# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlow Lite Python Interface: Sanity check.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import io import numpy as np import six from tensorflow.lite.python import interpreter as interpreter_wrapper from tensorflow.python.framework import test_util from tensorflow.python.platform import resource_loader from tensorflow.python.platform import test class InterpreterTest(test_util.TensorFlowTestCase): def testFloat(self): interpreter = interpreter_wrapper.Interpreter( model_path=resource_loader.get_path_to_datafile( 'testdata/permute_float.tflite')) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('input', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 4] == input_details[0]['shape']).all()) self.assertEqual((0.0, 0), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('output', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 4] == output_details[0]['shape']).all()) self.assertEqual((0.0, 0), output_details[0]['quantization']) test_input = np.array([[1.0, 2.0, 3.0, 4.0]], dtype=np.float32) expected_output = np.array([[4.0, 3.0, 2.0, 1.0]], dtype=np.float32) interpreter.set_tensor(input_details[0]['index'], test_input) interpreter.invoke() output_data = interpreter.get_tensor(output_details[0]['index']) self.assertTrue((expected_output == output_data).all()) def testUint8(self): model_path = resource_loader.get_path_to_datafile( 'testdata/permute_uint8.tflite') with io.open(model_path, 'rb') as model_file: data = model_file.read() interpreter = interpreter_wrapper.Interpreter(model_content=data) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('input', input_details[0]['name']) self.assertEqual(np.uint8, input_details[0]['dtype']) self.assertTrue(([1, 4] == input_details[0]['shape']).all()) self.assertEqual((1.0, 0), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('output', output_details[0]['name']) self.assertEqual(np.uint8, output_details[0]['dtype']) self.assertTrue(([1, 4] == output_details[0]['shape']).all()) self.assertEqual((1.0, 0), output_details[0]['quantization']) test_input = np.array([[1, 2, 3, 4]], dtype=np.uint8) expected_output = np.array([[4, 3, 2, 1]], dtype=np.uint8) interpreter.resize_tensor_input(input_details[0]['index'], test_input.shape) interpreter.allocate_tensors() interpreter.set_tensor(input_details[0]['index'], test_input) interpreter.invoke() output_data = interpreter.get_tensor(output_details[0]['index']) self.assertTrue((expected_output == output_data).all()) def testString(self): interpreter = interpreter_wrapper.Interpreter( model_path=resource_loader.get_path_to_datafile( 'testdata/gather_string.tflite')) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(2, len(input_details)) self.assertEqual('input', input_details[0]['name']) self.assertEqual(np.string_, input_details[0]['dtype']) self.assertTrue(([10] == input_details[0]['shape']).all()) self.assertEqual((0.0, 0), input_details[0]['quantization']) self.assertEqual('indices', input_details[1]['name']) self.assertEqual(np.int64, input_details[1]['dtype']) self.assertTrue(([3] == input_details[1]['shape']).all()) self.assertEqual((0.0, 0), input_details[1]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('output', output_details[0]['name']) self.assertEqual(np.string_, output_details[0]['dtype']) self.assertTrue(([3] == output_details[0]['shape']).all()) self.assertEqual((0.0, 0), output_details[0]['quantization']) test_input = np.array([1, 2, 3], dtype=np.int64) interpreter.set_tensor(input_details[1]['index'], test_input) test_input = np.array(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']) expected_output = np.array([b'b', b'c', b'd']) interpreter.set_tensor(input_details[0]['index'], test_input) interpreter.invoke() output_data = interpreter.get_tensor(output_details[0]['index']) self.assertTrue((expected_output == output_data).all()) class InterpreterTestErrorPropagation(test_util.TensorFlowTestCase): def testInvalidModelContent(self): with self.assertRaisesRegexp(ValueError, 'Model provided has model identifier \''): interpreter_wrapper.Interpreter(model_content=six.b('garbage')) def testInvalidModelFile(self): with self.assertRaisesRegexp( ValueError, 'Could not open \'totally_invalid_file_name\''): interpreter_wrapper.Interpreter( model_path='totally_invalid_file_name') def testInvokeBeforeReady(self): interpreter = interpreter_wrapper.Interpreter( model_path=resource_loader.get_path_to_datafile( 'testdata/permute_float.tflite')) with self.assertRaisesRegexp(RuntimeError, 'Invoke called on model that is not ready'): interpreter.invoke() class InterpreterTensorAccessorTest(test_util.TensorFlowTestCase): def setUp(self): self.interpreter = interpreter_wrapper.Interpreter( model_path=resource_loader.get_path_to_datafile( 'testdata/permute_float.tflite')) self.interpreter.allocate_tensors() self.input0 = self.interpreter.get_input_details()[0]['index'] self.initial_data = np.array([[-1., -2., -3., -4.]], np.float32) def testTensorAccessor(self): """Check that tensor returns a reference.""" array_ref = self.interpreter.tensor(self.input0) np.copyto(array_ref(), self.initial_data) self.assertAllEqual(array_ref(), self.initial_data) self.assertAllEqual( self.interpreter.get_tensor(self.input0), self.initial_data) def testGetTensorAccessor(self): """Check that get_tensor returns a copy.""" self.interpreter.set_tensor(self.input0, self.initial_data) array_initial_copy = self.interpreter.get_tensor(self.input0) new_value = np.add(1., array_initial_copy) self.interpreter.set_tensor(self.input0, new_value) self.assertAllEqual(array_initial_copy, self.initial_data) self.assertAllEqual(self.interpreter.get_tensor(self.input0), new_value) def testBase(self): self.assertTrue(self.interpreter._safe_to_run()) _ = self.interpreter.tensor(self.input0) self.assertTrue(self.interpreter._safe_to_run()) in0 = self.interpreter.tensor(self.input0)() self.assertFalse(self.interpreter._safe_to_run()) in0b = self.interpreter.tensor(self.input0)() self.assertFalse(self.interpreter._safe_to_run()) # Now get rid of the buffers so that we can evaluate. del in0 del in0b self.assertTrue(self.interpreter._safe_to_run()) def testBaseProtectsFunctions(self): in0 = self.interpreter.tensor(self.input0)() # Make sure we get an exception if we try to run an unsafe operation with self.assertRaisesRegexp( RuntimeError, 'There is at least 1 reference'): _ = self.interpreter.allocate_tensors() # Make sure we get an exception if we try to run an unsafe operation with self.assertRaisesRegexp( RuntimeError, 'There is at least 1 reference'): _ = self.interpreter.invoke() # Now test that we can run del in0 # this is our only buffer reference, so now it is safe to change in0safe = self.interpreter.tensor(self.input0) _ = self.interpreter.allocate_tensors() del in0safe # make sure in0Safe is held but lint doesn't complain if __name__ == '__main__': test.main()