# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Tests for tensorflow.python.training.saver.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import math import os import random import time import numpy as np import six from google.protobuf.any_pb2 import Any from tensorflow.core.protobuf import config_pb2 from tensorflow.core.protobuf import meta_graph_pb2 from tensorflow.core.protobuf import queue_runner_pb2 from tensorflow.core.protobuf import rewriter_config_pb2 from tensorflow.core.protobuf import saver_pb2 from tensorflow.python import pywrap_tensorflow from tensorflow.python.client import session from tensorflow.python.data.ops import dataset_ops from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import errors_impl from tensorflow.python.framework import function from tensorflow.python.framework import graph_io from tensorflow.python.framework import meta_graph from tensorflow.python.framework import ops as ops_lib from tensorflow.python.framework import test_util from tensorflow.python.keras.engine import training from tensorflow.python.keras.layers import core from tensorflow.python.lib.io import file_io from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import partitioned_variables from tensorflow.python.ops import random_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import sparse_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables import tensorflow.python.ops.nn_grad # pylint: disable=unused-import from tensorflow.python.platform import gfile from tensorflow.python.platform import test from tensorflow.python.summary import summary from tensorflow.python.training import adam from tensorflow.python.training import checkpoint_management from tensorflow.python.training import gradient_descent from tensorflow.python.training import queue_runner_impl from tensorflow.python.training import saver as saver_module from tensorflow.python.training import saver_test_utils from tensorflow.python.training import training_util from tensorflow.python.training.tracking import base as trackable_base from tensorflow.python.training.tracking import tracking as trackable_tracking from tensorflow.python.training.tracking import util as trackable_utils from tensorflow.python.util import compat class SaverTest(test.TestCase): def basicSaveRestore(self, variable_op): save_path = os.path.join(self.get_temp_dir(), "basic_save_restore") with self.session(graph=ops_lib.Graph()) as sess: # Build a graph with 2 parameter nodes, and Save and # Restore nodes for them. v0 = variable_op(10.0, name="v0") v1 = variable_op(20.0, name="v1") v2 = saver_test_utils.CheckpointedOp(name="v2") v2_init = v2.insert("k1", 30.0) # Initialize all variables if not context.executing_eagerly(): self.evaluate([variables.global_variables_initializer(), v2_init]) # Check that the parameter nodes have been initialized. self.assertEqual(10.0, self.evaluate(v0)) self.assertEqual(20.0, self.evaluate(v1)) self.assertEqual(b"k1", self.evaluate(v2.keys())) self.assertEqual(30.0, self.evaluate(v2.values())) # Save the initialized values in the file at "save_path" save = saver_module.Saver( { "v0": v0, "v1": v1, "v2": v2.saveable }, restore_sequentially=True) val = save.save(sess, save_path) self.assertTrue(isinstance(val, six.string_types)) self.assertEqual(save_path, val) # Start a second session. In that session the parameter nodes # have not been initialized either. with self.session(graph=ops_lib.Graph()) as sess: v0 = variable_op(-1.0, name="v0") v1 = variable_op(-1.0, name="v1") v2 = saver_test_utils.CheckpointedOp(name="v2") # Assert that the variables are not initialized. if not context.executing_eagerly(): self.assertEqual( len(variables.report_uninitialized_variables().eval()), 2) self.assertEqual(0, len(self.evaluate(v2.keys()))) self.assertEqual(0, len(self.evaluate(v2.values()))) # Restore the saved values in the parameter nodes. save = saver_module.Saver({"v0": v0, "v1": v1, "v2": v2.saveable}) save.restore(sess, save_path) # Check that the parameter nodes have been restored. self.assertEqual(10.0, self.evaluate(v0)) self.assertEqual(20.0, self.evaluate(v1)) self.assertEqual(b"k1", self.evaluate(v2.keys())) self.assertEqual(30.0, self.evaluate(v2.values())) # Build another graph with 2 nodes, initialized # differently, and a Restore node for them. with self.session(graph=ops_lib.Graph()) as sess: v0_2 = variable_op(1000.0, name="v0") v1_2 = variable_op(2000.0, name="v1") v2_2 = saver_test_utils.CheckpointedOp(name="v2") v2_init = v2_2.insert("k1000", 3000.0) # Check that the parameter nodes have been initialized. if not context.executing_eagerly(): init_all_op = [variables.global_variables_initializer(), v2_init] self.evaluate(init_all_op) # TODO(xpan): Why _mutable_hash_table_v2 doesn't create empty # table as it claims in eager mode? self.assertEqual(b"k1000", self.evaluate(v2_2.keys())) self.assertEqual(3000.0, self.evaluate(v2_2.values())) self.assertEqual(1000.0, self.evaluate(v0_2)) self.assertEqual(2000.0, self.evaluate(v1_2)) # Restore the values saved earlier in the parameter nodes. save2 = saver_module.Saver({"v0": v0_2, "v1": v1_2, "v2": v2_2.saveable}) save2.restore(sess, save_path) # Check that the parameter nodes have been restored. self.assertEqual(10.0, self.evaluate(v0_2)) self.assertEqual(20.0, self.evaluate(v1_2)) self.assertEqual(b"k1", self.evaluate(v2_2.keys())) self.assertEqual(30.0, self.evaluate(v2_2.values())) def testBasic(self): self.basicSaveRestore(variables.Variable) @test_util.run_in_graph_and_eager_modes def testResourceBasic(self): self.basicSaveRestore(resource_variable_ops.ResourceVariable) @test_util.run_deprecated_v1 def