\n"; LLVM_DEBUG( llvm::dbgs() << "Total Availability: " << (int)std::round((VarWithLoc * 100.0) / VarTotal) << "%\n"; llvm::dbgs() << "PC Ranges covered: " << (int)std::round((GlobalStats.ScopeBytesCovered * 100.0) / GlobalStats.ScopeBytesFromFirstDefinition) << "%\n"); return true; }