// AUTOGENERATED FROM executor/common.h package csource var commonHeader = ` #ifndef _GNU_SOURCE #define _GNU_SOURCE #endif #include #include #include #include #include #if SYZ_TRACE #include #endif #if SYZ_EXECUTOR && !GOOS_linux #include NORETURN void doexit(int status) { _exit(status); for (;;) { } } #endif #if SYZ_EXECUTOR || SYZ_PROCS || SYZ_REPEAT && SYZ_ENABLE_CGROUPS || \ __NR_syz_mount_image || __NR_syz_read_part_table unsigned long long procid; #endif #if !GOOS_fuchsia && !GOOS_windows #if SYZ_EXECUTOR || SYZ_HANDLE_SEGV #include #include #include #if GOOS_linux #include #endif static __thread int skip_segv; static __thread jmp_buf segv_env; #if GOOS_akaros #include static void recover() { _longjmp(segv_env, 1); } #endif static void segv_handler(int sig, siginfo_t* info, void* ctx) { uintptr_t addr = (uintptr_t)info->si_addr; const uintptr_t prog_start = 1 << 20; const uintptr_t prog_end = 100 << 20; if (__atomic_load_n(&skip_segv, __ATOMIC_RELAXED) && (addr < prog_start || addr > prog_end)) { debug("SIGSEGV on %p, skipping\n", (void*)addr); #if GOOS_akaros struct user_context* uctx = (struct user_context*)ctx; uctx->tf.hw_tf.tf_rip = (long)(void*)recover; return; #else _longjmp(segv_env, 1); #endif } debug("SIGSEGV on %p, exiting\n", (void*)addr); doexit(sig); } static void install_segv_handler() { struct sigaction sa; #if GOOS_linux memset(&sa, 0, sizeof(sa)); sa.sa_handler = SIG_IGN; syscall(SYS_rt_sigaction, 0x20, &sa, NULL, 8); syscall(SYS_rt_sigaction, 0x21, &sa, NULL, 8); #endif memset(&sa, 0, sizeof(sa)); sa.sa_sigaction = segv_handler; sa.sa_flags = SA_NODEFER | SA_SIGINFO; sigaction(SIGSEGV, &sa, NULL); sigaction(SIGBUS, &sa, NULL); } #define NONFAILING(...) \ { \ __atomic_fetch_add(&skip_segv, 1, __ATOMIC_SEQ_CST); \ if (_setjmp(segv_env) == 0) { \ __VA_ARGS__; \ } \ __atomic_fetch_sub(&skip_segv, 1, __ATOMIC_SEQ_CST); \ } #endif #endif #if !GOOS_linux #if (SYZ_EXECUTOR || SYZ_REPEAT) && SYZ_EXECUTOR_USES_FORK_SERVER #include #include #include static void kill_and_wait(int pid, int* status) { kill(pid, SIGKILL); while (waitpid(-1, status, 0) != pid) { } } #endif #endif #if !GOOS_windows #if SYZ_EXECUTOR || SYZ_THREADED || SYZ_REPEAT && SYZ_EXECUTOR_USES_FORK_SERVER static void sleep_ms(uint64 ms) { usleep(ms * 1000); } #endif #if SYZ_EXECUTOR || SYZ_THREADED || SYZ_REPEAT && SYZ_EXECUTOR_USES_FORK_SERVER #include static uint64 current_time_ms() { struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts)) fail("clock_gettime failed"); return (uint64)ts.tv_sec * 1000 + (uint64)ts.tv_nsec / 1000000; } #endif #if SYZ_EXECUTOR || SYZ_USE_TMP_DIR #include #include #include static void use_temporary_dir() { char tmpdir_template[] = "./syzkaller.XXXXXX"; char* tmpdir = mkdtemp(tmpdir_template); if (!tmpdir) fail("failed to mkdtemp"); if (chmod(tmpdir, 0777)) fail("failed to chmod"); if (chdir(tmpdir)) fail("failed to chdir"); } #endif #endif #if GOOS_akaros || GOOS_netbsd || GOOS_freebsd || GOOS_test #if SYZ_EXECUTOR || SYZ_EXECUTOR_USES_FORK_SERVER && SYZ_REPEAT && SYZ_USE_TMP_DIR #include #include #include #include #include static void remove_dir(const char* dir) { DIR* dp; struct dirent* ep; dp = opendir(dir); if (dp == NULL) exitf("opendir(%s) failed", dir); while ((ep = readdir(dp))) { if (strcmp(ep->d_name, ".") == 0 || strcmp(ep->d_name, "..") == 0) continue; char filename[FILENAME_MAX]; snprintf(filename, sizeof(filename), "%s/%s", dir, ep->d_name); struct stat st; if (lstat(filename, &st)) exitf("lstat(%s) failed", filename); if (S_ISDIR(st.st_mode)) { remove_dir(filename); continue; } if (unlink(filename)) exitf("unlink(%s) failed", filename); } closedir(dp); if (rmdir(dir)) exitf("rmdir(%s) failed", dir); } #endif #endif #if !GOOS_linux #if SYZ_EXECUTOR || SYZ_FAULT_INJECTION static int inject_fault(int nth) { return 0; } #endif #if SYZ_EXECUTOR static int fault_injected(int fail_fd) { return 0; } #endif #endif #if !GOOS_windows #if SYZ_EXECUTOR || SYZ_THREADED #include static void thread_start(void* (*fn)(void*), void* arg) { pthread_t th; pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, 128 << 10); if (pthread_create(&th, &attr, fn, arg)) exitf("pthread_create failed"); pthread_attr_destroy(&attr); } #endif #endif #if GOOS_freebsd || GOOS_netbsd || GOOS_akaros || GOOS_test #if SYZ_EXECUTOR || SYZ_THREADED #include #include typedef struct { pthread_mutex_t mu; pthread_cond_t cv; int state; } event_t; static void event_init(event_t* ev) { if (pthread_mutex_init(&ev->mu, 0)) fail("pthread_mutex_init failed"); if (pthread_cond_init(&ev->cv, 0)) fail("pthread_cond_init failed"); ev->state = 0; } static void event_reset(event_t* ev) { ev->state = 0; } static void event_set(event_t* ev) { pthread_mutex_lock(&ev->mu); if (ev->state) fail("event already set"); ev->state = 1; pthread_mutex_unlock(&ev->mu); pthread_cond_broadcast(&ev->cv); } static void event_wait(event_t* ev) { pthread_mutex_lock(&ev->mu); while (!ev->state) pthread_cond_wait(&ev->cv, &ev->mu); pthread_mutex_unlock(&ev->mu); } static int event_isset(event_t* ev) { pthread_mutex_lock(&ev->mu); int res = ev->state; pthread_mutex_unlock(&ev->mu); return res; } static int event_timedwait(event_t* ev, uint64 timeout) { uint64 start = current_time_ms(); uint64 now = start; pthread_mutex_lock(&ev->mu); for (;;) { if (ev->state) break; uint64 remain = timeout - (now - start); struct timespec ts; ts.tv_sec = remain / 1000; ts.tv_nsec = (remain % 1000) * 1000 * 1000; pthread_cond_timedwait(&ev->cv, &ev->mu, &ts); now = current_time_ms(); if (now - start > timeout) break; } int res = ev->state; pthread_mutex_unlock(&ev->mu); return res; } #endif #endif #if SYZ_EXECUTOR || SYZ_USE_BITMASKS #define BITMASK_LEN(type, bf_len) (type)((1ull << (bf_len)) - 1) #define BITMASK_LEN_OFF(type, bf_off, bf_len) (type)(BITMASK_LEN(type, (bf_len)) << (bf_off)) #define STORE_BY_BITMASK(type, addr, val, bf_off, bf_len) \ if ((bf_off) == 0 && (bf_len) == 0) { \ *(type*)(addr) = (type)(val); \ } else { \ type new_val = *(type*)(addr); \ new_val &= ~BITMASK_LEN_OFF(type, (bf_off), (bf_len)); \ new_val |= ((type)(val)&BITMASK_LEN(type, (bf_len))) << (bf_off); \ *(type*)(addr) = new_val; \ } #endif #if SYZ_EXECUTOR || SYZ_USE_CHECKSUMS struct csum_inet { uint32 acc; }; static void csum_inet_init(struct csum_inet* csum) { csum->acc = 0; } static void csum_inet_update(struct csum_inet* csum, const uint8* data, size_t length) { if (length == 0) return; size_t i; for (i = 0; i < length - 1; i += 2) csum->acc += *(uint16*)&data[i]; if (length & 1) csum->acc += (uint16)data[length - 1]; while (csum->acc > 0xffff) csum->acc = (csum->acc & 0xffff) + (csum->acc >> 16); } static uint16 csum_inet_digest(struct csum_inet* csum) { return ~csum->acc; } #endif #if GOOS_akaros #include #include #include #if SYZ_EXECUTOR || SYZ_SANDBOX_NONE static void loop(); static int do_sandbox_none(void) { loop(); doexit(0); } #endif #if SYZ_EXECUTOR || SYZ_REPEAT static void execute_one(); const char* program_name; void child() { #if SYZ_EXECUTOR || SYZ_HANDLE_SEGV install_segv_handler(); #endif #if SYZ_EXECUTOR receive_execute(); close(kInPipeFd); #endif execute_one(); doexit(0); } #endif #if SYZ_EXECUTOR #define do_sandbox_setuid() 0 #define do_sandbox_namespace() 0 #endif #elif GOOS_freebsd || GOOS_netbsd #include #if SYZ_EXECUTOR || SYZ_SANDBOX_NONE static void loop(); static int do_sandbox_none(void) { loop(); return 0; } #endif #if SYZ_EXECUTOR #define do_sandbox_setuid() 0 #define do_sandbox_namespace() 0 #endif #elif GOOS_fuchsia #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if SYZ_EXECUTOR || SYZ_HANDLE_SEGV #include #include #include #include #include #include static __thread int skip_segv; static __thread jmp_buf segv_env; static void segv_handler() { if (__atomic_load_n(&skip_segv, __ATOMIC_RELAXED)) { debug("recover: skipping\n"); longjmp(segv_env, 1); } debug("recover: exiting\n"); doexit(SIGSEGV); } static void* ex_handler(void* arg) { zx_handle_t port = (zx_handle_t)(long)arg; for (int i = 0; i < 10000; i++) { zx_port_packet_t packet = {}; zx_status_t status = zx_port_wait(port, ZX_TIME_INFINITE, &packet); if (status != ZX_OK) { debug("zx_port_wait failed: %d\n", status); continue; } debug("got exception packet: type=%d status=%d tid=%llu\n", packet.type, packet.status, (unsigned long long)(packet.exception.tid)); zx_handle_t thread; status = zx_object_get_child(zx_process_self(), packet.exception.tid, ZX_RIGHT_SAME_RIGHTS, &thread); if (status != ZX_OK) { debug("zx_object_get_child failed: %d\n", status); continue; } zx_thread_state_general_regs_t regs; status = zx_thread_read_state(thread, ZX_THREAD_STATE_GENERAL_REGS, ®s, sizeof(regs)); if (status != ZX_OK) { debug("zx_thread_read_state failed: %d (%d)\n", (int)sizeof(regs), status); } else { #if GOARCH_amd64 regs.rip = (uint64)(void*)&segv_handler; #elif GOARCH_arm64 regs.pc = (uint64)(void*)&segv_handler; #else #error "unsupported arch" #endif status = zx_thread_write_state(thread, ZX_THREAD_STATE_GENERAL_REGS, ®s, sizeof(regs)); if (status != ZX_OK) { debug("zx_thread_write_state failed: %d\n", status); } } status = zx_task_resume(thread, ZX_RESUME_EXCEPTION); if (status != ZX_OK) { debug("zx_task_resume failed: %d\n", status); } zx_handle_close(thread); } doexit(1); return 0; } static void install_segv_handler() { zx_status_t status; zx_handle_t port; if ((status = zx_port_create(0, &port)) != ZX_OK) fail("zx_port_create failed: %d", status); if ((status = zx_task_bind_exception_port(zx_process_self(), port, 0, 0)) != ZX_OK) fail("zx_task_bind_exception_port failed: %d", status); pthread_t th; if (pthread_create(&th, 0, ex_handler, (void*)(long)port)) fail("pthread_create failed"); } #define NONFAILING(...) \ { \ __atomic_fetch_add(&skip_segv, 1, __ATOMIC_SEQ_CST); \ if (sigsetjmp(segv_env, 0) == 0) { \ __VA_ARGS__; \ } \ __atomic_fetch_sub(&skip_segv, 1, __ATOMIC_SEQ_CST); \ } #endif #if SYZ_EXECUTOR || SYZ_THREADED #include typedef struct { int state; } event_t; static void event_init(event_t* ev) { ev->state = 0; } static void event_reset(event_t* ev) { ev->state = 0; } static void event_set(event_t* ev) { if (ev->state) fail("event already set"); __atomic_store_n(&ev->state, 1, __ATOMIC_RELEASE); } static void event_wait(event_t* ev) { while (!__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE)) usleep(200); } static int event_isset(event_t* ev) { return __atomic_load_n(&ev->state, __ATOMIC_ACQUIRE); } static int event_timedwait(event_t* ev, uint64 timeout_ms) { uint64 start = current_time_ms(); for (;;) { if (__atomic_load_n(&ev->state, __ATOMIC_RELAXED)) return 1; if (current_time_ms() - start > timeout_ms) return 0; usleep(200); } } #endif #if SYZ_EXECUTOR || __NR_syz_mmap long syz_mmap(size_t addr, size_t size) { zx_handle_t root = zx_vmar_root_self(); zx_info_vmar_t info; zx_status_t status = zx_object_get_info(root, ZX_INFO_VMAR, &info, sizeof(info), 0, 0); if (status != ZX_OK) fail("zx_object_get_info(ZX_INFO_VMAR) failed: %d", status); zx_handle_t vmo; status = zx_vmo_create(size, 0, &vmo); if (status != ZX_OK) return status; uintptr_t mapped_addr; status = zx_vmar_map(root, addr - info.base, vmo, 0, size, ZX_VM_FLAG_SPECIFIC_OVERWRITE | ZX_VM_FLAG_PERM_READ | ZX_VM_FLAG_PERM_WRITE | ZX_VM_FLAG_PERM_EXECUTE, &mapped_addr); return status; } #endif #if SYZ_EXECUTOR || __NR_syz_process_self static long syz_process_self() { return zx_process_self(); } #endif #if SYZ_EXECUTOR || __NR_syz_thread_self static long syz_thread_self() { return zx_thread_self(); } #endif #if SYZ_EXECUTOR || __NR_syz_vmar_root_self static long syz_vmar_root_self() { return zx_vmar_root_self(); } #endif #if SYZ_EXECUTOR || __NR_syz_job_default static long syz_job_default() { return zx_job_default(); } #endif #if SYZ_EXECUTOR || __NR_syz_future_time static long syz_future_time(long when) { zx_time_t delta_ms; switch (when) { case 0: delta_ms = 5; case 1: delta_ms = 30; default: delta_ms = 10000; } zx_time_t now = zx_clock_get(ZX_CLOCK_MONOTONIC); return now + delta_ms * 1000 * 1000; } #endif #if SYZ_EXECUTOR || SYZ_SANDBOX_NONE static void loop(); static int do_sandbox_none(void) { loop(); return 0; } #endif #if SYZ_EXECUTOR #define do_sandbox_setuid() 0 #define do_sandbox_namespace() 0 #endif #elif GOOS_linux #include #include #include #include #if SYZ_EXECUTOR struct cover_t; static void cover_reset(cover_t* cov); #endif #if SYZ_EXECUTOR || SYZ_THREADED #include #include typedef struct { int state; } event_t; static void event_init(event_t* ev) { ev->state = 0; } static void event_reset(event_t* ev) { ev->state = 0; } static void event_set(event_t* ev) { if (ev->state) fail("event already set"); __atomic_store_n(&ev->state, 1, __ATOMIC_RELEASE); syscall(SYS_futex, &ev->state, FUTEX_WAKE); } static void event_wait(event_t* ev) { while (!