testResourceColocation(self): partitioner = partitioned_variables.fixed_size_partitioner(num_shards=2) with ops_lib.device("/job:ps/device:GPU:0"): v = variable_scope.get_variable("v0", shape=[10, 2], partitioner=partitioner, use_resource=True) saver_module.Saver({"v0": v}).build() save_op = None for op in ops_lib.get_default_graph().get_operations(): if op.type == "SaveV2": save_op = op break assert save_op is not None for save_inp in save_op.inputs[3:]: # Input to SaveV2 op is placed on CPU of the same device as the Variable. self.assertEqual("/job:ps/device:CPU:0", save_inp.device) def testResourceVariableReadOpsAddedDeterministically(self): graph_defs = [] num_graphs = 10 for _ in range(num_graphs): with ops_lib.Graph().as_default() as g: for i in range(20): resource_variable_ops.ResourceVariable(i, name="var%s" % i) saver_module.Saver() graph_defs.append(g.as_graph_def()) for i in range(num_graphs - 1): self.assertEqual(graph_defs[i], graph_defs[i + 1]) def testEagerBasic(self): with context.eager_mode(): ckpt_prefix = os.path.join(self.get_temp_dir(), "ckpt") v1 = resource_variable_ops.ResourceVariable(3.14, name="v1") v2 = resource_variable_ops.ResourceVariable([1, 2], name="v2") save = saver_module.Saver([v1, v2]) save.save(None, ckpt_prefix) v1.assign(0.0) v2.assign([0, 0]) self.assertNear(0.0, self.evaluate(v1), 1e-5) self.assertAllEqual([0, 0], self.evaluate(v2)) save.restore(None, ckpt_prefix) self.assertNear(3.14, self.evaluate(v1), 1e-5) self.assertAllEqual([1, 2], self.evaluate(v2)) def testEagerGraphCompatibility(self): # Save from graph mode and restore from eager mode. graph_ckpt_prefix = os.path.join(self.get_temp_dir(), "graph_ckpt") with context.graph_mode(): with self.session(graph=ops_lib.Graph()) as sess: # Create a graph model and save the checkpoint. w1 = resource_variable_ops.ResourceVariable(1.0, name="w1") w2 = resource_variable_ops.ResourceVariable(2.0, name="w2") graph_saver = saver_module.Saver([w1, w2]) self.evaluate(variables.global_variables_initializer()) graph_saver.save(sess, graph_ckpt_prefix) with context.eager_mode(): ops_lib._default_graph_stack.reset() # pylint: disable=protected-access ops_lib.reset_default_graph() w1 = resource_variable_ops.ResourceVariable(0.0, name="w1") w2 = resource_variable_ops.ResourceVariable(0.0, name="w2") graph_saver = saver_module.Saver([w1, w2]) graph_saver.restore(None, graph_ckpt_prefix) self.assertAllEqual(self.evaluate(w1), 1.0) self.assertAllEqual(self.evaluate(w2), 2.0) # Save from eager mode and restore from graph mode. eager_ckpt_prefix = os.path.join(self.get_temp_dir(), "eager_ckpt") with context.eager_mode(): ops_lib._default_graph_stack.reset() # pylint: disable=protected-access ops_lib.reset_default_graph() w3 = resource_variable_ops.ResourceVariable(3.0, name="w3") w4 = resource_variable_ops.ResourceVariable(4.0, name="w4") graph_saver = saver_module.Saver([w3, w4]) graph_saver.save(None, eager_ckpt_prefix) with context.graph_mode(): with self.session(graph=ops_lib.Graph()) as sess: w3 = resource_variable_ops.ResourceVariable(0.0, name="w3") w4 = resource_variable_ops.ResourceVariable(0.0, name="w4") graph_saver = saver_module.Saver([w3, w4]) self.evaluate(variables.global_variables_initializer()) graph_saver.restore(sess, eager_ckpt_prefix) self.assertAllEqual(w3.eval(), 3.0) self.assertAllEqual(w4.eval(), 4.0) @test_util.run_in_graph_and_eager_modes def testResourceSaveRestoreCachingDevice(self): save_path = os.path.join(self.get_temp_dir(), "resource_cache") with self.session(graph=ops_lib.Graph()) as sess: v = resource_variable_ops.ResourceVariable([1], caching_device="/cpu:0", name="v") if context.executing_eagerly(): sess = None else: self.evaluate(variables.global_variables_initializer()) save = saver_module.Saver([v]) save.save(sess, save_path) save2 = saver_module.Saver([v]) save2.restore(sess, save_path) self.assertEquals(self.evaluate(v), [1]) def testNoAdditionalOpsAddedBySaverForResourceVariablesOutsideSaveScope(self): with ops_lib.Graph().as_default() as g: v = resource_variable_ops.ResourceVariable(1.0, name="v") with ops_lib.name_scope("saver1"): saver_module.Saver() with ops_lib.name_scope("saver2"): saver_module.Saver({"name": v}) ops_in_saver1_scope_but_not_save_scope = [ op for op in g.get_operations() if (op.name.startswith("saver1/") and not op.name.startswith("saver1/save/"))] self.assertEqual(ops_in_saver1_scope_but_not_save_scope, []) ops_in_saver2_scope_but_not_save_scope = [ op for op in g.get_operations() if (op.name.startswith("saver2/") and not op.name.startswith("saver2/save/"))] self.assertEqual(ops_in_saver2_scope_but_not_save_scope, []) @test_util.run_deprecated_v1 def testSaveCopyRestoreWithSaveRelativePaths(self): """Save, copy checkpoint dir and restore from copied dir. This only works for save_relative_paths=True. """ save_dir1 = os.path.join(self.get_temp_dir(), "save_dir1") os.mkdir(save_dir1) save_path1 = os.path.join(save_dir1, "save_copy_restore") # Build a graph with 2 parameter nodes, and Save and # Restore nodes for them. v0 = variables.VariableV1(10.0, name="v0") v1 = variables.VariableV1(20.0, name="v1") v2 = saver_test_utils.CheckpointedOp(name="v2") v2_init = v2.insert("k1", 30.0) save = saver_module.Saver( var_list={ "v0": v0, "v1": v1, "v2": v2.saveable}, restore_sequentially=True, save_relative_paths=True) init_all_op = [variables.global_variables_initializer(), v2_init] with self.cached_session() as sess: # Initialize all variables self.evaluate(init_all_op) # Check that the parameter nodes have been initialized. self.assertEqual(10.0, self.evaluate(v0)) self.assertEqual(20.0, self.evaluate(v1)) self.assertEqual(b"k1", self.evaluate(v2.keys())) self.assertEqual(30.0, self.evaluate(v2.values())) # Save the initialized values in the file at "save_path" val = save.save(sess, save_path1) self.assertTrue(isinstance(val, six.string_types)) self.assertEqual(save_path1, val) self.assertEqual( checkpoint_management.latest_checkpoint(save_dir1), save_path1) save_dir2 = os.path.join(self.get_temp_dir(), "save_dir2") os.renames(save_dir1, save_dir2) save_path2 = os.path.join(save_dir2, "save_copy_restore") self.assertEqual( checkpoint_management.latest_checkpoint(save_dir2), save_path2) # Start a second session. In that session the parameter nodes # have not been initialized either. with self.cached_session() as sess: v0 = variables.VariableV1(-1.0, name="v0") v1 = variables.VariableV1(-1.0, name="v1") v2 = saver_test_utils.CheckpointedOp(name="v2") save = saver_module.Saver({"v0": v0, "v1": v1, "v2": v2.saveable}) # Assert that the variables are not initialized. self.assertEqual( len(variables.report_uninitialized_variables().eval()), 2) self.assertEqual(0, len(self.evaluate(v2.keys()))) self.assertEqual(0, len(self.evaluate(v2.values()))) # Restore the saved values in the parameter nodes. save.restore(sess, save_path2) # Check that the parameter nodes have been restored. self.assertEqual(10.0, self.evaluate(v0)) self.assertEqual(20.0, self.evaluate(v1)) self.assertEqual(b"k1", self.evaluate(v2.keys())) self.assertEqual(30.0, self.evaluate(v2.values())) @test_util.run_deprecated_v1 def testFilenameTensor(self): v0 = variables.VariableV1(0, name="v0") filename = b"somerandomfilename" save = saver_module.Saver({"v0": v0}, filename=filename) with self.cached_session() as sess: tensor = sess.graph.get_tensor_by_name( save.saver_def.filename_tensor_name) self.assertEqual(self.evaluate(tensor), filename) def testInvalidPath(self): v0 = variables.VariableV1(0, name="v0") for ver in (saver_pb2.SaverDef.V1, saver_pb2.SaverDef.V2): with self.cached_session() as sess: save = saver_module.Saver({"v0": v0}, write_version=ver) with self.assertRaisesRegexp( ValueError, "The passed save_path is not a valid checkpoint:"): save.restore(sess, "invalid path") @test_util.run_v1_only("b/120545219") def testInt64(self): save_path = os.path.join(self.get_temp_dir(), "int64") with self.cached_session() as sess: # Build a graph with 1 node, and save and restore for them. v = variables.VariableV1(np.int64(15), name="v") save = saver_module.Saver({"v": v}, restore_sequentially=True) self.evaluate(variables.global_variables_initializer()) # Save the initialized values in the file at "save_path" val = save.save(sess, save_path) self.assertTrue(isinstance(val, six.string_types)) self.assertEqual(save_path, val) with self.cached_session() as sess: v = variables.VariableV1(np.int64(-1), name="v") save = saver_module.Saver({"v": v}) with self.assertRaisesWithPredicateMatch( errors_impl.OpError, lambda e: "uninitialized value v" in e.message): self.evaluate(v) # Restore the saved values in the parameter nodes. save.restore(sess, save_path) # Check that the parameter nodes have been restored. self.assertEqual(np.int64(15), self.evaluate(v)) def testSomeErrors(self): with ops_lib.Graph().as_default(): v0 = variables.VariableV1([10.0], name="v0") v1 = variables.VariableV1([20.0], name="v1") v2 = variables.VariableV1([20.0], name="v2") v2._set_save_slice_info( variables.Variable.SaveSliceInfo("v1", [1], [0], [1])) # By default the name used for "v2" will be "v1" and raise an error. with self.assertRaisesRegexp(ValueError, "same name: v1"): saver_module.Saver([v0, v1, v2]) # The names are different and will work. saver_module.Saver({"vee1": v1, "other": [v2]}) # Partitioned variables also cause name conflicts. p_v1 = variable_scope.get_variable( "p_v1", shape=[4, 5], partitioner=partitioned_variables.fixed_size_partitioner( num_shards=2)) p_v2 = variable_scope.get_variable( "p_v2", shape=[4, 5], partitioner=partitioned_variables.fixed_size_partitioner( num_shards=2)) p_v2._name = "p_v1" with self.assertRaisesRegexp(ValueError, "same name: p_v1"): saver_module.Saver([p_v1, p_v2]) def testSameName(self): with ops_lib.Graph().as_default(): v0 = variables.VariableV1([10.0], name="v0") v2 = saver_test_utils.CheckpointedOp(name="v2") # Saving one variable under two names raises an error. with self.assertRaisesRegexp( ValueError, "The same saveable will be restored with two names: v0"): saver_module.Saver({"v0": v0, "v0too": v0}) # Ditto for custom saveables. with self.assertRaisesRegexp( ValueError, "The same saveable will be restored with two names: v2"): saver_module.Saver({"v2": v2.saveable, "v2too": v2.saveable}) # Verify non-duplicate names work. saver_module.Saver({"v0": v0, "v2": v2.saveable}) @test_util.run_v1_only("b/120545219") def testBasicsWithListOfVariables(self): save_path = os.path.join(self.get_temp_dir(), "basics_with_list") with self.session(graph=ops_lib.Graph()) as sess: # Build a graph with 2 parameter nodes, and Save and # Restore nodes for them. v0 = variables.VariableV1(10.0, name="v0") v1 = variables.VariableV1(20.0, name="v1") v2 = saver_test_utils.CheckpointedOp(name="v2") v2_init = v2.insert("k1", 30.0) save = saver_module.Saver([v0, v1, v2.saveable]) self.evaluate(variables.global_variables_initializer()) v2_init.run() # Check that the parameter nodes have been initialized. self.assertEqual(10.0, self.evaluate(v0)) self.assertEqual(20.0, self.evaluate(v1)) self.assertEqual(b"k1", self.evaluate(v2.keys())) self.assertEqual(30.0, self.evaluate(v2.values())) # Save the initialized values in the file at "save_path" val = save.save(sess, save_path) self.assertTrue(isinstance(val, six.string_types)) self.assertEqual(save_path, val) # Start a second