__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE)) syscall(SYS_futex, &ev->state, FUTEX_WAIT, 0, 0); } static int event_isset(event_t* ev) { return __atomic_load_n(&ev->state, __ATOMIC_ACQUIRE); } static int event_timedwait(event_t* ev, uint64 timeout) { uint64 start = current_time_ms(); uint64 now = start; for (;;) { uint64 remain = timeout - (now - start); struct timespec ts; ts.tv_sec = remain / 1000; ts.tv_nsec = (remain % 1000) * 1000 * 1000; syscall(SYS_futex, &ev->state, FUTEX_WAIT, 0, &ts); if (__atomic_load_n(&ev->state, __ATOMIC_RELAXED)) return 1; now = current_time_ms(); if (now - start > timeout) return 0; } } #endif #if SYZ_EXECUTOR || SYZ_TUN_ENABLE || SYZ_ENABLE_NETDEV #include #include #include static void vsnprintf_check(char* str, size_t size, const char* format, va_list args) { int rv; rv = vsnprintf(str, size, format, args); if (rv < 0) fail("tun: snprintf failed"); if ((size_t)rv >= size) fail("tun: string '%s...' doesn't fit into buffer", str); } #define COMMAND_MAX_LEN 128 #define PATH_PREFIX "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin " #define PATH_PREFIX_LEN (sizeof(PATH_PREFIX) - 1) static void execute_command(bool panic, const char* format, ...) { va_list args; char command[PATH_PREFIX_LEN + COMMAND_MAX_LEN]; int rv; va_start(args, format); memcpy(command, PATH_PREFIX, PATH_PREFIX_LEN); vsnprintf_check(command + PATH_PREFIX_LEN, COMMAND_MAX_LEN, format, args); va_end(args); rv = system(command); if (rv) { if (panic) fail("command '%s' failed: %d", &command[0], rv); debug("command '%s': %d\n", &command[0], rv); } } #endif #if SYZ_EXECUTOR || SYZ_TUN_ENABLE #include #include #include #include #include #include #include #include #include #include #include #include #include static int tunfd = -1; static int tun_frags_enabled; #define SYZ_TUN_MAX_PACKET_SIZE 1000 #define TUN_IFACE "syz_tun" #define LOCAL_MAC "aa:aa:aa:aa:aa:aa" #define REMOTE_MAC "aa:aa:aa:aa:aa:bb" #define LOCAL_IPV4 "172.20.20.170" #define REMOTE_IPV4 "172.20.20.187" #define LOCAL_IPV6 "fe80::aa" #define REMOTE_IPV6 "fe80::bb" #ifndef IFF_NAPI #define IFF_NAPI 0x0010 #endif #ifndef IFF_NAPI_FRAGS #define IFF_NAPI_FRAGS 0x0020 #endif static void initialize_tun(void) { #if SYZ_EXECUTOR if (!flag_enable_tun) return; #endif tunfd = open("/dev/net/tun", O_RDWR | O_NONBLOCK); if (tunfd == -1) { #if SYZ_EXECUTOR fail("tun: can't open /dev/net/tun\n"); #else printf("tun: can't open /dev/net/tun: please enable CONFIG_TUN=y\n"); printf("otherwise fuzzing or reproducing might not work as intended\n"); return; #endif } const int kTunFd = 240; if (dup2(tunfd, kTunFd) < 0) fail("dup2(tunfd, kTunFd) failed"); close(tunfd); tunfd = kTunFd; struct ifreq ifr; memset(&ifr, 0, sizeof(ifr)); strncpy(ifr.ifr_name, TUN_IFACE, IFNAMSIZ); ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_NAPI | IFF_NAPI_FRAGS; if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0) { ifr.ifr_flags = IFF_TAP | IFF_NO_PI; if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0) fail("tun: ioctl(TUNSETIFF) failed"); } if (ioctl(tunfd, TUNGETIFF, (void*)&ifr) < 0) fail("tun: ioctl(TUNGETIFF) failed"); tun_frags_enabled = (ifr.ifr_flags & IFF_NAPI_FRAGS) != 0; debug("tun_frags_enabled=%d\n", tun_frags_enabled); execute_command(0, "sysctl -w net.ipv6.conf.%s.accept_dad=0", TUN_IFACE); execute_command(0, "sysctl -w net.ipv6.conf.%s.router_solicitations=0", TUN_IFACE); execute_command(1, "ip link set dev %s address %s", TUN_IFACE, LOCAL_MAC); execute_command(1, "ip addr add %s/24 dev %s", LOCAL_IPV4, TUN_IFACE); execute_command(1, "ip neigh add %s lladdr %s dev %s nud permanent", REMOTE_IPV4, REMOTE_MAC, TUN_IFACE); execute_command(0, "ip -6 addr add %s/120 dev %s", LOCAL_IPV6, TUN_IFACE); execute_command(0, "ip -6 neigh add %s lladdr %s dev %s nud permanent", REMOTE_IPV6, REMOTE_MAC, TUN_IFACE); execute_command(1, "ip link set dev %s up", TUN_IFACE); } #endif #if SYZ_EXECUTOR || SYZ_ENABLE_NETDEV #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DEV_IPV4 "172.20.20.%d" #define DEV_IPV6 "fe80::%02hx" #define DEV_MAC "aa:aa:aa:aa:aa:%02hx" static void snprintf_check(char* str, size_t size, const char* format, ...) { va_list args; va_start(args, format); vsnprintf_check(str, size, format, args); va_end(args); } static void initialize_netdevices(void) { #if SYZ_EXECUTOR if (!flag_enable_net_dev) return; #endif unsigned i; const char* devtypes[] = {"ip6gretap", "bridge", "vcan", "bond", "team"}; const char* devnames[] = {"lo", "sit0", "bridge0", "vcan0", "tunl0", "gre0", "gretap0", "ip_vti0", "ip6_vti0", "ip6tnl0", "ip6gre0", "ip6gretap0", "erspan0", "bond0", "veth0", "veth1", "team0", "veth0_to_bridge", "veth1_to_bridge", "veth0_to_bond", "veth1_to_bond", "veth0_to_team", "veth1_to_team"}; const char* devmasters[] = {"bridge", "bond", "team"}; for (i = 0; i < sizeof(devtypes) / (sizeof(devtypes[0])); i++) execute_command(0, "ip link add dev %s0 type %s", devtypes[i], devtypes[i]); execute_command(0, "ip link add type veth"); for (i = 0; i < sizeof(devmasters) / (sizeof(devmasters[0])); i++) { execute_command(0, "ip link add name %s_slave_0 type veth peer name veth0_to_%s", devmasters[i], devmasters[i]); execute_command(0, "ip link add name %s_slave_1 type veth peer name veth1_to_%s", devmasters[i], devmasters[i]); execute_command(0, "ip link set %s_slave_0 master %s0", devmasters[i], devmasters[i]); execute_command(0, "ip link set %s_slave_1 master %s0", devmasters[i], devmasters[i]); execute_command(0, "ip link set veth0_to_%s up", devmasters[i]); execute_command(0, "ip link set veth1_to_%s up", devmasters[i]); } execute_command(0, "ip link set bridge_slave_0 up"); execute_command(0, "ip link set bridge_slave_1 up"); for (i = 0; i < sizeof(devnames) / (sizeof(devnames[0])); i++) { char addr[32]; snprintf_check(addr, sizeof(addr), DEV_IPV4, i + 10); execute_command(0, "ip -4 addr add %s/24 dev %s", addr, devnames[i]); snprintf_check(addr, sizeof(addr), DEV_IPV6, i + 10); execute_command(0, "ip -6 addr add %s/120 dev %s", addr, devnames[i]); snprintf_check(addr, sizeof(addr), DEV_MAC, i + 10); execute_command(0, "ip link set dev %s address %s", devnames[i], addr); execute_command(0, "ip link set dev %s up", devnames[i]); } } #endif #if SYZ_EXECUTOR || SYZ_TUN_ENABLE && (__NR_syz_extract_tcp_res || SYZ_REPEAT) #include static int read_tun(char* data, int size) { if (tunfd < 0) return -1; int rv = read(tunfd, data, size); if (rv < 0) { if (errno == EAGAIN) return -1; if (errno == EBADFD) return -1; fail("tun: read failed with %d", rv); } return rv; } #endif #if SYZ_EXECUTOR || __NR_syz_emit_ethernet && SYZ_TUN_ENABLE #include #include #define MAX_FRAGS 4 struct vnet_fragmentation { uint32 full; uint32 count; uint32 frags[MAX_FRAGS]; }; static long syz_emit_ethernet(long a0, long a1, long a2) { if (tunfd < 0) return (uintptr_t)-1; uint32 length = a0; char* data = (char*)a1; debug_dump_data(data, length); struct vnet_fragmentation* frags = (struct vnet_fragmentation*)a2; struct iovec vecs[MAX_FRAGS + 1]; uint32 nfrags = 0; if (!tun_frags_enabled || frags == NULL) { vecs[nfrags].iov_base = data; vecs[nfrags].iov_len = length; nfrags++; } else { bool full = true; uint32 i, count = 0; NONFAILING(full = frags->full); NONFAILING(count = frags->count); if (count > MAX_FRAGS) count = MAX_FRAGS; for (i = 0; i < count && length != 0; i++) { uint32 size = 0; NONFAILING(size = frags->frags[i]); if (size > length) size = length; vecs[nfrags].iov_base = data; vecs[nfrags].iov_len = size; nfrags++; data += size; length -= size; } if (length != 0 && (full || nfrags == 0)) { vecs[nfrags].iov_base = data; vecs[nfrags].iov_len = length; nfrags++; } } return writev(tunfd, vecs, nfrags); } #endif #if SYZ_EXECUTOR || SYZ_REPEAT && SYZ_TUN_ENABLE static void flush_tun() { #if SYZ_EXECUTOR if (!flag_enable_tun) return; #endif char data[SYZ_TUN_MAX_PACKET_SIZE]; while (read_tun(&data[0], sizeof(data)) != -1) { } } #endif #if SYZ_EXECUTOR || __NR_syz_extract_tcp_res && SYZ_TUN_ENABLE #ifndef __ANDROID__ struct ipv6hdr { __u8 priority : 4, version : 4; __u8 flow_lbl[3]; __be16 payload_len; __u8 nexthdr; __u8 hop_limit; struct in6_addr saddr; struct in6_addr daddr; }; #endif struct tcp_resources { uint32 seq; uint32 ack; }; static long syz_extract_tcp_res(long a0, long a1, long a2) { if (tunfd < 0) return (uintptr_t)-1; char data[SYZ_TUN_MAX_PACKET_SIZE]; int rv = read_tun(&data[0], sizeof(data)); if (rv == -1) return (uintptr_t)-1; size_t length = rv; debug_dump_data(data, length); struct tcphdr* tcphdr; if (length < sizeof(struct ethhdr)) return (uintptr_t)-1; struct ethhdr* ethhdr = (struct ethhdr*)&data[0]; if (ethhdr->h_proto == htons(ETH_P_IP)) { if (length < sizeof(struct ethhdr) + sizeof(struct iphdr)) return (uintptr_t)-1; struct iphdr* iphdr = (struct iphdr*)&data[sizeof(struct ethhdr)]; if (iphdr->protocol != IPPROTO_TCP) return (uintptr_t)-1; if (length < sizeof(struct ethhdr) + iphdr->ihl * 4 + sizeof(struct tcphdr)) return (uintptr_t)-1; tcphdr = (struct tcphdr*)&data[sizeof(struct ethhdr) + iphdr->ihl * 4]; } else { if (length < sizeof(struct ethhdr) + sizeof(struct ipv6hdr)) return (uintptr_t)-1; struct ipv6hdr* ipv6hdr = (struct ipv6hdr*)&data[sizeof(struct ethhdr)]; if (ipv6hdr->nexthdr != IPPROTO_TCP) return (uintptr_t)-1; if (length < sizeof(struct ethhdr) + sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) return (uintptr_t)-1; tcphdr = (struct tcphdr*)&data[sizeof(struct ethhdr) + sizeof(struct ipv6hdr)]; } struct tcp_resources* res = (struct tcp_resources*)a0; NONFAILING(res->seq = htonl((ntohl(tcphdr->seq) + (uint32)a1))); NONFAILING(res->ack = htonl((ntohl(tcphdr->ack_seq) + (uint32)a2))); debug("extracted seq: %08x\n", res->seq); debug("extracted ack: %08x\n", res->ack); return 0; } #endif #if SYZ_EXECUTOR || __NR_syz_open_dev #include #include #include #include static long syz_open_dev(long a0, long a1, long a2) { if (a0 == 0xc || a0 == 0xb) { char buf[128]; sprintf(buf, "/dev/%s/%d:%d", a0 == 0xc ? "char" : "block", (uint8)a1, (uint8)a2); return open(buf, O_RDWR, 0); } else { char buf[1024]; char* hash; NONFAILING(strncpy(buf, (char*)a0, sizeof(buf) - 1)); buf[sizeof(buf) - 1] = 0; while ((hash = strchr(buf, '#'))) { *hash = '0' + (char)(a1 % 10); a1 /= 10; } return open(buf, a2, 0); } } #endif #if SYZ_EXECUTOR || __NR_syz_open_procfs #include #include #include #include static long syz_open_procfs(long a0, long a1) { char buf[128]; memset(buf, 0, sizeof(buf)); if (a0 == 0) { NONFAILING(snprintf(buf, sizeof(buf), "/proc/self/%s", (char*)a1)); } else if (a0 == -1) { NONFAILING(snprintf(buf, sizeof(buf), "/proc/thread-self/%s", (char*)a1)); } else { NONFAILING(snprintf(buf, sizeof(buf), "/proc/self/task/%d/%s", (int)a0, (char*)a1)); } int fd = open(buf, O_RDWR); if (fd == -1) fd = open(buf, O_RDONLY); return fd; } #endif #if SYZ_EXECUTOR || __NR_syz_open_pts #include #include #include #include static long syz_open_pts(long a0, long a1) { int ptyno = 0; if (ioctl(a0, TIOCGPTN, &ptyno)) return -1; char buf[128]; sprintf(buf, "/dev/pts/%d", ptyno); return open(buf, a1, 0); } #endif #if SYZ_EXECUTOR || __NR_syz_init_net_socket #if SYZ_EXECUTOR || SYZ_SANDBOX_NONE || SYZ_SANDBOX_SETUID || SYZ_SANDBOX_NAMESPACE #include #include #include #include #include const int kInitNetNsFd = 239; static long syz_init_net_socket(long domain, long type, long proto) { int netns = open("/proc/self/ns/net", O_RDONLY); if (netns == -1) return netns; if (setns(kInitNetNsFd, 0)) return -1; int sock = syscall(__NR_socket, domain, type, proto); int err = errno; if (setns(netns, 0)) fail("setns(netns) failed"); close(netns); errno = err; return sock; } #else static long syz_init_net_socket(long domain, long type, long proto) { return syscall(__NR_socket, domain, type, proto); } #endif #endif #if SYZ_EXECUTOR || __NR_syz_genetlink_get_family_id #include #include #include #include #include static long syz_genetlink_get_family_id(long name) { char buf[512] = {0}; struct nlmsghdr* hdr = (struct nlmsghdr*)buf; struct genlmsghdr* genlhdr = (struct genlmsghdr*)NLMSG_DATA(hdr); struct nlattr* attr = (struct nlattr*)(genlhdr + 1); hdr->nlmsg_len = sizeof(*hdr) + sizeof(*genlhdr) + sizeof(*attr) + GENL_NAMSIZ; hdr->nlmsg_type = GENL_ID_CTRL; hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK; genlhdr->cmd = CTRL_CMD_GETFAMILY; attr->nla_type = CTRL_ATTR_FAMILY_NAME; attr->nla_len = sizeof(*attr) + GENL_NAMSIZ; NONFAILING(strncpy((char*)(attr + 1), (char*)name, GENL_NAMSIZ)); struct iovec iov = {hdr, hdr->nlmsg_len}; struct sockaddr_nl addr = {0}; addr.nl_family = AF_NETLINK; debug("syz_genetlink_get_family_id(%s)\n", (char*)(attr + 1)); int fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC); if (fd == -1) { debug("syz_genetlink_get_family_id: socket failed: %d\n", errno); return -1; } struct msghdr msg = {&addr, sizeof(addr), &iov, 1, NULL, 0, 0}; if (sendmsg(fd, &msg, 0) == -1) { debug("syz_genetlink_get_family_id: sendmsg failed: %d\n", errno); close(fd); return -1; } ssize_t n = recv(fd, buf, sizeof(buf), 0); close(fd); if (n <= 0) { debug("syz_genetlink_get_family_id: recv failed: %d\n", errno); return -1; } if (hdr->nlmsg_type != GENL_ID_CTRL) { debug("syz_genetlink_get_family_id: wrong reply type: %d\n", hdr->nlmsg_type); return -1; } for (; (char*)attr < buf + n; attr = (struct nlattr*)((char*)attr + NLMSG_ALIGN(attr->nla_len))) { if (attr->nla_type == CTRL_ATTR_FAMILY_ID) return *(uint16*)(attr + 1); } debug("syz_genetlink_get_family_id: no CTRL_ATTR_FAMILY_ID attr\n"); return -1; } #endif #if SYZ_EXECUTOR || __NR_syz_mount_image || __NR_syz_read_part_table #include #include #include #include #include #include struct fs_image_segment { void* data; uintptr_t size; uintptr_t offset; }; #define IMAGE_MAX_SEGMENTS 4096 #define IMAGE_MAX_SIZE (129 << 20) #if GOARCH_386 #define SYZ_memfd_create 356 #elif GOARCH_amd64 #define SYZ_memfd_create 319 #elif GOARCH_arm #define SYZ_memfd_create 385 #elif GOARCH_arm64 #define SYZ_memfd_create 279 #elif GOARCH_ppc64le #define SYZ_memfd_create 360 #endif #endif #if SYZ_EXECUTOR || __NR_syz_read_part_table static long syz_read_part_table(unsigned long size, unsigned long nsegs, long segments) { char loopname[64], linkname[64]; int loopfd, err = 0, res = -1; unsigned long i, j; struct fs_image_segment* segs = (struct fs_image_segment*)segments; if (nsegs > IMAGE_MAX_SEGMENTS) nsegs = IMAGE_MAX_SEGMENTS; for (i = 0; i < nsegs; i++) { if (segs[i].size > IMAGE_MAX_SIZE) segs[i].size = IMAGE_MAX_SIZE; segs[i].offset %= IMAGE_MAX_SIZE; if (segs[i].offset > IMAGE_MAX_SIZE - segs[i].size) segs[i].offset = IMAGE_MAX_SIZE - segs[i].size; if (size < segs[i].offset + segs[i].offset) size = segs[i].offset + segs[i].offset; } if (size > IMAGE_MAX_SIZE) size = IMAGE_MAX_SIZE; int memfd = syscall(SYZ_memfd_create, "syz_read_part_table", 0); if (memfd == -1) { err = errno; goto error; } if (ftruncate(memfd, size)) { err = errno; goto error_close_memfd; } for (i = 0; i < nsegs; i++) { if (pwrite(memfd, segs[i].data, segs[i].size, segs[i].offset) < 0) { debug("syz_read_part_table: pwrite[%u] failed: %d\n", (int)i, errno); } } snprintf(loopname, sizeof(loopname), "/dev/loop%llu", procid); loopfd = open(loopname, O_RDWR); if (loopfd == -1) { err = errno; goto error_close_memfd; } if (ioctl(loopfd, LOOP_SET_FD, memfd)) { if (errno != EBUSY) { err = errno; goto error_close_loop; } ioctl(loopfd, LOOP_CLR_FD, 0); usleep(1000); if (ioctl(loopfd, LOOP_SET_FD, memfd)) { err = errno; goto error_close_loop; } } struct loop_info64 info; if (ioctl(loopfd, LOOP_GET_STATUS64, &info)) { err = errno; goto error_clear_loop; } #if SYZ_EXECUTOR cover_reset(0); #endif info.lo_flags |= LO_FLAGS_PARTSCAN; if (ioctl(loopfd, LOOP_SET_STATUS64, &info)) { err = errno; goto error_clear_loop; } res = 0; for (i = 1, j = 0; i < 8; i++) { snprintf(loopname, sizeof(loopname), "/dev/loop%llup%d", procid, (int)i); struct stat statbuf; if (stat(loopname, &statbuf) == 0) { snprintf(linkname, sizeof(linkname), "./file%d", (int)j++); if (symlink(loopname, linkname)) { debug("syz_read_part_table: symlink(%s, %s) failed: %d\n", loopname, linkname, errno); } } } error_clear_loop: ioctl(loopfd, LOOP_CLR_FD, 0); error_close_loop: close(loopfd); error_close_memfd: close(memfd); error: errno = err; return res; } #endif #if SYZ_EXECUTOR || __NR_syz_mount_image #include #include static long syz_mount_image(long fsarg, long dir, unsigned long size, unsigned long nsegs, long segments, long flags, long optsarg) { char loopname[64], fs[32], opts[256]; int loopfd, err = 0, res = -1; unsigned long i; struct fs_image_segment* segs = (struct fs_image_segment*)segments; if (nsegs > IMAGE_MAX_SEGMENTS) nsegs = IMAGE_MAX_SEGMENTS; for (i = 0; i < nsegs; i++) { if (segs[i].size > IMAGE_MAX_SIZE) segs[i].size = IMAGE_MAX_SIZE; segs[i].offset %= IMAGE_MAX_SIZE; if (segs[i].offset > IMAGE_MAX_SIZE - segs[i].size) segs[i].offset = IMAGE_MAX_SIZE - segs[i].size; if (size < segs[i].offset + segs[i].offset) size = segs[i].offset + segs[i].offset; } if (size > IMAGE_MAX_SIZE) size = IMAGE_MAX_SIZE; int memfd = syscall(SYZ_memfd_create, "syz_mount_image", 0); if (memfd == -1) { err = errno; goto error; } if (ftruncate(memfd, size)) { err = errno; goto error_close_memfd; } for (i = 0; i < nsegs; i++) { if (pwrite(memfd, segs[i].data, segs[i].size, segs[i].offset) < 0) { debug("syz_mount_image: pwrite[%u] failed: %d\n", (int)i, errno); } } snprintf(loopname, sizeof(loopname), "/dev/loop%llu", procid); loopfd = open(loopname, O_RDWR); if (loopfd == -1) { err = errno; goto error_close_memfd; } if (ioctl(loopfd, LOOP_SET_FD, memfd)) { if (errno != EBUSY) { err = errno; goto error_close_loop; } ioctl(loopfd, LOOP_CLR_FD, 0); usleep(1000); if (ioctl(loopfd, LOOP_SET_FD, memfd)) { err = errno; goto error_close_loop; } } mkdir((char*)dir, 0777); memset(fs, 0, sizeof(fs)); NONFAILING(strncpy(fs, (char*)fsarg, sizeof(fs) - 1)); memset(opts, 0, sizeof(opts)); NONFAILING(strncpy(opts, (char*)optsarg, sizeof(opts) - 32)); if (strcmp(fs, "iso9660") == 0) { flags |= MS_RDONLY; } else if (strncmp(fs, "ext", 3) == 0) { if (strstr(opts, "errors=panic") || strstr(opts, "errors=remount-ro") == 0) strcat(opts, ",errors=continue"); } else if (strcmp(fs, "xfs") == 0) { strcat(opts, ",nouuid"); } debug("syz_mount_image: size=%llu segs=%llu loop='%s' dir='%s' fs='%s' flags=%llu opts='%s'\n", (uint64)size, (uint64)nsegs, loopname, (char*)dir, fs, (uint64)flags, opts); #if SYZ_EXECUTOR cover_reset(0); #endif if (mount(loopname, (char*)dir, fs, flags, opts)) { err = errno; goto error_clear_loop; } res = 0; error_clear_loop: ioctl(loopfd, LOOP_CLR_FD, 0); error_close_loop: close(loopfd); error_close_memfd: close(memfd); error: errno = err; return res; } #endif #if SYZ_EXECUTOR || __NR_syz_kvm_setup_cpu #include #include #include #include #include #include #include #if defined(__x86_64__) const char kvm_asm16_cpl3[] = "\x0f\x20\xc0\x66\x83\xc8\x01\x0f\x22\xc0\xb8\xa0\x00\x0f\x00\xd8\xb8\x2b\x00\x8e\xd8\x8e\xc0\x8e\xe0\x8e\xe8\xbc\x00\x01\xc7\x06\x00\x01\x1d\xba\xc7\x06\x02\x01\x23\x00\xc7\x06\x04\x01\x00\x01\xc7\x06\x06\x01\x2b\x00\xcb"; const char kvm_asm32_paged[] = "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0"; const char kvm_asm32_vm86[] = "\x66\xb8\xb8\x00\x0f\x00\xd8\xea\x00\x00\x00\x00\xd0\x00"; const char kvm_asm32_paged_vm86[] = "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0\x66\xb8\xb8\x00\x0f\x00\xd8\xea\x00\x00\x00\x00\xd0\x00"; const char kvm_asm64_vm86[] = "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0\x66\xb8\xb8\x00\x0f\x00\xd8\xea\x00\x00\x00\x00\xd0\x00"; const char kvm_asm64_enable_long[] = "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0\xea\xde\xc0\xad\x0b\x50\x00\x48\xc7\xc0\xd8\x00\x00\x00\x0f\x00\xd8"; const char kvm_asm64_init_vm[] = "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0\xea\xde\xc0\xad\x0b\x50\x00\x48\xc7\xc0\xd8\x00\x00\x00\x0f\x00\xd8\x48\xc7\xc1\x3a\x00\x00\x00\x0f\x32\x48\x83\xc8\x05\x0f\x30\x0f\x20\xe0\x48\x0d\x00\x20\x00\x00\x0f\x22\xe0\x48\xc7\xc1\x80\x04\x00\x00\x0f\x32\x48\xc7\xc2\x00\x60\x00\x00\x89\x02\x48\xc7\xc2\x00\x70\x00\x00\x89\x02\x48\xc7\xc0\x00\x5f\x00\x00\xf3\x0f\xc7\x30\x48\xc7\xc0\x08\x5f\x00\x00\x66\x0f\xc7\x30\x0f\xc7\x30\x48\xc7\xc1\x81\x04\x00\x00\x0f\x32\x48\x83\xc8\x3f\x48\x21\xd0\x48\xc7\xc2\x00\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x02\x40\x00\x00\x48\xb8\x84\x9e\x99\xf3\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1e\x40\x00\x00\x48\xc7\xc0\x81\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc1\x83\x04\x00\x00\x0f\x32\x48\x0d\xff\x6f\x03\x00\x48\x21\xd0\x48\xc7\xc2\x0c\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc1\x84\x04\x00\x00\x0f\x32\x48\x0d\xff\x17\x00\x00\x48\x21\xd0\x48\xc7\xc2\x12\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x04\x2c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x28\x00\x00\x48\xc7\xc0\xff\xff\xff\xff\x0f\x79\xd0\x48\xc7\xc2\x02\x0c\x00\x00\x48\xc7\xc0\x50\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc0\x58\x00\x00\x00\x48\xc7\xc2\x00\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x04\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x06\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x08\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc0\xd8\x00\x00\x00\x48\xc7\xc2\x0c\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x02\x2c\x00\x00\x48\xc7\xc0\x00\x05\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x4c\x00\x00\x48\xc7\xc0\x50\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x10\x6c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x12\x6c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x0f\x20\xc0\x48\xc7\xc2\x00\x6c\x00\x00\x48\x89\xc0\x0f\x79\xd0\x0f\x20\xd8\x48\xc7\xc2\x02\x6c\x00\x00\x48\x89\xc0\x0f\x79\xd0\x0f\x20\xe0\x48\xc7\xc2\x04\x6c\x00\x00\x48\x89\xc0\x0f\x79\xd0\x48\xc7\xc2\x06\x6c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x08\x6c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x6c\x00\x00\x48\xc7\xc0\x00\x3a\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0c\x6c\x00\x00\x48\xc7\xc0\x00\x10\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0e\x6c\x00\x00\x48\xc7\xc0\x00\x38\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x14\x6c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x16\x6c\x00\x00\x48\x8b\x04\x25\x10\x5f\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x00\x00\x00\x48\xc7\xc0\x01\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x02\x00\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x02\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x04\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x06\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc1\x77\x02\x00\x00\x0f\x32\x48\xc1\xe2\x20\x48\x09\xd0\x48\xc7\xc2\x00\x2c\x00\x00\x48\x89\xc0\x0f\x79\xd0\x48\xc7\xc2\x04\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0e\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x10\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x16\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x14\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x60\x00\x00\x48\xc7\xc0\xff\xff\xff\xff\x0f\x79\xd0\x48\xc7\xc2\x02\x60\x00\x00\x48\xc7\xc0\xff\xff\xff\xff\x0f\x79\xd0\x48\xc7\xc2\x1c\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1e\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x20\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x22\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x08\x00\x00\x48\xc7\xc0\x58\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x02\x08\x00\x00\x48\xc7\xc0\x50\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x04\x08\x00\x00\x48\xc7\xc0\x58\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x06\x08\x00\x00\x48\xc7\xc0\x58\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x08\x08\x00\x00\x48\xc7\xc0\x58\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x08\x00\x00\x48\xc7\xc0\x58\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0c\x08\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0e\x08\x00\x00\x48\xc7\xc0\xd8\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x12\x68\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x14\x68\x00\x00\x48\xc7\xc0\x00\x3a\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x16\x68\x00\x00\x48\xc7\xc0\x00\x10\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x18\x68\x00\x00\x48\xc7\xc0\x00\x38\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x02\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x04\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x06\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x08\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x0c\x48\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0e\x48\x00\x00\x48\xc7\xc0\xff\x1f\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x10\x48\x00\x00\x48\xc7\xc0\xff\x1f\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x12\x48\x00\x00\x48\xc7\xc0\xff\x1f\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x14\x48\x00\x00\x48\xc7\xc0\x93\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x16\x48\x00\x00\x48\xc7\xc0\x9b\x20\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x18\x48\x00\x00\x48\xc7\xc0\x93\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1a\x48\x00\x00\x48\xc7\xc0\x93\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1c\x48\x00\x00\x48\xc7\xc0\x93\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1e\x48\x00\x00\x48\xc7\xc0\x93\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x20\x48\x00\x00\x48\xc7\xc0\x82\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x22\x48\x00\x00\x48\xc7\xc0\x8b\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1c\x68\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1e\x68\x00\x00\x48\xc7\xc0\x00\x91\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x20\x68\x00\x00\x48\xc7\xc0\x02\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x06\x28\x00\x00\x48\xc7\xc0\x00\x05\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x28\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0c\x28\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0e\x28\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x10\x28\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x0f\x20\xc0\x48\xc7\xc2\x00\x68\x00\x00\x48\x89\xc0\x0f\x79\xd0\x0f\x20\xd8\x48\xc7\xc2\x02\x68\x00\x00\x48\x89\xc0\x0f\x79\xd0\x0f\x20\xe0\x48\xc7\xc2\x04\x68\x00\x00\x48\x89\xc0\x0f\x79\xd0\x48\xc7\xc0\x18\x5f\x00\x00\x48\x8b\x10\x48\xc7\xc0\x20\x5f\x00\x00\x48\x8b\x08\x48\x31\xc0\x0f\x78\xd0\x48\x31\xc8\x0f\x79\xd0\x0f\x01\xc2\x48\xc7\xc2\x00\x44\x00\x00\x0f\x78\xd0\xf4"; const