session. In that session the variables # have not been initialized either. with self.session(graph=ops_lib.Graph()) as sess: v0 = variables.VariableV1(-1.0, name="v0") v1 = variables.VariableV1(-1.0, name="v1") v2 = saver_test_utils.CheckpointedOp(name="v2") save = saver_module.Saver([v0, v1, v2.saveable]) with self.assertRaisesWithPredicateMatch( errors_impl.OpError, lambda e: "uninitialized value v0" in e.message): self.evaluate(v0) with self.assertRaisesWithPredicateMatch( errors_impl.OpError, lambda e: "uninitialized value v1" in e.message): self.evaluate(v1) self.assertEqual(0, len(self.evaluate(v2.keys()))) self.assertEqual(0, len(self.evaluate(v2.values()))) # Restore the saved values in the parameter nodes. save.restore(sess, save_path) # Check that the parameter nodes have been restored. self.assertEqual(10.0, self.evaluate(v0)) self.assertEqual(20.0, self.evaluate(v1)) self.assertEqual(b"k1", self.evaluate(v2.keys())) self.assertEqual(30.0, self.evaluate(v2.values())) # Build another graph with 2 nodes, initialized # differently, and a Restore node for them. with self.session(graph=ops_lib.Graph()) as sess: v0_2 = variables.VariableV1(1000.0, name="v0") v1_2 = variables.VariableV1(2000.0, name="v1") v2_2 = saver_test_utils.CheckpointedOp(name="v2") save2 = saver_module.Saver([v0_2, v1_2, v2_2.saveable]) v2_2.insert("k1000", 3000.0).run() self.evaluate(variables.global_variables_initializer()) # Check that the parameter nodes have been initialized. self.assertEqual(1000.0, self.evaluate(v0_2)) self.assertEqual(2000.0, self.evaluate(v1_2)) self.assertEqual(b"k1000", self.evaluate(v2_2.keys())) self.assertEqual(3000.0, self.evaluate(v2_2.values())) # Restore the values saved earlier in the parameter nodes. save2.restore(sess, save_path) # Check that the parameter nodes have been restored. self.assertEqual(10.0, self.evaluate(v0_2)) self.assertEqual(20.0, self.evaluate(v1_2)) self.assertEqual(b"k1", self.evaluate(v2_2.keys())) self.assertEqual(30.0, self.evaluate(v2_2.values())) def _SaveAndLoad(self, var_name, var_value, other_value, save_path): with self.session(graph=ops_lib.Graph()) as sess: var = resource_variable_ops.ResourceVariable(var_value, name=var_name) save = saver_module.Saver({var_name: var}) if not context.executing_eagerly(): self.evaluate(var.initializer) val = save.save(sess, save_path) self.assertEqual(save_path, val) with self.session(graph=ops_lib.Graph()) as sess: var = resource_variable_ops.ResourceVariable(other_value, name=var_name) save = saver_module.Saver({var_name: var}) save.restore(sess, save_path) self.assertAllClose(var_value, self.evaluate(var)) def testCacheRereadsFile(self): save_path = os.path.join(self.get_temp_dir(), "cache_rereads") # Save and reload one Variable named "var0". self._SaveAndLoad("var0", 0.0, 1.0, save_path) # Save and reload one Variable named "var1" in the same file. # The cached readers should know to re-read the file. self._SaveAndLoad("var1", 1.1, 2.2, save_path) @test_util.run_deprecated_v1 def testAllowEmpty(self): save_path = os.path.join(self.get_temp_dir(), "allow_empty") with self.cached_session() as sess: _ = constant_op.constant(1) save = saver_module.Saver(allow_empty=True) val = save.save(sess, save_path) self.assertIsNone(val) with self.cached_session() as sess: save = saver_module.Saver(allow_empty=True) save.restore(sess, save_path) def testGPU(self): if not test.is_gpu_available(): return save_path = os.path.join(self.get_temp_dir(), "gpu") with session.Session("", graph=ops_lib.Graph()) as sess: with sess.graph.device(test.gpu_device_name()): v0_1 = variables.VariableV1(123.45) save = saver_module.Saver({"v0": v0_1}) self.evaluate(variables.global_variables_initializer()) save.save(sess, save_path) with session.Session("", graph=ops_lib.Graph()) as sess: with sess.graph.device(test.gpu_device_name()): v0_2 = variables.VariableV1(543.21) save = saver_module.Saver({"v0": v0_2}) self.evaluate(variables.global_variables_initializer()) def testSharedServerOnGPU(self): if not test.is_gpu_available(): return save_path = os.path.join(self.get_temp_dir(), "gpu") with session.Session("", graph=ops_lib.Graph()) as sess: with sess.graph.device(test.gpu_device_name()): v0_1 = variables.VariableV1(123.45) save = saver_module.Saver({"v0": v0_1}, sharded=True, allow_empty=True) self.evaluate(variables.global_variables_initializer()) save.save(sess, save_path) with session.Session("", graph=ops_lib.Graph()) as sess: with sess.graph.device(test.gpu_device_name()): v0_2 = variables.VariableV1(543.21) save = saver_module.Saver({"v0": v0_2}, sharded=True, allow_empty=True) self.evaluate(variables.global_variables_initializer()) def testVariables(self): save_path = os.path.join(self.get_temp_dir(), "variables") with session.Session("", graph=ops_lib.Graph()) as sess: one = variables.VariableV1(1.0) twos = variables.VariableV1([2.0, 2.0, 2.0]) v2 = saver_test_utils.CheckpointedOp(name="v2") init = variables.global_variables_initializer() save = saver_module.Saver() init.run() v2.insert("k1", 3.0).run() save.save(sess, save_path) with session.Session("", graph=ops_lib.Graph()) as sess: one = variables.VariableV1(0.0) twos = variables.VariableV1([0.0, 0.0, 0.0]) v2 = saver_test_utils.CheckpointedOp(name="v2") # Saver with no arg, defaults to 'all variables'. save = saver_module.Saver() save.restore(sess, save_path) self.assertAllClose(1.0, self.evaluate(one)) self.assertAllClose([2.0, 2.0, 2.0], self.evaluate(twos)) self.assertEqual(b"k1", self.evaluate(v2.keys())) self.assertEqual(3.0, self.evaluate(v2.values())) def testVarListShouldBeEmptyInDeferredBuild(self): with ops_lib.Graph().as_default(): v = variables.VariableV1(1.0) with self.assertRaisesRegexp(ValueError, "defer_build"): saver_module.Saver([v], defer_build=True) def testBuildShouldBeCalledBeforeSaveInCaseOfDeferBuild(self): save_path = os.path.join(self.get_temp_dir(), "error_deferred_build") with ops_lib.Graph().as_default(), session.Session() as sess: variables.VariableV1(1.0) saver = saver_module.Saver(defer_build=True) with self.assertRaisesRegexp(RuntimeError, "build"): saver.save(sess, save_path) def testDeferredBuild(self): save_path = os.path.join(self.get_temp_dir(), "deferred_build") with session.Session("", graph=ops_lib.Graph()) as sess: one = variables.VariableV1(1.0) save = saver_module.Saver(defer_build=True) # if build is not deferred, saver cannot save the `twos`. twos = variables.VariableV1([2.0, 2.0, 2.0]) init = variables.global_variables_initializer() save.build() init.run() save.save(sess, save_path) with session.Session("", graph=ops_lib.Graph()) as sess: one = variables.VariableV1(0.0) twos = variables.VariableV1([0.0, 0.0, 0.0]) # Saver with no arg, defaults to 'all variables'. save = saver_module.Saver() save.restore(sess, save_path) self.assertAllClose(1.0, self.evaluate(one)) self.assertAllClose([2.0, 2.0, 2.0], self.evaluate(twos)) @test_util.run_v1_only("b/120545219") def testReshape(self): save_path = os.path.join(self.get_temp_dir(), "variables_reshape") with session.Session("", graph=ops_lib.Graph()) as sess: var = variables.VariableV1([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) init = variables.global_variables_initializer() save = saver_module.Saver() init.run() save.save(sess, save_path) # Error when restoring with default reshape=False with session.Session("", graph=ops_lib.Graph()) as sess: var = variables.VariableV1([[0.0, 0.0], [0.0, 0.0], [0.0, 0.0]]) save = saver_module.Saver() with self.assertRaisesRegexp( errors_impl.InvalidArgumentError, "Assign requires shapes of both tensors to match."): save.restore(sess, save_path) # Restored to new shape with reshape=True with session.Session("", graph=ops_lib.Graph()) as sess: var = variables.VariableV1([[0.0, 0.0], [0.0, 0.0], [0.0, 0.0]]) save = saver_module.Saver(reshape=True) save.restore(sess, save_path) self.assertAllClose([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], self.evaluate(var)) @test_util.run_in_graph_and_eager_modes def testSaveWithGlobalStep(self, pad_step_number=False): save_path = os.path.join(self.get_temp_dir(), "ckpt_with_global_step") global_step_int = 5 # Save and reload one Variable named "var0". self._SaveAndLoad("var0", 0.0, 1.0, save_path) for use_tensor in [True, False]: with self.session(graph=ops_lib.Graph()): var = resource_variable_ops.ResourceVariable(1.0, name="var0") save = saver_module.Saver( { var._shared_name: var }, pad_step_number=pad_step_number) if context.executing_eagerly(): sess = None else: self.evaluate(var.initializer) sess = ops_lib.get_default_session() if use_tensor: global_step = constant_op.constant(global_step_int) val = save.save(sess, save_path, global_step=global_step) else: val = save.save(sess, save_path, global_step=global_step_int) if pad_step_number: expected_save_path = "%s-%s" % (save_path, "{:08d}".format(global_step_int)) else: expected_save_path = "%s-%d" % (save_path, global_step_int) self.assertEqual(expected_save_path, val) def testSaveWithGlobalStepWithPadding(self): self.testSaveWithGlobalStep(pad_step_number=True) def testSaveToNonexistingPath(self): file_io.write_string_to_file( os.path.join(self.get_temp_dir(), "actually_a_file"), "") paths = [ os.path.join(self.get_temp_dir(), "nonexisting_dir/path"), os.path.join(self.get_temp_dir(), "other_nonexisting_dir/path1/path2"), os.path.join(self.get_temp_dir(), "actually_a_file/path"), ] for save_path in paths: # Build a graph with 2 parameter nodes, and Save and # Restore nodes for them. v0 = variables.VariableV1(10.0, name="v0") v1 = variables.VariableV1(20.0, name="v1") save = saver_module.Saver({"v0": v0, "v1": v1}, restore_sequentially=True) init_all_op = variables.global_variables_initializer() # In the case where the parent directory doesn't exist, whether or not the # save succeeds or fails is implementation dependent. Therefore we allow # both cases. try: with self.cached_session() as sess: # Initialize all variables self.evaluate(init_all_op) # Check that the parameter nodes have been initialized. self.assertEqual(10.0, self.evaluate(v0)) self.assertEqual(20.0, self.evaluate(v1)) # Save the graph. save.save(sess, save_path) with self.cached_session() as sess: # Restore the saved values in the parameter nodes. save.restore(sess, save_path) # Check that the parameter nodes have been restored. self.assertEqual(10.0, self.evaluate(v0)) self.assertEqual(20.0, self.evaluate(v1)) except ValueError as exc: error_msg_template = "Parent directory of {} doesn't exist, can't save." self.assertEqual(error_msg_template.format(save_path), str(exc)) def testSaveToURI(self): # ParseURI functions don't work on Windows yet. # TODO(jhseu): Remove this check when it works. if os.name == "nt": self.skipTest("Local URI support doesn't work on Windows") save_path = "file://" + os.path.join(self.get_temp_dir(), "uri") # Build a graph with 2 parameter nodes, and Save and # Restore nodes for them. v0 = variables.VariableV1(10.0, name="v0") v1 = variables.VariableV1(20.0, name="v1") save = saver_module.Saver({"v0": v0, "v1": v1}, restore_sequentially=True) init_all_op = variables.global_variables_initializer() with self.cached_session() as sess: # Initialize all variables self.evaluate(init_all_op) # Check that the parameter nodes have been initialized. self.assertEqual(10.0, self.evaluate(v0)) self.assertEqual(20.0, self.evaluate(v1)) save.save(sess, save_path) def