char kvm_asm64_vm_exit[] = "\x48\xc7\xc3\x00\x44\x00\x00\x0f\x78\xda\x48\xc7\xc3\x02\x44\x00\x00\x0f\x78\xd9\x48\xc7\xc0\x00\x64\x00\x00\x0f\x78\xc0\x48\xc7\xc3\x1e\x68\x00\x00\x0f\x78\xdb\xf4"; const char kvm_asm64_cpl3[] = "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0\xea\xde\xc0\xad\x0b\x50\x00\x48\xc7\xc0\xd8\x00\x00\x00\x0f\x00\xd8\x48\xc7\xc0\x6b\x00\x00\x00\x8e\xd8\x8e\xc0\x8e\xe0\x8e\xe8\x48\xc7\xc4\x80\x0f\x00\x00\x48\xc7\x04\x24\x1d\xba\x00\x00\x48\xc7\x44\x24\x04\x63\x00\x00\x00\x48\xc7\x44\x24\x08\x80\x0f\x00\x00\x48\xc7\x44\x24\x0c\x6b\x00\x00\x00\xcb"; #define ADDR_TEXT 0x0000 #define ADDR_GDT 0x1000 #define ADDR_LDT 0x1800 #define ADDR_PML4 0x2000 #define ADDR_PDP 0x3000 #define ADDR_PD 0x4000 #define ADDR_STACK0 0x0f80 #define ADDR_VAR_HLT 0x2800 #define ADDR_VAR_SYSRET 0x2808 #define ADDR_VAR_SYSEXIT 0x2810 #define ADDR_VAR_IDT 0x3800 #define ADDR_VAR_TSS64 0x3a00 #define ADDR_VAR_TSS64_CPL3 0x3c00 #define ADDR_VAR_TSS16 0x3d00 #define ADDR_VAR_TSS16_2 0x3e00 #define ADDR_VAR_TSS16_CPL3 0x3f00 #define ADDR_VAR_TSS32 0x4800 #define ADDR_VAR_TSS32_2 0x4a00 #define ADDR_VAR_TSS32_CPL3 0x4c00 #define ADDR_VAR_TSS32_VM86 0x4e00 #define ADDR_VAR_VMXON_PTR 0x5f00 #define ADDR_VAR_VMCS_PTR 0x5f08 #define ADDR_VAR_VMEXIT_PTR 0x5f10 #define ADDR_VAR_VMWRITE_FLD 0x5f18 #define ADDR_VAR_VMWRITE_VAL 0x5f20 #define ADDR_VAR_VMXON 0x6000 #define ADDR_VAR_VMCS 0x7000 #define ADDR_VAR_VMEXIT_CODE 0x9000 #define ADDR_VAR_USER_CODE 0x9100 #define ADDR_VAR_USER_CODE2 0x9120 #define SEL_LDT (1 << 3) #define SEL_CS16 (2 << 3) #define SEL_DS16 (3 << 3) #define SEL_CS16_CPL3 ((4 << 3) + 3) #define SEL_DS16_CPL3 ((5 << 3) + 3) #define SEL_CS32 (6 << 3) #define SEL_DS32 (7 << 3) #define SEL_CS32_CPL3 ((8 << 3) + 3) #define SEL_DS32_CPL3 ((9 << 3) + 3) #define SEL_CS64 (10 << 3) #define SEL_DS64 (11 << 3) #define SEL_CS64_CPL3 ((12 << 3) + 3) #define SEL_DS64_CPL3 ((13 << 3) + 3) #define SEL_CGATE16 (14 << 3) #define SEL_TGATE16 (15 << 3) #define SEL_CGATE32 (16 << 3) #define SEL_TGATE32 (17 << 3) #define SEL_CGATE64 (18 << 3) #define SEL_CGATE64_HI (19 << 3) #define SEL_TSS16 (20 << 3) #define SEL_TSS16_2 (21 << 3) #define SEL_TSS16_CPL3 ((22 << 3) + 3) #define SEL_TSS32 (23 << 3) #define SEL_TSS32_2 (24 << 3) #define SEL_TSS32_CPL3 ((25 << 3) + 3) #define SEL_TSS32_VM86 (26 << 3) #define SEL_TSS64 (27 << 3) #define SEL_TSS64_HI (28 << 3) #define SEL_TSS64_CPL3 ((29 << 3) + 3) #define SEL_TSS64_CPL3_HI (30 << 3) #define MSR_IA32_FEATURE_CONTROL 0x3a #define MSR_IA32_VMX_BASIC 0x480 #define MSR_IA32_SMBASE 0x9e #define MSR_IA32_SYSENTER_CS 0x174 #define MSR_IA32_SYSENTER_ESP 0x175 #define MSR_IA32_SYSENTER_EIP 0x176 #define MSR_IA32_STAR 0xC0000081 #define MSR_IA32_LSTAR 0xC0000082 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x48B #define NEXT_INSN $0xbadc0de #define PREFIX_SIZE 0xba1d #ifndef KVM_SMI #define KVM_SMI _IO(KVMIO, 0xb7) #endif #define CR0_PE 1 #define CR0_MP (1 << 1) #define CR0_EM (1 << 2) #define CR0_TS (1 << 3) #define CR0_ET (1 << 4) #define CR0_NE (1 << 5) #define CR0_WP (1 << 16) #define CR0_AM (1 << 18) #define CR0_NW (1 << 29) #define CR0_CD (1 << 30) #define CR0_PG (1 << 31) #define CR4_VME 1 #define CR4_PVI (1 << 1) #define CR4_TSD (1 << 2) #define CR4_DE (1 << 3) #define CR4_PSE (1 << 4) #define CR4_PAE (1 << 5) #define CR4_MCE (1 << 6) #define CR4_PGE (1 << 7) #define CR4_PCE (1 << 8) #define CR4_OSFXSR (1 << 8) #define CR4_OSXMMEXCPT (1 << 10) #define CR4_UMIP (1 << 11) #define CR4_VMXE (1 << 13) #define CR4_SMXE (1 << 14) #define CR4_FSGSBASE (1 << 16) #define CR4_PCIDE (1 << 17) #define CR4_OSXSAVE (1 << 18) #define CR4_SMEP (1 << 20) #define CR4_SMAP (1 << 21) #define CR4_PKE (1 << 22) #define EFER_SCE 1 #define EFER_LME (1 << 8) #define EFER_LMA (1 << 10) #define EFER_NXE (1 << 11) #define EFER_SVME (1 << 12) #define EFER_LMSLE (1 << 13) #define EFER_FFXSR (1 << 14) #define EFER_TCE (1 << 15) #define PDE32_PRESENT 1 #define PDE32_RW (1 << 1) #define PDE32_USER (1 << 2) #define PDE32_PS (1 << 7) #define PDE64_PRESENT 1 #define PDE64_RW (1 << 1) #define PDE64_USER (1 << 2) #define PDE64_ACCESSED (1 << 5) #define PDE64_DIRTY (1 << 6) #define PDE64_PS (1 << 7) #define PDE64_G (1 << 8) struct tss16 { uint16 prev; uint16 sp0; uint16 ss0; uint16 sp1; uint16 ss1; uint16 sp2; uint16 ss2; uint16 ip; uint16 flags; uint16 ax; uint16 cx; uint16 dx; uint16 bx; uint16 sp; uint16 bp; uint16 si; uint16 di; uint16 es; uint16 cs; uint16 ss; uint16 ds; uint16 ldt; } __attribute__((packed)); struct tss32 { uint16 prev, prevh; uint32 sp0; uint16 ss0, ss0h; uint32 sp1; uint16 ss1, ss1h; uint32 sp2; uint16 ss2, ss2h; uint32 cr3; uint32 ip; uint32 flags; uint32 ax; uint32 cx; uint32 dx; uint32 bx; uint32 sp; uint32 bp; uint32 si; uint32 di; uint16 es, esh; uint16 cs, csh; uint16 ss, ssh; uint16 ds, dsh; uint16 fs, fsh; uint16 gs, gsh; uint16 ldt, ldth; uint16 trace; uint16 io_bitmap; } __attribute__((packed)); struct tss64 { uint32 reserved0; uint64 rsp[3]; uint64 reserved1; uint64 ist[7]; uint64 reserved2; uint32 reserved3; uint32 io_bitmap; } __attribute__((packed)); static void fill_segment_descriptor(uint64* dt, uint64* lt, struct kvm_segment* seg) { uint16 index = seg->selector >> 3; uint64 limit = seg->g ? seg->limit >> 12 : seg->limit; uint64 sd = (limit & 0xffff) | (seg->base & 0xffffff) << 16 | (uint64)seg->type << 40 | (uint64)seg->s << 44 | (uint64)seg->dpl << 45 | (uint64)seg->present << 47 | (limit & 0xf0000ULL) << 48 | (uint64)seg->avl << 52 | (uint64)seg->l << 53 | (uint64)seg->db << 54 | (uint64)seg->g << 55 | (seg->base & 0xff000000ULL) << 56; NONFAILING(dt[index] = sd); NONFAILING(lt[index] = sd); } static void fill_segment_descriptor_dword(uint64* dt, uint64* lt, struct kvm_segment* seg) { fill_segment_descriptor(dt, lt, seg); uint16 index = seg->selector >> 3; NONFAILING(dt[index + 1] = 0); NONFAILING(lt[index + 1] = 0); } static void setup_syscall_msrs(int cpufd, uint16 sel_cs, uint16 sel_cs_cpl3) { char buf[sizeof(struct kvm_msrs) + 5 * sizeof(struct kvm_msr_entry)]; memset(buf, 0, sizeof(buf)); struct kvm_msrs* msrs = (struct kvm_msrs*)buf; struct kvm_msr_entry* entries = msrs->entries; msrs->nmsrs = 5; entries[0].index = MSR_IA32_SYSENTER_CS; entries[0].data = sel_cs; entries[1].index = MSR_IA32_SYSENTER_ESP; entries[1].data = ADDR_STACK0; entries[2].index = MSR_IA32_SYSENTER_EIP; entries[2].data = ADDR_VAR_SYSEXIT; entries[3].index = MSR_IA32_STAR; entries[3].data = ((uint64)sel_cs << 32) | ((uint64)sel_cs_cpl3 << 48); entries[4].index = MSR_IA32_LSTAR; entries[4].data = ADDR_VAR_SYSRET; ioctl(cpufd, KVM_SET_MSRS, msrs); } static void setup_32bit_idt(struct kvm_sregs* sregs, char* host_mem, uintptr_t guest_mem) { sregs->idt.base = guest_mem + ADDR_VAR_IDT; sregs->idt.limit = 0x1ff; uint64* idt = (uint64*)(host_mem + sregs->idt.base); int i; for (i = 0; i < 32; i++) { struct kvm_segment gate; gate.selector = i << 3; switch (i % 6) { case 0: gate.type = 6; gate.base = SEL_CS16; break; case 1: gate.type = 7; gate.base = SEL_CS16; break; case 2: gate.type = 3; gate.base = SEL_TGATE16; break; case 3: gate.type = 14; gate.base = SEL_CS32; break; case 4: gate.type = 15; gate.base = SEL_CS32; break; case 6: gate.type = 11; gate.base = SEL_TGATE32; break; } gate.limit = guest_mem + ADDR_VAR_USER_CODE2; gate.present = 1; gate.dpl = 0; gate.s = 0; gate.g = 0; gate.db = 0; gate.l = 0; gate.avl = 0; fill_segment_descriptor(idt, idt, &gate); } } static void setup_64bit_idt(struct kvm_sregs* sregs, char* host_mem, uintptr_t guest_mem) { sregs->idt.base = guest_mem + ADDR_VAR_IDT; sregs->idt.limit = 0x1ff; uint64* idt = (uint64*)(host_mem + sregs->idt.base); int i; for (i = 0; i < 32; i++) { struct kvm_segment gate; gate.selector = (i * 2) << 3; gate.type = (i & 1) ? 14 : 15; gate.base = SEL_CS64; gate.limit = guest_mem + ADDR_VAR_USER_CODE2; gate.present = 1; gate.dpl = 0; gate.s = 0; gate.g = 0; gate.db = 0; gate.l = 0; gate.avl = 0; fill_segment_descriptor_dword(idt, idt, &gate); } } struct kvm_text { uintptr_t typ; const void* text; uintptr_t size; }; struct kvm_opt { uint64 typ; uint64 val; }; #define KVM_SETUP_PAGING (1 << 0) #define KVM_SETUP_PAE (1 << 1) #define KVM_SETUP_PROTECTED (1 << 2) #define KVM_SETUP_CPL3 (1 << 3) #define KVM_SETUP_VIRT86 (1 << 4) #define KVM_SETUP_SMM (1 << 5) #define KVM_SETUP_VM (1 << 6) static uintptr_t syz_kvm_setup_cpu(uintptr_t a0, uintptr_t a1, uintptr_t a2, uintptr_t a3, uintptr_t a4, uintptr_t a5, uintptr_t a6, uintptr_t a7) { const int vmfd = a0; const int cpufd = a1; char* const host_mem = (char*)a2; const struct kvm_text* const text_array_ptr = (struct kvm_text*)a3; const uintptr_t text_count = a4; const uintptr_t flags = a5; const struct kvm_opt* const opt_array_ptr = (struct kvm_opt*)a6; uintptr_t opt_count = a7; const uintptr_t page_size = 4 << 10; const uintptr_t ioapic_page = 10; const uintptr_t guest_mem_size = 24 * page_size; const uintptr_t guest_mem = 0; (void)text_count; int text_type = 0; const void* text = 0; uintptr_t text_size = 0; NONFAILING(text_type = text_array_ptr[0].typ); NONFAILING(text = text_array_ptr[0].text); NONFAILING(text_size = text_array_ptr[0].size); uintptr_t i; for (i = 0; i < guest_mem_size / page_size; i++) { struct kvm_userspace_memory_region memreg; memreg.slot = i; memreg.flags = 0; memreg.guest_phys_addr = guest_mem + i * page_size; if (i == ioapic_page) memreg.guest_phys_addr = 0xfec00000; memreg.memory_size = page_size; memreg.userspace_addr = (uintptr_t)host_mem + i * page_size; ioctl(vmfd, KVM_SET_USER_MEMORY_REGION, &memreg); } struct kvm_userspace_memory_region memreg; memreg.slot = 1 + (1 << 16); memreg.flags = 0; memreg.guest_phys_addr = 0x30000; memreg.memory_size = 64 << 10; memreg.userspace_addr = (uintptr_t)host_mem; ioctl(vmfd, KVM_SET_USER_MEMORY_REGION, &memreg); struct kvm_sregs sregs; if (ioctl(cpufd, KVM_GET_SREGS, &sregs)) return -1; struct kvm_regs regs; memset(®s, 0, sizeof(regs)); regs.rip = guest_mem + ADDR_TEXT; regs.rsp = ADDR_STACK0; sregs.gdt.base = guest_mem + ADDR_GDT; sregs.gdt.limit = 256 * sizeof(uint64) - 1; uint64* gdt = (uint64*)(host_mem + sregs.gdt.base); struct kvm_segment seg_ldt; seg_ldt.selector = SEL_LDT; seg_ldt.type = 2; seg_ldt.base = guest_mem + ADDR_LDT; seg_ldt.limit = 256 * sizeof(uint64) - 1; seg_ldt.present = 1; seg_ldt.dpl = 0; seg_ldt.s = 0; seg_ldt.g = 0; seg_ldt.db = 1; seg_ldt.l = 0; sregs.ldt = seg_ldt; uint64* ldt = (uint64*)(host_mem + sregs.ldt.base); struct kvm_segment seg_cs16; seg_cs16.selector = SEL_CS16; seg_cs16.type = 11; seg_cs16.base = 0; seg_cs16.limit = 0xfffff; seg_cs16.present = 1; seg_cs16.dpl = 0; seg_cs16.s = 1; seg_cs16.g = 0; seg_cs16.db = 0; seg_cs16.l = 0; struct kvm_segment seg_ds16 = seg_cs16; seg_ds16.selector = SEL_DS16; seg_ds16.type = 3; struct kvm_segment seg_cs16_cpl3 = seg_cs16; seg_cs16_cpl3.selector = SEL_CS16_CPL3; seg_cs16_cpl3.dpl = 3; struct kvm_segment seg_ds16_cpl3 = seg_ds16; seg_ds16_cpl3.selector = SEL_DS16_CPL3; seg_ds16_cpl3.dpl = 3; struct kvm_segment seg_cs32 = seg_cs16; seg_cs32.selector = SEL_CS32; seg_cs32.db = 1; struct kvm_segment seg_ds32 = seg_ds16; seg_ds32.selector = SEL_DS32; seg_ds32.db = 1; struct kvm_segment seg_cs32_cpl3 = seg_cs32; seg_cs32_cpl3.selector = SEL_CS32_CPL3; seg_cs32_cpl3.dpl = 3; struct kvm_segment seg_ds32_cpl3 = seg_ds32; seg_ds32_cpl3.selector = SEL_DS32_CPL3; seg_ds32_cpl3.dpl = 3; struct kvm_segment seg_cs64 = seg_cs16; seg_cs64.selector = SEL_CS64; seg_cs64.l = 1; struct kvm_segment seg_ds64 = seg_ds32; seg_ds64.selector = SEL_DS64; struct kvm_segment seg_cs64_cpl3 = seg_cs64; seg_cs64_cpl3.selector = SEL_CS64_CPL3; seg_cs64_cpl3.dpl = 3; struct kvm_segment seg_ds64_cpl3 = seg_ds64; seg_ds64_cpl3.selector = SEL_DS64_CPL3; seg_ds64_cpl3.dpl = 3; struct kvm_segment seg_tss32; seg_tss32.selector = SEL_TSS32; seg_tss32.type = 9; seg_tss32.base = ADDR_VAR_TSS32; seg_tss32.limit = 0x1ff; seg_tss32.present = 1; seg_tss32.dpl = 0; seg_tss32.s = 0; seg_tss32.g = 0; seg_tss32.db = 0; seg_tss32.l = 0; struct kvm_segment seg_tss32_2 = seg_tss32; seg_tss32_2.selector = SEL_TSS32_2; seg_tss32_2.base = ADDR_VAR_TSS32_2; struct kvm_segment seg_tss32_cpl3 = seg_tss32; seg_tss32_cpl3.selector = SEL_TSS32_CPL3; seg_tss32_cpl3.base = ADDR_VAR_TSS32_CPL3; struct kvm_segment seg_tss32_vm86 = seg_tss32; seg_tss32_vm86.selector = SEL_TSS32_VM86; seg_tss32_vm86.base = ADDR_VAR_TSS32_VM86; struct kvm_segment seg_tss16 = seg_tss32; seg_tss16.selector = SEL_TSS16; seg_tss16.base = ADDR_VAR_TSS16; seg_tss16.limit = 0xff; seg_tss16.type = 1; struct kvm_segment seg_tss16_2 = seg_tss16; seg_tss16_2.selector = SEL_TSS16_2; seg_tss16_2.base = ADDR_VAR_TSS16_2; seg_tss16_2.dpl = 0; struct kvm_segment seg_tss16_cpl3 = seg_tss16; seg_tss16_cpl3.selector = SEL_TSS16_CPL3; seg_tss16_cpl3.base = ADDR_VAR_TSS16_CPL3; seg_tss16_cpl3.dpl = 3; struct kvm_segment seg_tss64 = seg_tss32; seg_tss64.selector = SEL_TSS64; seg_tss64.base = ADDR_VAR_TSS64; seg_tss64.limit = 0x1ff; struct kvm_segment seg_tss64_cpl3 = seg_tss64; seg_tss64_cpl3.selector = SEL_TSS64_CPL3; seg_tss64_cpl3.base = ADDR_VAR_TSS64_CPL3; seg_tss64_cpl3.dpl = 3; struct kvm_segment seg_cgate16; seg_cgate16.selector = SEL_CGATE16; seg_cgate16.type = 4; seg_cgate16.base = SEL_CS16 | (2 << 16); seg_cgate16.limit = ADDR_VAR_USER_CODE2; seg_cgate16.present = 1; seg_cgate16.dpl = 0; seg_cgate16.s = 0; seg_cgate16.g = 0; seg_cgate16.db = 0; seg_cgate16.l = 0; seg_cgate16.avl = 0; struct kvm_segment seg_tgate16 = seg_cgate16; seg_tgate16.selector = SEL_TGATE16; seg_tgate16.type = 3; seg_cgate16.base = SEL_TSS16_2; seg_tgate16.limit = 0; struct kvm_segment seg_cgate32 = seg_cgate16; seg_cgate32.selector = SEL_CGATE32; seg_cgate32.type = 12; seg_cgate32.base = SEL_CS32 | (2 << 16); struct kvm_segment seg_tgate32 = seg_cgate32; seg_tgate32.selector = SEL_TGATE32; seg_tgate32.type = 11; seg_tgate32.base = SEL_TSS32_2; seg_tgate32.limit = 0; struct kvm_segment seg_cgate64 = seg_cgate16; seg_cgate64.selector = SEL_CGATE64; seg_cgate64.type = 12; seg_cgate64.base = SEL_CS64; int kvmfd = open("/dev/kvm", O_RDWR); char buf[sizeof(struct kvm_cpuid2) + 128 * sizeof(struct kvm_cpuid_entry2)]; memset(buf, 0, sizeof(buf)); struct kvm_cpuid2* cpuid = (struct kvm_cpuid2*)buf; cpuid->nent = 128; ioctl(kvmfd, KVM_GET_SUPPORTED_CPUID, cpuid); ioctl(cpufd, KVM_SET_CPUID2, cpuid); close(kvmfd); const char* text_prefix = 0; int text_prefix_size = 0; char* host_text = host_mem + ADDR_TEXT; if (text_type == 8) { if (flags & KVM_SETUP_SMM) { if (flags & KVM_SETUP_PROTECTED) { sregs.cs = seg_cs16; sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds16; sregs.cr0 |= CR0_PE; } else { sregs.cs.selector = 0; sregs.cs.base = 0; } NONFAILING(*(host_mem + ADDR_TEXT) = 0xf4); host_text = host_mem + 0x8000; ioctl(cpufd, KVM_SMI, 0); } else if (flags & KVM_SETUP_VIRT86) { sregs.cs = seg_cs32; sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32; sregs.cr0 |= CR0_PE; sregs.efer |= EFER_SCE; setup_syscall_msrs(cpufd, SEL_CS32, SEL_CS32_CPL3); setup_32bit_idt(&sregs, host_mem, guest_mem); if (flags & KVM_SETUP_PAGING) { uint64 pd_addr = guest_mem + ADDR_PD; uint64* pd = (uint64*)(host_mem + ADDR_PD); NONFAILING(pd[0] = PDE32_PRESENT | PDE32_RW | PDE32_USER | PDE32_PS); sregs.cr3 = pd_addr; sregs.cr4 |= CR4_PSE; text_prefix = kvm_asm32_paged_vm86; text_prefix_size = sizeof(kvm_asm32_paged_vm86) - 1; } else { text_prefix = kvm_asm32_vm86; text_prefix_size = sizeof(kvm_asm32_vm86) - 1; } } else { sregs.cs.selector = 0; sregs.cs.base = 0; } } else if (text_type == 16) { if (flags & KVM_SETUP_CPL3) { sregs.cs = seg_cs16; sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds16; text_prefix = kvm_asm16_cpl3; text_prefix_size = sizeof(kvm_asm16_cpl3) - 1; } else { sregs.cr0 |= CR0_PE; sregs.cs = seg_cs16; sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds16; } } else if (text_type == 32) { sregs.cr0 |= CR0_PE; sregs.efer |= EFER_SCE; setup_syscall_msrs(cpufd, SEL_CS32, SEL_CS32_CPL3); setup_32bit_idt(&sregs, host_mem, guest_mem); if (flags & KVM_SETUP_SMM) { sregs.cs = seg_cs32; sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32; NONFAILING(*(host_mem + ADDR_TEXT) = 0xf4); host_text = host_mem + 0x8000; ioctl(cpufd, KVM_SMI, 0); } else if (flags & KVM_SETUP_PAGING) { sregs.cs = seg_cs32; sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32; uint64 pd_addr = guest_mem + ADDR_PD; uint64* pd = (uint64*)(host_mem + ADDR_PD); NONFAILING(pd[0] = PDE32_PRESENT | PDE32_RW | PDE32_USER | PDE32_PS); sregs.cr3 = pd_addr; sregs.cr4 |= CR4_PSE; text_prefix = kvm_asm32_paged; text_prefix_size = sizeof(kvm_asm32_paged) - 1; } else if (flags & KVM_SETUP_CPL3) { sregs.cs = seg_cs32_cpl3; sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32_cpl3; } else { sregs.cs = seg_cs32; sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32; } } else { sregs.efer |= EFER_LME | EFER_SCE; sregs.cr0 |= CR0_PE; setup_syscall_msrs(cpufd, SEL_CS64, SEL_CS64_CPL3); setup_64bit_idt(&sregs, host_mem, guest_mem); sregs.cs = seg_cs32; sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32; uint64 pml4_addr = guest_mem + ADDR_PML4; uint64* pml4 = (uint64*)(host_mem + ADDR_PML4); uint64 pdpt_addr = guest_mem + ADDR_PDP; uint64* pdpt = (uint64*)(host_mem + ADDR_PDP); uint64 pd_addr = guest_mem + ADDR_PD; uint64* pd = (uint64*)(host_mem + ADDR_PD); NONFAILING(pml4[0] = PDE64_PRESENT | PDE64_RW | PDE64_USER | pdpt_addr); NONFAILING(pdpt[0] = PDE64_PRESENT | PDE64_RW | PDE64_USER | pd_addr); NONFAILING(pd[0] = PDE64_PRESENT | PDE64_RW | PDE64_USER | PDE64_PS); sregs.cr3 = pml4_addr; sregs.cr4 |= CR4_PAE; if (flags & KVM_SETUP_VM) { sregs.cr0 |= CR0_NE; NONFAILING(*((uint64*)(host_mem + ADDR_VAR_VMXON_PTR)) = ADDR_VAR_VMXON); NONFAILING(*((uint64*)(host_mem + ADDR_VAR_VMCS_PTR)) = ADDR_VAR_VMCS); NONFAILING(memcpy(host_mem + ADDR_VAR_VMEXIT_CODE, kvm_asm64_vm_exit, sizeof(kvm_asm64_vm_exit) - 1)); NONFAILING(*((uint64*)(host_mem + ADDR_VAR_VMEXIT_PTR)) = ADDR_VAR_VMEXIT_CODE); text_prefix = kvm_asm64_init_vm; text_prefix_size = sizeof(kvm_asm64_init_vm) - 1; } else if (flags & KVM_SETUP_CPL3) { text_prefix = kvm_asm64_cpl3; text_prefix_size = sizeof(kvm_asm64_cpl3) - 1; } else { text_prefix = kvm_asm64_enable_long; text_prefix_size = sizeof(kvm_asm64_enable_long) - 1; } } struct tss16 tss16; memset(&tss16, 0, sizeof(tss16)); tss16.ss0 = tss16.ss1 = tss16.ss2 = SEL_DS16; tss16.sp0 = tss16.sp1 = tss16.sp2 = ADDR_STACK0; tss16.ip = ADDR_VAR_USER_CODE2; tss16.flags = (1 << 1); tss16.cs = SEL_CS16; tss16.es = tss16.ds = tss16.ss = SEL_DS16; tss16.ldt = SEL_LDT; struct tss16* tss16_addr = (struct tss16*)(host_mem + seg_tss16_2.base); NONFAILING(memcpy(tss16_addr, &tss16, sizeof(tss16))); memset(&tss16, 0, sizeof(tss16)); tss16.ss0 = tss16.ss1 = tss16.ss2 = SEL_DS16; tss16.sp0 = tss16.sp1 = tss16.sp2 = ADDR_STACK0; tss16.ip = ADDR_VAR_USER_CODE2; tss16.flags = (1 << 1); tss16.cs = SEL_CS16_CPL3; tss16.es = tss16.ds = tss16.ss = SEL_DS16_CPL3; tss16.ldt = SEL_LDT; struct tss16* tss16_cpl3_addr = (struct tss16*)(host_mem + seg_tss16_cpl3.base); NONFAILING(memcpy(tss16_cpl3_addr, &tss16, sizeof(tss16))); struct tss32 tss32; memset(&tss32, 0, sizeof(tss32)); tss32.ss0 = tss32.ss1 = tss32.ss2 = SEL_DS32; tss32.sp0 = tss32.sp1 = tss32.sp2 = ADDR_STACK0; tss32.ip = ADDR_VAR_USER_CODE; tss32.flags = (1 << 1) | (1 << 17); tss32.ldt = SEL_LDT; tss32.cr3 = sregs.cr3; tss32.io_bitmap = offsetof(struct tss32, io_bitmap); struct tss32* tss32_addr = (struct tss32*)(host_mem + seg_tss32_vm86.base); NONFAILING(memcpy(tss32_addr, &tss32, sizeof(tss32))); memset(&tss32, 0, sizeof(tss32)); tss32.ss0 = tss32.ss1 = tss32.ss2 = SEL_DS32; tss32.sp0 = tss32.sp1 = tss32.sp2 = ADDR_STACK0; tss32.ip = ADDR_VAR_USER_CODE; tss32.flags = (1 << 1); tss32.cr3 = sregs.cr3; tss32.es = tss32.ds = tss32.ss = tss32.gs = tss32.fs = SEL_DS32; tss32.cs = SEL_CS32; tss32.ldt = SEL_LDT; tss32.cr3 = sregs.cr3; tss32.io_bitmap = offsetof(struct tss32, io_bitmap); struct tss32* tss32_cpl3_addr = (struct tss32*)(host_mem + seg_tss32_2.base); NONFAILING(memcpy(tss32_cpl3_addr, &tss32, sizeof(tss32))); struct tss64 tss64; memset(&tss64, 0, sizeof(tss64)); tss64.rsp[0] = ADDR_STACK0; tss64.rsp[1] = ADDR_STACK0; tss64.rsp[2] = ADDR_STACK0; tss64.io_bitmap = offsetof(struct tss64, io_bitmap); struct tss64* tss64_addr = (struct tss64*)(host_mem + seg_tss64.base); NONFAILING(memcpy(tss64_addr, &tss64, sizeof(tss64))); memset(&tss64, 0, sizeof(tss64)); tss64.rsp[0] = ADDR_STACK0; tss64.rsp[1] = ADDR_STACK0; tss64.rsp[2] = ADDR_STACK0; tss64.io_bitmap = offsetof(struct tss64, io_bitmap); struct tss64* tss64_cpl3_addr = (struct tss64*)(host_mem + seg_tss64_cpl3.base); NONFAILING(memcpy(tss64_cpl3_addr, &tss64, sizeof(tss64))); if (text_size > 1000) text_size = 1000; if (text_prefix) { NONFAILING(memcpy(host_text, text_prefix, text_prefix_size)); void* patch = 0; NONFAILING(patch = memmem(host_text, text_prefix_size, "\xde\xc0\xad\x0b", 4)); if (patch) NONFAILING(*((uint32*)patch) = guest_mem + ADDR_TEXT + ((char*)patch - host_text) + 6); uint16 magic = PREFIX_SIZE; patch = 0; NONFAILING(patch = memmem(host_text, text_prefix_size, &magic, sizeof(magic))); if (patch) NONFAILING(*((uint16*)patch) = guest_mem + ADDR_TEXT + text_prefix_size); } NONFAILING(memcpy((void*)(host_text + text_prefix_size), text, text_size)); NONFAILING(*(host_text + text_prefix_size + text_size) = 0xf4); NONFAILING(memcpy(host_mem + ADDR_VAR_USER_CODE, text, text_size)); NONFAILING(*(host_mem + ADDR_VAR_USER_CODE + text_size) = 0xf4); NONFAILING(*(host_mem + ADDR_VAR_HLT) = 0xf4); NONFAILING(memcpy(host_mem + ADDR_VAR_SYSRET, "\x0f\x07\xf4", 3)); NONFAILING(memcpy(host_mem + ADDR_VAR_SYSEXIT, "\x0f\x35\xf4", 3)); NONFAILING(*(uint64*)(host_mem + ADDR_VAR_VMWRITE_FLD) = 0); NONFAILING(*(uint64*)(host_mem + ADDR_VAR_VMWRITE_VAL) = 0); if (opt_count > 2) opt_count = 2; for (i = 0; i < opt_count; i++) { uint64 typ = 0; uint64 val = 0; NONFAILING(typ = opt_array_ptr[i].typ); NONFAILING(val = opt_array_ptr[i].val); switch (typ % 9) { case 0: sregs.cr0 ^= val & (CR0_MP | CR0_EM | CR0_ET | CR0_NE | CR0_WP | CR0_AM | CR0_NW | CR0_CD); break; case 1: sregs.cr4 ^= val & (CR4_VME | CR4_PVI | CR4_TSD | CR4_DE | CR4_MCE | CR4_PGE | CR4_PCE | CR4_OSFXSR | CR4_OSXMMEXCPT | CR4_UMIP | CR4_VMXE | CR4_SMXE | CR4_FSGSBASE | CR4_PCIDE | CR4_OSXSAVE | CR4_SMEP | CR4_SMAP | CR4_PKE); break; case 2: sregs.efer ^= val & (EFER_SCE | EFER_NXE | EFER_SVME | EFER_LMSLE | EFER_FFXSR | EFER_TCE); break; case 3: val &= ((1 << 8) | (1 << 9) | (1 << 10) | (1 << 12) | (1 << 13) | (1 << 14) | (1 << 15) | (1 << 18) | (1 << 19) | (1 << 20) | (1 << 21)); regs.rflags ^= val; NONFAILING(tss16_addr->flags ^= val); NONFAILING(tss16_cpl3_addr->flags ^= val); NONFAILING(tss32_addr->flags ^= val); NONFAILING(tss32_cpl3_addr->flags ^= val); break; case 4: seg_cs16.type = val & 0xf; seg_cs32.type = val & 0xf; seg_cs64.type = val & 0xf; break; case 5: seg_cs16_cpl3.type = val & 0xf; seg_cs32_cpl3.type = val & 0xf; seg_cs64_cpl3.type = val & 0xf; break; case 6: seg_ds16.type = val & 0xf; seg_ds32.type = val & 0xf; seg_ds64.type = val & 0xf; break; case 7: seg_ds16_cpl3.type = val & 0xf; seg_ds32_cpl3.type = val & 0xf; seg_ds64_cpl3.type = val & 0xf; break; case 8: NONFAILING(*(uint64*)(host_mem + ADDR_VAR_VMWRITE_FLD) = (val & 0xffff)); NONFAILING(*(uint64*)(host_mem + ADDR_VAR_VMWRITE_VAL) = (val >> 16)); break; default: fail("bad kvm setup opt"); } } regs.rflags |= 2; fill_segment_descriptor(gdt, ldt, &seg_ldt); fill_segment_descriptor(gdt, ldt, &seg_cs16); fill_segment_descriptor(gdt, ldt, &seg_ds16); fill_segment_descriptor(gdt, ldt, &seg_cs16_cpl3); fill_segment_descriptor(gdt, ldt, &seg_ds16_cpl3); fill_segment_descriptor(gdt, ldt, &seg_cs32); fill_segment_descriptor(gdt, ldt, &seg_ds32); fill_segment_descriptor(gdt, ldt, &seg_cs32_cpl3); fill_segment_descriptor(gdt, ldt, &seg_ds32_cpl3); fill_segment_descriptor(gdt, ldt, &seg_cs64); fill_segment_descriptor(gdt, ldt, &seg_ds64); fill_segment_descriptor(gdt, ldt, &seg_cs64_cpl3); fill_segment_descriptor(gdt, ldt, &seg_ds64_cpl3); fill_segment_descriptor(gdt, ldt, &seg_tss32); fill_segment_descriptor(gdt, ldt, &seg_tss32_2); fill_segment_descriptor(gdt, ldt, &seg_tss32_cpl3); fill_segment_descriptor(gdt, ldt, &seg_tss32_vm86); fill_segment_descriptor(gdt, ldt, &seg_tss16); fill_segment_descriptor(gdt, ldt, &seg_tss16_2); fill_segment_descriptor(gdt, ldt, &seg_tss16_cpl3); fill_segment_descriptor_dword(gdt, ldt, &seg_tss64); fill_segment_descriptor_dword(gdt, ldt, &seg_tss64_cpl3); fill_segment_descriptor(gdt, ldt, &seg_cgate16); fill_segment_descriptor(gdt, ldt, &seg_tgate16); fill_segment_descriptor(gdt, ldt, &seg_cgate32); fill_segment_descriptor(gdt, ldt, &seg_tgate32); fill_segment_descriptor_dword(gdt, ldt, &seg_cgate64); if (ioctl(cpufd, KVM_SET_SREGS, &sregs)) return -1; if (ioctl(cpufd, KVM_SET_REGS, ®s)) return -1; return 0; } #elif defined(__aarch64__) struct kvm_text { uintptr_t typ; const void* text; uintptr_t size; }; struct kvm_opt { uint64 typ; uint64 val; }; static uintptr_t syz_kvm_setup_cpu(uintptr_t a0, uintptr_t a1, uintptr_t a2, uintptr_t a3, uintptr_t a4, uintptr_t a5, uintptr_t a6, uintptr_t a7) { const int vmfd = a0; const int cpufd = a1; char* const host_mem = (char*)a2; const struct kvm_text* const text_array_ptr = (struct kvm_text*)a3; const uintptr_t text_count = a4; const uintptr_t flags = a5; const struct kvm_opt* const opt_array_ptr = (struct