testSaveRestoreAndValidateVariableDtype(self): for variable_op in [ variables.Variable, resource_variable_ops.ResourceVariable ]: save_path = os.path.join(self.get_temp_dir(), "basic_save_restore") # Build the first session. with self.session(graph=ops_lib.Graph()) as sess: v0 = variable_op(10.0, name="v0", dtype=dtypes.float32) if not context.executing_eagerly(): self.evaluate([variables.global_variables_initializer()]) save = saver_module.Saver({"v0": v0}) save.save(sess, save_path) # Start a second session. with self.session(graph=ops_lib.Graph()) as sess: v0_wrong_dtype = variable_op(1, name="v0", dtype=dtypes.int32) # Restore the saved value with different dtype # in the parameter nodes. save = saver_module.Saver({"v0": v0_wrong_dtype}) with self.assertRaisesRegexp(errors.InvalidArgumentError, "original dtype"): save.restore(sess, save_path) # Test restoring large tensors (triggers a thread pool) def testRestoreLargeTensors(self): save_dir = self.get_temp_dir() def _model(): small_v = [variable_scope.get_variable( "small%d" % i, shape=[10, 2], use_resource=True) for i in range(5)] large_v = [variable_scope.get_variable( "large%d" % i, shape=[32000, 1000], use_resource=True) for i in range(3)] return small_v + large_v save_graph = ops_lib.Graph() with save_graph.as_default(), self.session(graph=save_graph) as sess: orig_vars = _model() self.evaluate(variables.global_variables_initializer()) save = saver_module.Saver(max_to_keep=1) self.evaluate(variables.global_variables_initializer()) save.save(sess, save_dir) orig_vals = self.evaluate(orig_vars) restore_graph = ops_lib.Graph() with restore_graph.as_default(), self.session( graph=restore_graph) as sess: restored_vars = _model() save = saver_module.Saver(max_to_keep=1) save.restore(sess, save_dir) restored_vals = self.evaluate(restored_vars) for orig, restored in zip(orig_vals, restored_vals): self.assertAllEqual(orig, restored) class SaveRestoreShardedTest(test.TestCase): _WRITE_VERSION = saver_pb2.SaverDef.V1 def _get_test_dir(self, dirname): test_dir = os.path.join(self.get_temp_dir(), dirname) gfile.MakeDirs(test_dir) return test_dir def testBasics(self): save_path = os.path.join(self.get_temp_dir(), "sharded_basics") # Build a graph with 2 parameter nodes on different devices. with session.Session( target="", config=config_pb2.ConfigProto(device_count={"CPU": 2})) as sess: with sess.graph.device("/cpu:0"): v0 = variables.VariableV1(10, name="v0") t0 = saver_test_utils.CheckpointedOp(name="t0") with sess.graph.device("/cpu:1"): v1 = variables.VariableV1(20, name="v1") t1 = saver_test_utils.CheckpointedOp(name="t1") save = saver_module.Saver( { "v0": v0, "v1": v1, "t0": t0.saveable, "t1": t1.saveable }, write_version=self._WRITE_VERSION, sharded=True) self.evaluate(variables.global_variables_initializer()) t0.insert("k1", 30.0).run() t1.insert("k2", 40.0).run() val = save.save(sess, save_path) if save._write_version is saver_pb2.SaverDef.V1: self.assertEqual(save_path + "-?????-of-00002", val) else: self.assertEqual(save_path, val) meta_graph_filename = checkpoint_management.meta_graph_filename(val) self.assertEqual(save_path + ".meta", meta_graph_filename) if save._write_version is saver_pb2.SaverDef.V1: # Restore different ops from shard 0 of the saved files. with session.Session( target="", config=config_pb2.ConfigProto(device_count={"CPU": 2})) as sess: with sess.graph.device("/cpu:0"): v0 = variables.VariableV1(111, name="v0") t0 = saver_test_utils.CheckpointedOp(name="t0") save = saver_module.Saver( { "v0": v0, "t0": t0.saveable }, write_version=self._WRITE_VERSION, sharded=True) self.evaluate(variables.global_variables_initializer()) t0.insert("k11", 33.0).run() self.assertEqual(111, self.evaluate(v0)) self.assertEqual(b"k11", self.evaluate(t0.keys())) self.assertEqual(33.0, self.evaluate(t0.values())) save.restore(sess, save_path + "-00000-of-00002") self.assertEqual(10, self.evaluate(v0)) self.assertEqual(b"k1", self.evaluate(t0.keys())) self.assertEqual(30.0, self.evaluate(t0.values())) # Restore different ops from shard 1 of the saved files. with session.Session( target="", config=config_pb2.ConfigProto(device_count={"CPU": 2})) as sess: with sess.graph.device("/cpu:0"): v1 = variables.VariableV1(222) t1 = saver_test_utils.CheckpointedOp(name="t1") save = saver_module.Saver( { "v1": v1, "t1": t1.saveable }, write_version=self._WRITE_VERSION, sharded=True) self.evaluate(variables.global_variables_initializer()) t1.insert("k22", 44.0).run() self.assertEqual(222, self.evaluate(v1)) self.assertEqual(b"k22", self.evaluate(t1.keys())) self.assertEqual(44.0, self.evaluate(t1.values())) save.restore(sess, save_path + "-00001-of-00002") self.assertEqual(20, self.evaluate(v1)) self.assertEqual(b"k2", self.evaluate(t1.keys())) self.assertEqual(40.0, self.evaluate(t1.values())) # Now try a restore with the sharded filename. with session.Session( target="", config=config_pb2.ConfigProto(device_count={"CPU": 2})) as sess: with sess.graph.device("/cpu:0"): v0 = variables.VariableV1(111, name="v0") t0 = saver_test_utils.CheckpointedOp(name="t0") with sess.graph.device("/cpu:1"): v1 = variables.VariableV1(222, name="v1") t1 = saver_test_utils.CheckpointedOp(name="t1") save = saver_module.Saver( { "v0": v0, "v1": v1, "t0": t0.saveable, "t1": t1.saveable }, write_version=self._WRITE_VERSION, sharded=True) self.evaluate(variables.global_variables_initializer()) t0.insert("k11", 33.0).run() t1.insert("k22", 44.0).run() self.assertEqual(111, self.evaluate(v0)) self.assertEqual(222, self.evaluate(v1)) self.assertEqual(b"k11", self.evaluate(t0.keys())) self.assertEqual(33.0, self.evaluate(t0.values())) self.assertEqual(b"k22", self.evaluate(t1.keys())) self.assertEqual(44.0, self.evaluate(t1.values())) save_path = os.path.join(self.get_temp_dir(), "sharded_basics") if save._write_version is saver_pb2.SaverDef.V1: save.restore(sess, save_path + "-?????