kvm_opt*)a6; uintptr_t opt_count = a7; (void)flags; (void)opt_count; const uintptr_t page_size = 4 << 10; const uintptr_t guest_mem = 0; const uintptr_t guest_mem_size = 24 * page_size; (void)text_count; int text_type = 0; const void* text = 0; int text_size = 0; NONFAILING(text_type = text_array_ptr[0].typ); NONFAILING(text = text_array_ptr[0].text); NONFAILING(text_size = text_array_ptr[0].size); (void)text_type; (void)opt_array_ptr; uint32 features = 0; if (opt_count > 1) opt_count = 1; uintptr_t i; for (i = 0; i < opt_count; i++) { uint64 typ = 0; uint64 val = 0; NONFAILING(typ = opt_array_ptr[i].typ); NONFAILING(val = opt_array_ptr[i].val); switch (typ) { case 1: features = val; break; } } for (i = 0; i < guest_mem_size / page_size; i++) { struct kvm_userspace_memory_region memreg; memreg.slot = i; memreg.flags = 0; memreg.guest_phys_addr = guest_mem + i * page_size; memreg.memory_size = page_size; memreg.userspace_addr = (uintptr_t)host_mem + i * page_size; ioctl(vmfd, KVM_SET_USER_MEMORY_REGION, &memreg); } struct kvm_vcpu_init init; ioctl(cpufd, KVM_ARM_PREFERRED_TARGET, &init); init.features[0] = features; ioctl(cpufd, KVM_ARM_VCPU_INIT, &init); if (text_size > 1000) text_size = 1000; NONFAILING(memcpy(host_mem, text, text_size)); return 0; } #else static long syz_kvm_setup_cpu(long a0, long a1, long a2, long a3, long a4, long a5, long a6, long a7) { return 0; } #endif #endif #if SYZ_EXECUTOR || SYZ_FAULT_INJECTION || SYZ_SANDBOX_NAMESPACE || SYZ_ENABLE_CGROUPS #include #include #include #include #include #include #include static bool write_file(const char* file, const char* what, ...) { char buf[1024]; va_list args; va_start(args, what); vsnprintf(buf, sizeof(buf), what, args); va_end(args); buf[sizeof(buf) - 1] = 0; int len = strlen(buf); int fd = open(file, O_WRONLY | O_CLOEXEC); if (fd == -1) return false; if (write(fd, buf, len) != len) { int err = errno; close(fd); errno = err; return false; } close(fd); return true; } #endif #if SYZ_EXECUTOR || SYZ_RESET_NET_NAMESPACE #include #include #include #include #include #define XT_TABLE_SIZE 1536 #define XT_MAX_ENTRIES 10 struct xt_counters { uint64 pcnt, bcnt; }; struct ipt_getinfo { char name[32]; unsigned int valid_hooks; unsigned int hook_entry[5]; unsigned int underflow[5]; unsigned int num_entries; unsigned int size; }; struct ipt_get_entries { char name[32]; unsigned int size; void* entrytable[XT_TABLE_SIZE / sizeof(void*)]; }; struct ipt_replace { char name[32]; unsigned int valid_hooks; unsigned int num_entries; unsigned int size; unsigned int hook_entry[5]; unsigned int underflow[5]; unsigned int num_counters; struct xt_counters* counters; char entrytable[XT_TABLE_SIZE]; }; struct ipt_table_desc { const char* name; struct ipt_getinfo info; struct ipt_replace replace; }; static struct ipt_table_desc ipv4_tables[] = { {.name = "filter"}, {.name = "nat"}, {.name = "mangle"}, {.name = "raw"}, {.name = "security"}, }; static struct ipt_table_desc ipv6_tables[] = { {.name = "filter"}, {.name = "nat"}, {.name = "mangle"}, {.name = "raw"}, {.name = "security"}, }; #define IPT_BASE_CTL 64 #define IPT_SO_SET_REPLACE (IPT_BASE_CTL) #define IPT_SO_GET_INFO (IPT_BASE_CTL) #define IPT_SO_GET_ENTRIES (IPT_BASE_CTL + 1) struct arpt_getinfo { char name[32]; unsigned int valid_hooks; unsigned int hook_entry[3]; unsigned int underflow[3]; unsigned int num_entries; unsigned int size; }; struct arpt_get_entries { char name[32]; unsigned int size; void* entrytable[XT_TABLE_SIZE / sizeof(void*)]; }; struct arpt_replace { char name[32]; unsigned int valid_hooks; unsigned int num_entries; unsigned int size; unsigned int hook_entry[3]; unsigned int underflow[3]; unsigned int num_counters; struct xt_counters* counters; char entrytable[XT_TABLE_SIZE]; }; struct arpt_table_desc { const char* name; struct arpt_getinfo info; struct arpt_replace replace; }; static struct arpt_table_desc arpt_tables[] = { {.name = "filter"}, }; #define ARPT_BASE_CTL 96 #define ARPT_SO_SET_REPLACE (ARPT_BASE_CTL) #define ARPT_SO_GET_INFO (ARPT_BASE_CTL) #define ARPT_SO_GET_ENTRIES (ARPT_BASE_CTL + 1) static void checkpoint_iptables(struct ipt_table_desc* tables, int num_tables, int family, int level) { struct ipt_get_entries entries; socklen_t optlen; int fd, i; fd = socket(family, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } fail("iptable checkpoint %d: socket failed", family); } for (i = 0; i < num_tables; i++) { struct ipt_table_desc* table = &tables[i]; strcpy(table->info.name, table->name); strcpy(table->replace.name, table->name); optlen = sizeof(table->info); if (getsockopt(fd, level, IPT_SO_GET_INFO, &table->info, &optlen)) { switch (errno) { case EPERM: case ENOENT: case ENOPROTOOPT: continue; } fail("iptable checkpoint %s/%d: getsockopt(IPT_SO_GET_INFO)", table->name, family); } debug("iptable checkpoint %s/%d: checkpoint entries=%d hooks=%x size=%d\n", table->name, family, table->info.num_entries, table->info.valid_hooks, table->info.size); if (table->info.size > sizeof(table->replace.entrytable)) fail("iptable checkpoint %s/%d: table size is too large: %u", table->name, family, table->info.size); if (table->info.num_entries > XT_MAX_ENTRIES) fail("iptable checkpoint %s/%d: too many counters: %u", table->name, family, table->info.num_entries); memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + table->info.size; if (getsockopt(fd, level, IPT_SO_GET_ENTRIES, &entries, &optlen)) fail("iptable checkpoint %s/%d: getsockopt(IPT_SO_GET_ENTRIES)", table->name, family); table->replace.valid_hooks = table->info.valid_hooks; table->replace.num_entries = table->info.num_entries; table->replace.size = table->info.size; memcpy(table->replace.hook_entry, table->info.hook_entry, sizeof(table->replace.hook_entry)); memcpy(table->replace.underflow, table->info.underflow, sizeof(table->replace.underflow)); memcpy(table->replace.entrytable, entries.entrytable, table->info.size); } close(fd); } static void reset_iptables(struct ipt_table_desc* tables, int num_tables, int family, int level) { struct xt_counters counters[XT_MAX_ENTRIES]; struct ipt_get_entries entries; struct ipt_getinfo info; socklen_t optlen; int fd, i; fd = socket(family, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } fail("iptable %d: socket failed", family); } for (i = 0; i < num_tables; i++) { struct ipt_table_desc* table = &tables[i]; if (table->info.valid_hooks == 0) continue; memset(&info, 0, sizeof(info)); strcpy(info.name, table->name); optlen = sizeof(info); if (getsockopt(fd, level, IPT_SO_GET_INFO, &info, &optlen)) fail("iptable %s/%d: getsockopt(IPT_SO_GET_INFO)", table->name, family); if (memcmp(&table->info, &info, sizeof(table->info)) == 0) { memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + entries.size; if (getsockopt(fd, level, IPT_SO_GET_ENTRIES, &entries, &optlen)) fail("iptable %s/%d: getsockopt(IPT_SO_GET_ENTRIES)", table->name, family); if (memcmp(table->replace.entrytable, entries.entrytable, table->info.size) == 0) continue; } debug("iptable %s/%d: resetting\n", table->name, family); table->replace.num_counters = info.num_entries; table->replace.counters = counters; optlen = sizeof(table->replace) - sizeof(table->replace.entrytable) + table->replace.size; if (setsockopt(fd, level, IPT_SO_SET_REPLACE, &table->replace, optlen)) fail("iptable %s/%d: setsockopt(IPT_SO_SET_REPLACE)", table->name, family); } close(fd); } static void checkpoint_arptables(void) { struct arpt_get_entries entries; socklen_t optlen; unsigned i; int fd; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } fail("arptable checkpoint: socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)"); } for (i = 0; i < sizeof(arpt_tables) / sizeof(arpt_tables[0]); i++) { struct arpt_table_desc* table = &arpt_tables[i]; strcpy(table->info.name, table->name); strcpy(table->replace.name, table->name); optlen = sizeof(table->info); if (getsockopt(fd, SOL_IP, ARPT_SO_GET_INFO, &table->info, &optlen)) { switch (errno) { case EPERM: case ENOENT: case ENOPROTOOPT: continue; } fail("arptable checkpoint %s: getsockopt(ARPT_SO_GET_INFO)", table->name); } debug("arptable checkpoint %s: entries=%d hooks=%x size=%d\n", table->name, table->info.num_entries, table->info.valid_hooks, table->info.size); if (table->info.size > sizeof(table->replace.entrytable)) fail("arptable checkpoint %s: table size is too large: %u", table->name, table->info.size); if (table->info.num_entries > XT_MAX_ENTRIES) fail("arptable checkpoint %s: too many counters: %u", table->name, table->info.num_entries); memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + table->info.size; if (getsockopt(fd, SOL_IP, ARPT_SO_GET_ENTRIES, &entries, &optlen)) fail("arptable checkpoint %s: getsockopt(ARPT_SO_GET_ENTRIES)", table->name); table->replace.valid_hooks = table->info.valid_hooks; table->replace.num_entries = table->info.num_entries; table->replace.size = table->info.size; memcpy(table->replace.hook_entry, table->info.hook_entry, sizeof(table->replace.hook_entry)); memcpy(table->replace.underflow, table->info.underflow, sizeof(table->replace.underflow)); memcpy(table->replace.entrytable, entries.entrytable, table->info.size); } close(fd); } static void reset_arptables() { struct xt_counters counters[XT_MAX_ENTRIES]; struct arpt_get_entries entries; struct arpt_getinfo info; socklen_t optlen; unsigned i; int fd; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } fail("arptable: socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)"); } for (i = 0; i < sizeof(arpt_tables) / sizeof(arpt_tables[0]); i++) { struct arpt_table_desc* table = &arpt_tables[i]; if (table->info.valid_hooks == 0) continue; memset(&info, 0, sizeof(info)); strcpy(info.name, table->name); optlen = sizeof(info); if (getsockopt(fd, SOL_IP, ARPT_SO_GET_INFO, &info, &optlen)) fail("arptable %s:getsockopt(ARPT_SO_GET_INFO)", table->name); if (memcmp(&table->info, &info, sizeof(table->info)) == 0) { memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + entries.size; if (getsockopt(fd, SOL_IP, ARPT_SO_GET_ENTRIES, &entries, &optlen)) fail("arptable %s: getsockopt(ARPT_SO_GET_ENTRIES)", table->name); if (memcmp(table->replace.entrytable, entries.entrytable, table->info.size) == 0) continue; debug("arptable %s: data changed\n", table->name); } else { debug("arptable %s: header changed\n", table->name); } debug("arptable %s: resetting\n", table->name); table->replace.num_counters = info.num_entries; table->replace.counters = counters; optlen = sizeof(table->replace) - sizeof(table->replace.entrytable) + table->replace.size; if (setsockopt(fd, SOL_IP, ARPT_SO_SET_REPLACE, &table->replace, optlen)) fail("arptable %s: setsockopt(ARPT_SO_SET_REPLACE)", table->name); } close(fd); } #include #include struct ebt_table_desc { const char* name; struct ebt_replace replace; char entrytable[XT_TABLE_SIZE]; }; static struct ebt_table_desc ebt_tables[] = { {.name = "filter"}, {.name = "nat"}, {.name = "broute"}, }; static void checkpoint_ebtables(void) { socklen_t optlen; unsigned i; int fd; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } fail("ebtable checkpoint: socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)"); } for (i = 0; i < sizeof(ebt_tables) / sizeof(ebt_tables[0]); i++) { struct ebt_table_desc* table = &ebt_tables[i]; strcpy(table->replace.name, table->name); optlen = sizeof(table->replace); if (getsockopt(fd, SOL_IP, EBT_SO_GET_INIT_INFO, &table->replace, &optlen)) { switch (errno) { case EPERM: case ENOENT: case ENOPROTOOPT: continue; } fail("ebtable checkpoint %s: getsockopt(EBT_SO_GET_INIT_INFO)", table->name); } debug("ebtable checkpoint %s: entries=%d hooks=%x size=%d\n", table->name, table->replace.nentries, table->replace.valid_hooks, table->replace.entries_size); if (table->replace.entries_size > sizeof(table->entrytable)) fail("ebtable checkpoint %s: table size is too large: %u", table->name, table->replace.entries_size); table->replace.num_counters = 0; table->replace.entries = table->entrytable; optlen = sizeof(table->replace) + table->replace.entries_size; if (getsockopt(fd, SOL_IP, EBT_SO_GET_INIT_ENTRIES, &table->replace, &optlen)) fail("ebtable checkpoint %s: getsockopt(EBT_SO_GET_INIT_ENTRIES)", table->name); } close(fd); } static void reset_ebtables() { struct ebt_replace replace; char entrytable[XT_TABLE_SIZE]; socklen_t optlen; unsigned i, j, h; int fd; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } fail("ebtable: socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)"); } for (i = 0; i < sizeof(ebt_tables) / sizeof(ebt_tables[0]); i++) { struct ebt_table_desc* table = &ebt_tables[i]; if (table->replace.valid_hooks == 0) continue; memset(&replace, 0, sizeof(replace)); strcpy(replace.name, table->name); optlen = sizeof(replace); if (getsockopt(fd, SOL_IP, EBT_SO_GET_INFO, &replace, &optlen)) fail("ebtable %s: getsockopt(EBT_SO_GET_INFO)", table->name); replace.num_counters = 0; table->replace.entries = 0; for (h = 0; h < NF_BR_NUMHOOKS; h++) table->replace.hook_entry[h] = 0; if (memcmp(&table->replace, &replace, sizeof(table->replace)) == 0) { memset(&entrytable, 0, sizeof(entrytable)); replace.entries = entrytable; optlen = sizeof(replace) + replace.entries_size; if (getsockopt(fd, SOL_IP, EBT_SO_GET_ENTRIES, &replace, &optlen)) fail("ebtable %s: getsockopt(EBT_SO_GET_ENTRIES)", table->name); if (memcmp(table->entrytable, entrytable, replace.entries_size) == 0) continue; } debug("ebtable %s: resetting\n", table->name); for (j = 0, h = 0; h < NF_BR_NUMHOOKS; h++) { if (table->replace.valid_hooks & (1 << h)) { table->replace.hook_entry[h] = (struct ebt_entries*)table->entrytable + j; j++; } } table->replace.entries = table->entrytable; optlen = sizeof(table->replace) + table->replace.entries_size; if (setsockopt(fd, SOL_IP, EBT_SO_SET_ENTRIES, &table->replace, optlen)) fail("ebtable %s: setsockopt(EBT_SO_SET_ENTRIES)", table->name); } close(fd); } static void checkpoint_net_namespace(void) { #if SYZ_EXECUTOR if (flag_sandbox == sandbox_setuid) return; #endif checkpoint_ebtables(); checkpoint_arptables(); checkpoint_iptables(ipv4_tables, sizeof(ipv4_tables) / sizeof(ipv4_tables[0]), AF_INET, SOL_IP); checkpoint_iptables(ipv6_tables, sizeof(ipv6_tables) / sizeof(ipv6_tables[0]), AF_INET6, SOL_IPV6); } static void reset_net_namespace(void) { #if SYZ_EXECUTOR if (flag_sandbox == sandbox_setuid) return; #endif reset_ebtables(); reset_arptables(); reset_iptables(ipv4_tables, sizeof(ipv4_tables) / sizeof(ipv4_tables[0]), AF_INET, SOL_IP); reset_iptables(ipv6_tables, sizeof(ipv6_tables) / sizeof(ipv6_tables[0]), AF_INET6, SOL_IPV6); } #endif #if SYZ_EXECUTOR || SYZ_ENABLE_CGROUPS #include #include #include #include static void setup_cgroups() { if (mkdir("/syzcgroup", 0777)) { debug("mkdir(/syzcgroup) failed: %d\n", errno); } if (mkdir("/syzcgroup/unified", 0777)) { debug("mkdir(/syzcgroup/unified) failed: %d\n", errno); } if (mount("none", "/syzcgroup/unified", "cgroup2", 0, NULL)) { debug("mount(cgroup2) failed: %d\n", errno); } if (chmod("/syzcgroup/unified", 0777)) { debug("chmod(/syzcgroup/unified) failed: %d\n", errno); } if (!write_file("/syzcgroup/unified/cgroup.subtree_control", "+cpu +memory +io +pids +rdma")) { debug("write(cgroup.subtree_control) failed: %d\n", errno); } if (mkdir("/syzcgroup/cpu", 0777)) { debug("mkdir(/syzcgroup/cpu) failed: %d\n", errno); } if (mount("none", "/syzcgroup/cpu", "cgroup", 0, "cpuset,cpuacct,perf_event,hugetlb")) { debug("mount(cgroup cpu) failed: %d\n", errno); } if (!write_file("/syzcgroup/cpu/cgroup.clone_children", "1")) { debug("write(/syzcgroup/cpu/cgroup.clone_children) failed: %d\n", errno); } if (chmod("/syzcgroup/cpu", 0777)) { debug("chmod(/syzcgroup/cpu) failed: %d\n", errno); } if (mkdir("/syzcgroup/net", 0777)) { debug("mkdir(/syzcgroup/net) failed: %d\n", errno); } if (mount("none", "/syzcgroup/net", "cgroup", 0, "net_cls,net_prio,devices,freezer")) { debug("mount(cgroup net) failed: %d\n", errno); } if (chmod("/syzcgroup/net", 0777)) { debug("chmod(/syzcgroup/net) failed: %d\n", errno); } } static void setup_binfmt_misc() { if (mount(0, "/proc/sys/fs/binfmt_misc", "binfmt_misc", 0, 0)) { debug("mount(binfmt_misc) failed: %d\n", errno); } if (!write_file("/proc/sys/fs/binfmt_misc/register", ":syz0:M:0:\x01::./file0:")) { debug("write(/proc/sys/fs/binfmt_misc/register, syz0) failed: %d\n", errno); } if (!write_file("/proc/sys/fs/binfmt_misc/register", ":syz1:M:1:\x02::./file0:POC")) { debug("write(/proc/sys/fs/binfmt_misc/register, syz1) failed: %d\n", errno); } } #endif #if SYZ_EXECUTOR || SYZ_SANDBOX_NONE || SYZ_SANDBOX_SETUID || SYZ_SANDBOX_NAMESPACE #include #include static void setup_common() { if (mount(0, "/sys/fs/fuse/connections", "fusectl", 0, 0)) { debug("mount(fusectl) failed: %d\n", errno); } #if SYZ_EXECUTOR || SYZ_ENABLE_CGROUPS setup_cgroups(); setup_binfmt_misc(); #endif } #endif #if SYZ_EXECUTOR || SYZ_SANDBOX_NONE || SYZ_SANDBOX_SETUID || SYZ_SANDBOX_NAMESPACE #include #include #include #include #include static void loop(); static void sandbox_common() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); setsid(); #if SYZ_EXECUTOR || __NR_syz_init_net_socket int netns = open("/proc/self/ns/net", O_RDONLY); if (netns == -1) fail("open(/proc/self/ns/net) failed"); if (dup2(netns, kInitNetNsFd) < 0) fail("dup2(netns, kInitNetNsFd) failed"); close(netns); #endif struct rlimit rlim; rlim.rlim_cur = rlim.rlim_max = 160 << 20; setrlimit(RLIMIT_AS, &rlim); rlim.rlim_cur = rlim.rlim_max = 8 << 20; setrlimit(RLIMIT_MEMLOCK, &rlim); rlim.rlim_cur = rlim.rlim_max = 136 << 20; setrlimit(RLIMIT_FSIZE, &rlim); rlim.rlim_cur = rlim.rlim_max = 1 << 20; setrlimit(RLIMIT_STACK, &rlim); rlim.rlim_cur = rlim.rlim_max = 0; setrlimit(RLIMIT_CORE, &rlim); rlim.rlim_cur = rlim.rlim_max = 256; setrlimit(RLIMIT_NOFILE, &rlim); if (unshare(CLONE_NEWNS)) { debug("unshare(CLONE_NEWNS): %d\n", errno); } if (unshare(CLONE_NEWIPC)) { debug("unshare(CLONE_NEWIPC): %d\n", errno); } if (unshare(0x02000000)) { debug("unshare(CLONE_NEWCGROUP): %d\n", errno); } if (unshare(CLONE_NEWUTS)) { debug("unshare(CLONE_NEWUTS): %d\n", errno); } if (unshare(CLONE_SYSVSEM)) { debug("unshare(CLONE_SYSVSEM): %d\n", errno); } } int wait_for_loop(int pid) { if (pid < 0) fail("sandbox fork failed"); debug("spawned loop pid %d\n", pid); int status = 0; while (waitpid(-1, &status, __WALL) != pid) { } return WEXITSTATUS(status); } #endif #if SYZ_EXECUTOR || SYZ_SANDBOX_NONE #include #include static int do_sandbox_none(void) { if (unshare(CLONE_NEWPID)) { debug("unshare(CLONE_NEWPID): %d\n", errno); } int pid = fork(); if (pid != 0) return wait_for_loop(pid); setup_common(); sandbox_common(); if (unshare(CLONE_NEWNET)) { debug("unshare(CLONE_NEWNET): %d\n", errno); } #if SYZ_EXECUTOR || SYZ_TUN_ENABLE initialize_tun(); #endif #if SYZ_EXECUTOR || SYZ_ENABLE_NETDEV initialize_netdevices(); #endif loop(); doexit(1); } #endif #if SYZ_EXECUTOR || SYZ_SANDBOX_SETUID #include #include #include static int do_sandbox_setuid(void) { if (unshare(CLONE_NEWPID)) { debug("unshare(CLONE_NEWPID): %d\n", errno); } int pid = fork(); if (pid != 0) return wait_for_loop(pid); setup_common(); sandbox_common(); if (unshare(CLONE_NEWNET)) { debug("unshare(CLONE_NEWNET): %d\n", errno); } #if SYZ_EXECUTOR || SYZ_TUN_ENABLE initialize_tun(); #endif #if SYZ_EXECUTOR || SYZ_ENABLE_NETDEV initialize_netdevices(); #endif const int nobody = 65534; if (setgroups(0, NULL)) fail("failed to setgroups"); if (syscall(SYS_setresgid, nobody, nobody, nobody)) fail("failed to setresgid"); if (syscall(SYS_setresuid, nobody, nobody, nobody)) fail("failed to setresuid"); prctl(PR_SET_DUMPABLE, 1, 0, 0, 0); loop(); doexit(1); } #endif #if SYZ_EXECUTOR || SYZ_SANDBOX_NAMESPACE #include #include #include #include static int real_uid; static int real_gid; __attribute__((aligned(64 << 10))) static char sandbox_stack[1 << 20]; static int namespace_sandbox_proc(void* arg) { sandbox_common(); write_file("/proc/self/setgroups", "deny"); if (!write_file("/proc/self/uid_map", "0 %d 1\n", real_uid)) fail("write of /proc/self/uid_map failed"); if (!write_file("/proc/self/gid_map", "0 %d 1\n", real_gid)) fail("write of /proc/self/gid_map failed"); if (unshare(CLONE_NEWNET)) fail("unshare(CLONE_NEWNET)"); #if SYZ_EXECUTOR || SYZ_TUN_ENABLE initialize_tun(); #endif #if SYZ_EXECUTOR || SYZ_ENABLE_NETDEV initialize_netdevices(); #endif if (mkdir("./syz-tmp", 0777)) fail("mkdir(syz-tmp) failed"); if (mount("", "./syz-tmp", "tmpfs", 0, NULL)) fail("mount(tmpfs) failed"); if (mkdir("./syz-tmp/newroot", 0777)) fail("mkdir failed"); if (mkdir("./syz-tmp/newroot/dev", 0700)) fail("mkdir failed"); unsigned bind_mount_flags = MS_BIND | MS_REC | MS_PRIVATE; if (mount("/dev", "./syz-tmp/newroot/dev", NULL, bind_mount_flags, NULL)) fail("mount(dev) failed"); if (mkdir("./syz-tmp/newroot/proc", 0700)) fail("mkdir failed"); if (mount(NULL, "./syz-tmp/newroot/proc", "proc", 0, NULL)) fail("mount(proc) failed"); if (mkdir("./syz-tmp/newroot/selinux", 0700)) fail("mkdir failed"); const char* selinux_path = "./syz-tmp/newroot/selinux"; if (mount("/selinux", selinux_path, NULL, bind_mount_flags, NULL)) { if (errno != ENOENT) fail("mount(/selinux) failed"); if (mount("/sys/fs/selinux", selinux_path, NULL, bind_mount_flags, NULL) && errno != ENOENT) fail("mount(/sys/fs/selinux) failed"); } if (mkdir("./syz-tmp/newroot/sys", 0700)) fail("mkdir failed"); if (mount("/sys", "./syz-tmp/newroot/sys", 0, bind_mount_flags, NULL)) fail("mount(sysfs) failed"); #if SYZ_EXECUTOR || SYZ_ENABLE_CGROUPS if (mkdir("./syz-tmp/newroot/syzcgroup", 0700)) fail("mkdir failed"); if (mkdir("./syz-tmp/newroot/syzcgroup/unified", 0700)) fail("mkdir failed"); if (mkdir("./syz-tmp/newroot/syzcgroup/cpu", 0700)) fail("mkdir failed"); if (mkdir("./syz-tmp/newroot/syzcgroup/net", 0700)) fail("mkdir failed"); if (mount("/syzcgroup/unified", "./syz-tmp/newroot/syzcgroup/unified", NULL, bind_mount_flags, NULL)) { debug("mount(cgroup2, MS_BIND) failed: %d\n", errno); } if (mount("/syzcgroup/cpu", "./syz-tmp/newroot/syzcgroup/cpu", NULL, bind_mount_flags, NULL)) { debug("mount(cgroup/cpu, MS_BIND) failed: %d\n", errno); } if (mount("/syzcgroup/net", "./syz-tmp/newroot/syzcgroup/net", NULL, bind_mount_flags, NULL)) { debug("mount(cgroup/net, MS_BIND) failed: %d\n", errno); } #endif if (mkdir("./syz-tmp/pivot", 0777)) fail("mkdir failed"); if (syscall(SYS_pivot_root, "./syz-tmp", "./syz-tmp/pivot")) { debug("pivot_root failed\n"); if (chdir("./syz-tmp")) fail("chdir failed"); } else { debug("pivot_root OK\n"); if (chdir("/")) fail("chdir failed"); if (umount2("./pivot", MNT_DETACH)) fail("umount failed"); } if (chroot("./newroot")) fail("chroot failed"); if (chdir("/")) fail("chdir failed"); struct __user_cap_header_struct cap_hdr = {}; struct __user_cap_data_struct cap_data[2] = {}; cap_hdr.version = _LINUX_CAPABILITY_VERSION_3; cap_hdr.pid = getpid(); if (syscall(SYS_capget, &cap_hdr, &cap_data)) fail("capget failed"); cap_data[0].effective &= ~(1 << CAP_SYS_PTRACE); cap_data[0].permitted &= ~(1 << CAP_SYS_PTRACE); cap_data[0].inheritable &= ~(1 << CAP_SYS_PTRACE); if (syscall(SYS_capset, &cap_hdr, &cap_data)) fail("capset failed"); loop(); doexit(1); } static int do_sandbox_namespace(void) { int pid; setup_common(); real_uid = getuid(); real_gid = getgid(); mprotect(sandbox_stack, 4096, PROT_NONE); pid = clone(namespace_sandbox_proc, &sandbox_stack[sizeof(sandbox_stack) - 64], CLONE_NEWUSER | CLONE_NEWPID, 0); return wait_for_loop(pid); } #endif #if SYZ_EXECUTOR || SYZ_REPEAT && SYZ_USE_TMP_DIR #include #include #include #include #include #define FS_IOC_SETFLAGS _IOW('f', 2, long) static void remove_dir(const char* dir) { DIR* dp; struct dirent* ep; int iter = 0; retry: while (umount2(dir, MNT_DETACH) == 0) { debug("umount(%s)\n", dir); } dp = opendir(dir); if (dp == NULL) { if (errno == EMFILE) { exitf("opendir(%s) failed due to NOFILE, exiting", dir); } exitf("opendir(%s) failed", dir); } while ((ep = readdir(dp))) { if (strcmp(ep->d_name, ".") == 0 || strcmp(ep->d_name, "..") == 0) continue; char filename[FILENAME_MAX]; snprintf(filename, sizeof(filename), "%s/%s", dir, ep->d_name); while (umount2(filename, MNT_DETACH) == 0) { debug("umount(%s)\n", filename); } struct stat st; if (lstat(filename, &st)) exitf("lstat(%s) failed", filename); if (S_ISDIR(st.st_mode)) { remove_dir(filename); continue; } int i; for (i = 0;; i++) { debug("unlink(%s)\n", filename); if (unlink(filename) == 0) break; if (errno == EPERM) { int fd = open(filename, O_RDONLY); if (fd != -1) { long flags = 0; if (ioctl(fd, FS_IOC_SETFLAGS, &flags) == 0) debug("reset FS_XFLAG_IMMUTABLE\n"); close(fd); continue; } } if (errno == EROFS) { debug("ignoring EROFS\n"); break; } if (errno != EBUSY || i > 100) exitf("unlink(%s) failed", filename); debug("umount(%s)\n", filename); if (umount2(filename, MNT_DETACH)) exitf("umount(%s) failed", filename); } } closedir(dp); int i; for (i = 0;; i++) { debug("rmdir(%s)\n", dir); if (rmdir(dir) == 0) break; if (i < 100) { if (errno == EPERM) { int fd = open(dir, O_RDONLY); if (fd != -1) { long flags = 0; if (ioctl(fd, FS_IOC_SETFLAGS, &flags) == 0) debug("reset FS_XFLAG_IMMUTABLE\n"); close(fd); continue; } } if (errno == EROFS) { debug("ignoring EROFS\n"); break; } if (errno == EBUSY) { debug("umount(%s)\n", dir); if (umount2(dir, MNT_DETACH)) exitf("umount(%s) failed", dir); continue; } if (errno == ENOTEMPTY) { if (iter < 100) { iter++; goto retry; } } } exitf("rmdir(%s) failed", dir); } } #endif #if SYZ_EXECUTOR || SYZ_FAULT_INJECTION #include #include #include #include static int inject_fault(int nth) { int fd; char buf[16]; fd = open("/proc/thread-self/fail-nth", O_RDWR); if (fd == -1) exitf("failed to open /proc/thread-self/fail-nth"); sprintf(buf, "%d", nth + 1); if (write(fd, buf, strlen(buf)) != (ssize_t)strlen(buf)) exitf("failed to write /proc/thread-self/fail-nth"); return fd; } #endif #if SYZ_EXECUTOR static int fault_injected(int fail_fd) { char buf[16]; int n = read(fail_fd, buf, sizeof(buf) - 1); if (n <= 0) exitf("failed to read /proc/thread-self/fail-nth"); int res = n == 2 && buf[0] == '0' && buf[1] == '\n'; buf[0] = '0'; if (write(fail_fd, buf, 1) != 1) exitf("failed to write /proc/thread-self/fail-nth"); close(fail_fd); return res; } #endif #if SYZ_EXECUTOR || SYZ_REPEAT #include #include #include #include #include #include #include #include static void kill_and_wait(int pid, int* status) { kill(-pid, SIGKILL); kill(pid, SIGKILL); int i; for (i = 0; i < 100; i++) { if (waitpid(-1, status, WNOHANG | __WALL) == pid) return; usleep(1000); } debug("kill is not working\n"); DIR* dir = opendir("/sys/fs/fuse/connections"); if (dir) { for (;;) { struct dirent* ent = readdir(dir); if (!ent) break; if (strcmp(ent->d_name, ".") == 0 || strcmp(ent->d_name, "..") == 0) continue; char abort[300]; snprintf(abort, sizeof(abort), "/sys/fs/fuse/connections/%s/abort", ent->d_name); int fd = open(abort, O_WRONLY); if (fd == -1) { debug("failed to open %s: %d\n", abort, errno); continue; } debug("aborting fuse conn %s\n", ent->d_name); if (write(fd, abort, 1) < 0) { debug("failed to abort: %d\n", errno); } close(fd); } closedir(dir); } else { debug("failed to open /sys/fs/fuse/connections: %d\n", errno); } while (waitpid(-1, status, __WALL) != pid) { } } #endif #if SYZ_EXECUTOR || SYZ_REPEAT && (SYZ_ENABLE_CGROUPS || SYZ_RESET_NET_NAMESPACE) #include #include #include #include #include #define SYZ_HAVE_SETUP_LOOP 1 static void setup_loop() { #if SYZ_EXECUTOR || SYZ_ENABLE_CGROUPS int pid = getpid(); char cgroupdir[64]; char procs_file[128]; snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/unified/syz%llu", procid); if (mkdir(cgroupdir, 0777)) { debug("mkdir(%s) failed: %d\n", cgroupdir, errno); } snprintf(procs_file, sizeof(procs_file), "%s/cgroup.procs", cgroupdir); if (!write_file(procs_file, "%d", pid)) { debug("write(%s) failed: %d\n", procs_file, errno); } snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/cpu/syz%llu", procid); if (mkdir(cgroupdir, 0777)) { debug("mkdir(%s) failed: %d\n", cgroupdir, errno); } snprintf(procs_file, sizeof(procs_file), "%s/cgroup.procs", cgroupdir); if (!write_file(procs_file, "%d", pid)) { debug("write(%s) failed: %d\n", procs_file, errno); } snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/net/syz%llu", procid); if (mkdir(cgroupdir, 0777)) { debug("mkdir(%s) failed: %d\n", cgroupdir, errno); } snprintf(procs_file, sizeof(procs_file), "%s/cgroup.procs", cgroupdir); if (!write_file(procs_file, "%d", pid)) { debug("write(%s) failed: %d\n", procs_file, errno); } #endif #if SYZ_EXECUTOR || SYZ_RESET_NET_NAMESPACE checkpoint_net_namespace(); #endif } #endif #if SYZ_EXECUTOR || SYZ_REPEAT && (SYZ_RESET_NET_NAMESPACE || __NR_syz_mount_image || __NR_syz_read_part_table) #define SYZ_HAVE_RESET_LOOP 1 static void reset_loop() { #if SYZ_EXECUTOR || __NR_syz_mount_image || __NR_syz_read_part_table char buf[64]; snprintf(buf, sizeof(buf), "/dev/loop%llu", procid); int loopfd = open(buf, O_RDWR); if (loopfd != -1) { ioctl(loopfd, LOOP_CLR_FD, 0); close(loopfd); } #endif #if SYZ_EXECUTOR || SYZ_RESET_NET_NAMESPACE reset_net_namespace(); #endif } #endif #if SYZ_EXECUTOR || SYZ_REPEAT #include #define SYZ_HAVE_SETUP_TEST 1 static void setup_test() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); #if SYZ_EXECUTOR || SYZ_ENABLE_CGROUPS char cgroupdir[64]; snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/unified/syz%llu", procid); if (symlink(cgroupdir, "./cgroup")) { debug("symlink(%s, ./cgroup) failed: %d\n", cgroupdir, errno); } snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/cpu/syz%llu", procid); if (symlink(cgroupdir, "./cgroup.cpu")) { debug("symlink(%s, ./cgroup.cpu) failed: %d\n", cgroupdir, errno); } snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/net/syz%llu", procid); if (symlink(cgroupdir, "./cgroup.net")) { debug("symlink(%s, ./cgroup.net) failed: %d\n", cgroupdir, errno); } #endif #if SYZ_EXECUTOR || SYZ_TUN_ENABLE flush_tun(); #endif } #define SYZ_HAVE_RESET_TEST 1 static void reset_test() { int fd; for (fd = 3; fd < 30; fd++) close(fd); } #endif #elif GOOS_test #include #include #if SYZ_EXECUTOR || __NR_syz_mmap #include static long syz_mmap(long a0, long a1) { return (long)mmap((void*)a0, a1, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE | MAP_FIXED, -1, 0); } #endif #if SYZ_EXECUTOR || __NR_syz_errno #include static long syz_errno(long v) { errno = v; return v == 0 ? 0 : -1; } #endif #if SYZ_EXECUTOR || __NR_syz_compare #include #include static long syz_compare(long want, long want_len, long got, long got_len) { if (want_len != got_len) { debug("syz_compare: want_len=%lu got_len=%lu\n", want_len, got_len); errno = EBADF; return -1; } if (memcmp((void*)want, (void*)got, want_len)) { debug("syz_compare: data differs\n"); errno = EINVAL; return -1; } return 0; } #endif #if SYZ_EXECUTOR || SYZ_SANDBOX_NONE static void loop(); static int do_sandbox_none(void) { loop(); doexit(0); } #endif #if SYZ_EXECUTOR #define do_sandbox_setuid() 0 #define do_sandbox_namespace() 0 #endif #elif GOOS_windows #include #include "common.h" #if SYZ_EXECUTOR || SYZ_HANDLE_SEGV static void install_segv_handler() { } #define NONFAILING(...) \ __try { \ __VA_ARGS__; \ } __except (EXCEPTION_EXECUTE_HANDLER) { \ } #endif #if SYZ_EXECUTOR || SYZ_THREADED || SYZ_REPEAT && SYZ_EXECUTOR_USES_FORK_SERVER static uint64 current_time_ms() { return GetTickCount64(); } #endif #if SYZ_EXECUTOR || SYZ_THREADED || SYZ_REPEAT && SYZ_EXECUTOR_USES_FORK_SERVER static void sleep_ms(uint64 ms) { Sleep(ms); } #endif #if SYZ_EXECUTOR || SYZ_THREADED static void thread_start(void* (*fn)(void*), void* arg) { HANDLE th = CreateThread(NULL, 128 << 10, (LPTHREAD_START_ROUTINE)fn, arg, 0, NULL); if (th == NULL) exitf("CreateThread failed"); } struct event_t { CRITICAL_SECTION cs; CONDITION_VARIABLE cv; int state; }; static void event_init(event_t* ev) { InitializeCriticalSection(&ev->cs); InitializeConditionVariable(&ev->cv); ev->state = 0; } static void event_reset(event_t* ev) { ev->state = 0; } static void event_set(event_t* ev) { EnterCriticalSection(&ev->cs); if (ev->state) fail("event already set"); ev->state = 1; LeaveCriticalSection(&ev->cs); WakeAllConditionVariable(&ev->cv); } static void event_wait(event_t* ev) { EnterCriticalSection(&ev->cs); while (!ev->state) SleepConditionVariableCS(&ev->cv, &ev->cs, INFINITE); LeaveCriticalSection(&ev->cs); } static int event_isset(event_t* ev) { EnterCriticalSection(&ev->cs); int res = ev->state; LeaveCriticalSection(&ev->cs); return res; } static int event_timedwait(event_t* ev, uint64 timeout_ms) { EnterCriticalSection(&ev->cs); uint64 start = current_time_ms(); for (;;) { if (ev->state) break; uint64 now = current_time_ms(); if (now - start > timeout_ms) break; SleepConditionVariableCS(&ev->cv, &ev->cs, timeout_ms - (now - start)); } int res = ev->state; LeaveCriticalSection(&ev->cs); return res; } #endif #if SYZ_EXECUTOR || SYZ_SANDBOX_NONE static void loop(); static int do_sandbox_none(void) { loop(); doexit(0); } #endif #if SYZ_EXECUTOR #define do_sandbox_setuid() 0 #define do_sandbox_namespace() 0 #endif #elif GOOS_test #include #include #if SYZ_EXECUTOR || __NR_syz_mmap #include static long syz_mmap(long a0, long a1) { return (long)mmap((void*)a0, a1, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE | MAP_FIXED, -1, 0); } #endif #if SYZ_EXECUTOR || __NR_syz_errno #include static long syz_errno(long v) { errno = v; return v == 0 ? 0 : -1; } #endif #if SYZ_EXECUTOR || __NR_syz_compare #include #include static long syz_compare(long want, long want_len, long got, long got_len) { if (want_len != got_len) { debug("syz_compare: want_len=%lu got_len=%lu\n", want_len, got_len); errno = EBADF; return -1; } if (memcmp((void*)want, (void*)got, want_len)) { debug("syz_compare: data differs\n"); errno = EINVAL; return -1; } return 0; } #endif #if SYZ_EXECUTOR || SYZ_SANDBOX_NONE static void loop(); static int do_sandbox_none(void) { loop(); doexit(0); } #endif #if SYZ_EXECUTOR #define do_sandbox_setuid() 0 #define do_sandbox_namespace() 0 #endif #else #error "unknown OS" #endif #if SYZ_THREADED struct thread_t { int created, call; event_t ready, done; }; static struct thread_t threads[16]; static void execute_call(int call); static int running; static void* thr(void* arg) { struct thread_t* th = (struct thread_t*)arg; for (;;) { event_wait(&th->ready); event_reset(&th->ready); execute_call(th->call); __atomic_fetch_sub(&running, 1, __ATOMIC_RELAXED); event_set(&th->done); } return 0; } #if SYZ_REPEAT static void execute_one() #else static void loop() #endif { #if SYZ_REPRO if (write(1, "executing program\n", sizeof("executing program\n") - 1)) { } #endif #if SYZ_TRACE printf("### start\n"); #endif int i, call, thread; #if SYZ_COLLIDE int collide = 0; again: #endif for (call = 0; call < [[NUM_CALLS]]; call++) { for (thread = 0; thread < sizeof(threads) / sizeof(threads[0]); thread++) { struct thread_t* th = &threads[thread]; if (!th->created) { th->created = 1; event_init(&th->ready); event_init(&th->done); event_set(&th->done); thread_start(thr, th); } if (!event_isset(&th->done)) continue; event_reset(&th->done); th->call = call; __atomic_fetch_add(&running, 1, __ATOMIC_RELAXED); event_set(&th->ready); #if SYZ_COLLIDE if (collide && (call % 2) == 0) break; #endif event_timedwait(&th->done, 45); break; } } for (i = 0; i < 100 && __atomic_load_n(&running, __ATOMIC_RELAXED); i++) sleep_ms(1); #if SYZ_COLLIDE if (!collide) { collide = 1; goto again; } #endif } #endif #if SYZ_EXECUTOR || SYZ_REPEAT static void execute_one(); #if SYZ_EXECUTOR_USES_FORK_SERVER #include #include #include #if GOOS_linux #define WAIT_FLAGS __WALL #else #define WAIT_FLAGS 0 #endif #if SYZ_EXECUTOR static void reply_handshake(); #endif static void loop() { #if SYZ_HAVE_SETUP_LOOP setup_loop(); #endif #if SYZ_EXECUTOR reply_handshake(); #endif #if SYZ_EXECUTOR && GOOS_akaros int child_pipe[2]; if (pipe(child_pipe)) fail("pipe failed"); #endif int iter; #if SYZ_REPEAT_TIMES for (iter = 0; iter < [[REPEAT_TIMES]]; iter++) { #else for (iter = 0;; iter++) { #endif #if SYZ_EXECUTOR || SYZ_USE_TMP_DIR char cwdbuf[32]; sprintf(cwdbuf, "./%d", iter); if (mkdir(cwdbuf, 0777)) fail("failed to mkdir"); #endif #if SYZ_HAVE_RESET_LOOP reset_loop(); #endif #if SYZ_EXECUTOR receive_execute(); #endif int pid = fork(); if (pid < 0) fail("clone failed"); if (pid == 0) { #if SYZ_EXECUTOR || SYZ_USE_TMP_DIR if (chdir(cwdbuf)) fail("failed to chdir"); #endif #if SYZ_HAVE_SETUP_TEST setup_test(); #endif #if GOOS_akaros #if SYZ_EXECUTOR dup2(child_pipe[0], kInPipeFd); close(child_pipe[0]); close(child_pipe[1]); #endif execl(program_name, program_name, "child", NULL); fail("execl failed"); #else #if SYZ_EXECUTOR close(kInPipeFd); #endif #if SYZ_EXECUTOR && SYZ_EXECUTOR_USES_SHMEM close(kOutPipeFd); #endif execute_one(); debug("worker exiting\n"); #if SYZ_HAVE_RESET_TEST reset_test(); #endif doexit(0); #endif } debug("spawned worker pid %d\n", pid); #if SYZ_EXECUTOR && GOOS_akaros resend_execute(child_pipe[1]); #endif int status = 0; uint64 start = current_time_ms(); #if SYZ_EXECUTOR && SYZ_EXECUTOR_USES_SHMEM uint64 last_executed = start; uint32 executed_calls = __atomic_load_n(output_data, __ATOMIC_RELAXED); #endif for (;;) { if (waitpid(-1, &status, WNOHANG | WAIT_FLAGS) == pid) break; sleep_ms(1); #if SYZ_EXECUTOR && SYZ_EXECUTOR_USES_SHMEM uint64 now = current_time_ms(); uint32 now_executed = __atomic_load_n(output_data, __ATOMIC_RELAXED); if (executed_calls != now_executed) { executed_calls = now_executed; last_executed = now; } if ((now - start < 5 * 1000) && (now - start < 3 * 1000 || now - last_executed < 1000)) continue; #else if (current_time_ms() - start < 5 * 1000) continue; #endif debug("killing\n"); kill_and_wait(pid, &status); break; } #if SYZ_EXECUTOR status = WEXITSTATUS(status); if (status == kFailStatus) fail("child failed"); if (status == kErrorStatus) error("child errored"); reply_execute(0); #endif #if SYZ_EXECUTOR || SYZ_USE_TMP_DIR remove_dir(cwdbuf); #endif } } #else static void loop() { execute_one(); } #endif #endif #if !SYZ_EXECUTOR [[SYSCALL_DEFINES]] [[RESULTS]] #if SYZ_THREADED || SYZ_REPEAT || SYZ_SANDBOX_NONE || SYZ_SANDBOX_SETUID || SYZ_SANDBOX_NAMESPACE #if SYZ_THREADED void execute_call(int call) #elif SYZ_REPEAT void execute_one() #else void loop() #endif { [[SYSCALLS]] } #endif #if GOOS_akaros && SYZ_REPEAT #include int main(int argc, char** argv) { [[MMAP_DATA]] program_name = argv[0]; if (argc == 2 && strcmp(argv[1], "child") == 0) child(); #else int main() { [[MMAP_DATA]] #endif #if SYZ_HANDLE_SEGV install_segv_handler(); #endif #if SYZ_PROCS for (procid = 0; procid < [[PROCS]]; procid++) { if (fork() == 0) { #endif #if SYZ_USE_TMP_DIR use_temporary_dir(); #endif [[SANDBOX_FUNC]] #if SYZ_PROCS } } sleep(1000000); #endif return 0; } #endif `