-of-?????") else: save.restore(sess, save_path) self.assertEqual(10, self.evaluate(v0)) self.assertEqual(20, self.evaluate(v1)) self.assertEqual(b"k1", self.evaluate(t0.keys())) self.assertEqual(30.0, self.evaluate(t0.values())) self.assertEqual(b"k2", self.evaluate(t1.keys())) self.assertEqual(40.0, self.evaluate(t1.values())) if save._write_version is saver_pb2.SaverDef.V1: self.assertEqual( checkpoint_management.latest_checkpoint(self.get_temp_dir()), os.path.join(self.get_temp_dir(), "sharded_basics-?????-of-00002")) else: self.assertEqual( checkpoint_management.latest_checkpoint(self.get_temp_dir()), os.path.join(self.get_temp_dir(), "sharded_basics")) @test_util.run_deprecated_v1 def testSaverDef(self): with self.cached_session(): v0 = variables.VariableV1(123, name="v0") save = saver_module.Saver({"v0": v0}, sharded=True) sd = save.as_saver_def() self.assertTrue(sd.sharded) def _testPartitionedVariables(self, use_resource): var_full_shape = [10, 3] # Allows save/restore mechanism to work w/ different slicings. var_name = "my_var" saved_dir = self._get_test_dir("partitioned_variables") saved_path = os.path.join(saved_dir, "ckpt") call_saver_with_dict = False # updated by test loop below def _save(partitioner=None): with self.session(graph=ops_lib.Graph()) as sess: # Calls .eval() to return the ndarray that makes up the full variable. rnd = random_ops.random_uniform(var_full_shape).eval() if partitioner: vs = [ variable_scope.get_variable( var_name, shape=var_full_shape, initializer=rnd, partitioner=partitioner, use_resource=use_resource) ] else: if use_resource: vs = [resource_variable_ops.ResourceVariable(rnd, name=var_name)] else: vs = [variables.VariableV1(rnd, name=var_name)] self.evaluate(variables.global_variables_initializer()) if call_saver_with_dict: saver = saver_module.Saver({var_name: vs[0]}) else: saver = saver_module.Saver(vs) actual_path = saver.save(sess, saved_path) self.assertEqual(saved_path, actual_path) return rnd def _restore(partitioner=None): with self.session(graph=ops_lib.Graph()) as sess: if partitioner: new_vs = [ variable_scope.get_variable( var_name, shape=var_full_shape, initializer=array_ops.zeros(var_full_shape), partitioner=partitioner) ] else: new_vs = [ variables.VariableV1( array_ops.zeros( shape=var_full_shape), # != original contents. name=var_name) ] self.evaluate(variables.global_variables_initializer()) if call_saver_with_dict: saver = saver_module.Saver({ var_name: new_vs[0] }) else: saver = saver_module.Saver(new_vs) saver.restore(sess, saved_path) if partitioner: return new_vs[0].as_tensor().eval() else: return new_vs[0].eval() for call_saver_with_dict in {False, True}: # Save PartitionedVariable and restore into full variable. saved_full = _save( partitioner=partitioned_variables.fixed_size_partitioner( num_shards=2)) restored_full = _restore() self.assertAllEqual(saved_full, restored_full) # Restores into the same number of partitions. restored_full = _restore( partitioner=partitioned_variables.fixed_size_partitioner( num_shards=2)) self.assertAllEqual(saved_full, restored_full) # Restores into a different number of partitions. restored_full = _restore( partitioner=partitioned_variables.fixed_size_partitioner( num_shards=3)) self.assertAllEqual(saved_full, restored_full) # Now, saves a full variable and restores PartitionedVariable. saved_full = _save() restored_full = _restore( partitioner=partitioned_variables.fixed_size_partitioner( num_shards=3)) self.assertAllEqual(saved_full, restored_full) @test_util.run_deprecated_v1 def testPartitionedVariable(self): self._testPartitionedVariables(use_resource=False) @test_util.run_deprecated_v1 def testPartitionedResourceVariable(self): self._testPartitionedVariables(use_resource=True) class SaveRestoreShardedTestV2(SaveRestoreShardedTest): _WRITE_VERSION = saver_pb2.SaverDef.V2 class MaxToKeepTest(test.TestCase): def _get_test_dir(self, dirname): test_dir = os.path.join(self.get_temp_dir(), dirname) gfile.MakeDirs(test_dir) return test_dir def assertCheckpointState(self, model_checkpoint_path, all_model_checkpoint_paths, save_dir): checkpoint_state = checkpoint_management.get_checkpoint_state(save_dir) self.assertEqual(checkpoint_state.model_checkpoint_path, model_checkpoint_path) self.assertEqual(checkpoint_state.all_model_checkpoint_paths, all_model_checkpoint_paths) def testMaxToKeepEager(self): with context.eager_mode(): save_dir = self._get_test_dir("max_to_keep_eager") v = variable_scope.variable(10.0, name="v") save = saver_module.Saver({"v": v}, max_to_keep=2) self.evaluate(variables.global_variables_initializer()) if not context.executing_eagerly(): self.assertEqual([], save.last_checkpoints) s1 = save.save(None, os.path.join(save_dir, "s1")) self.assertEqual([s1], save.last_checkpoints) self.assertTrue(checkpoint_management.checkpoint_exists(s1)) self.assertCheckpointState( model_checkpoint_path=s1, all_model_checkpoint_paths=[s1], save_dir=save_dir) s2 = save.save(None, os.path.join(save_dir, "s2")) self.assertEqual([s1, s2], save.last_checkpoints) self.assertTrue(checkpoint_management.checkpoint_exists(s1)) self.assertTrue(checkpoint_management.checkpoint_exists(s2)) self.assertCheckpointState( model_checkpoint_path=s2, all_model_checkpoint_paths=[s1, s2], save_dir=save_dir) s3 = save.save(None, os.path.join(save_dir, "s3")) self.assertEqual([s2, s3], save.last_checkpoints) self.assertFalse(checkpoint_management.checkpoint_exists(s1)) self.assertTrue(checkpoint_management.checkpoint_exists(s2)) self.assertTrue(checkpoint_management.checkpoint_exists(s3)) self.assertCheckpointState( model_checkpoint_path=s3, all_model_checkpoint_paths=[s2, s3], save_dir=save_dir) # Create a second helper, identical to the first. save2 = saver_module.Saver({"v": v}, max_to_keep=2) save2.set_last_checkpoints(save.last_checkpoints) # Exercise the first helper. # Adding s2 again (old s2 is removed first, then new s2 appended) s2 = save.save(None, os.path.join(save_dir, "s2")) self.assertEqual([s3, s2], save.last_checkpoints) self.assertFalse(checkpoint_management.checkpoint_exists(s1)) self.assertTrue(checkpoint_management.checkpoint_exists(s3)) self.assertTrue(checkpoint_management.checkpoint_exists(s2)) self.assertCheckpointState( model_checkpoint_path=s2, all_model_checkpoint_paths=[s3, s2], save_dir=save_dir) # Adding s1 (s3 should now be deleted as oldest in list) s1 = save.save(None, os.path.join(save_dir, "s1")) self.assertEqual([s2, s1], save.last_checkpoints) self.assertFalse(checkpoint_management.checkpoint_exists(s3)) self.assertTrue(checkpoint_management.checkpoint_exists(s2)) self.assertCheckpointState( model_checkpoint_path=s1, all_model_checkpoint_paths=[s2, s1], save_dir=save_dir) s2 = save2.save(None, os.path.join(save_dir, "s2")) self.assertEqual([s3, s2], save2.last_checkpoints) # Created by the first helper. self.assertTrue(checkpoint_management.checkpoint_exists(s1)) # Deleted by the first helper. self.assertFalse(checkpoint_management.checkpoint_exists(s3)) @test_util.run_deprecated_v1 def testNonSharded(self): save_dir = self._get_test_dir("max_to_keep_non_sharded") with self.cached_session() as sess: v = variables.VariableV1(10.0, name="v") save = saver_module.Saver({"v": v}, max_to_keep=2) self.evaluate(variables.global_variables_initializer()) self.assertEqual([], save.last_checkpoints) s1 = save.save(sess, os.path.join(save_dir, "s1")) self.assertEqual([s1], save.last_checkpoints) self.assertTrue(checkpoint_management.checkpoint_exists(s1)) self.assertCheckpointState( model_checkpoint_path=s1, all_model_checkpoint_paths=[s1], save_dir=save_dir) s2 = save.save(sess, os.path.join(save_dir, "s2")) self.assertEqual([s1, s2], save.last_checkpoints) self.assertTrue(checkpoint_management.checkpoint_exists(s1)) self.assertTrue(checkpoint_management.checkpoint_exists(s2)) self.assertCheckpointState( model_checkpoint_path=s2, all_model_checkpoint_paths=[s1, s2], save_dir=save_dir) s3 = save.save(sess, os.path.join(save_dir, "s3")) self.assertEqual([s2, s3], save.last_checkpoints) self.assertFalse(checkpoint_management.checkpoint_exists(s1)) self.assertTrue(checkpoint_management.checkpoint_exists(s2)) self.assertTrue(checkpoint_management.checkpoint_exists(s3)) self.assertCheckpointState( model_checkpoint_path=s3, all_model_checkpoint_paths=[s2, s3], save_dir=save_dir) # Create a second helper, identical to the first. save2 = saver_module.Saver(saver_def=save.as_saver_def()) save2.set_last_checkpoints(save.last_checkpoints) # Create a third helper, with the same configuration but no knowledge of # previous checkpoints. save3 = saver_module.Saver(saver_def=save.as_saver_def()) # Exercise the first helper. # Adding s2 again (old s2 is removed first, then new s2 appended) s2 = save.save(sess, os.path.join(save_dir, "s2")) self.assertEqual([s3, s2], save.last_checkpoints) self.assertFalse(checkpoint_management.checkpoint_exists(s1)) self.assertFalse( checkpoint_management.checkpoint_exists( checkpoint_management.meta_graph_filename(s1))) self.assertTrue(checkpoint_management.checkpoint_exists(s3)) self.assertTrue( checkpoint_management.checkpoint_exists( checkpoint_management.meta_graph_filename(s3))) self.assertTrue(checkpoint_management.checkpoint_exists(s2)) self.assertTrue( checkpoint_management.checkpoint_exists( checkpoint_management.meta_graph_filename(s2))) self.assertCheckpointState( model_checkpoint_path=s2, all_model_checkpoint_paths=[s3, s2], save_dir=save_dir) # Adding s1 (s3 should now be deleted as oldest in list) s1 = save.save(sess, os.path.join(save_dir, "s1")) self.assertEqual([s2, s1], save.last_checkpoints) self.assertFalse(checkpoint_management.checkpoint_exists(s3)) self.assertFalse( checkpoint_management.checkpoint_exists( checkpoint_management.meta_graph_filename(s3))) self.assertTrue(checkpoint_management.checkpoint_exists(s2)) self.assertTrue( checkpoint_management.checkpoint_exists( checkpoint_management.meta_graph_filename(s2))) self.assertTrue(checkpoint_management.checkpoint_exists(s1)) self.assertTrue( checkpoint_management.checkpoint_exists( checkpoint_management.meta_graph_filename(s1))) self.assertCheckpointState( model_checkpoint_path=s1, all_model_checkpoint_paths=[s2, s1], save_dir=save_dir) # Exercise the second helper. # Adding s2 again (old s2 is removed first, then new s2 appended) s2 = save2.save(sess, os.path.join(save_dir, "s2")) self.assertEqual([s3, s2], save2.last_checkpoints) # Created by the first helper. self.assertTrue(checkpoint_management.checkpoint_exists(s1)) self.assertTrue( checkpoint_management.checkpoint_exists( checkpoint_management.meta_graph_filename(s1))) # Deleted by the first helper. self.assertFalse(checkpoint_management.checkpoint_exists(s3)) self.assertFalse( checkpoint_management.checkpoint_exists( checkpoint_management.meta_graph_filename(s3))) self.assertTrue(checkpoint_management.checkpoint_exists(s2)) self.assertTrue( checkpoint_management.checkpoint_exists( checkpoint_management.meta_graph_filename(s2))) self.assertCheckpointState( model_checkpoint_path=s2, all_model_checkpoint_paths=[s3, s2], save_dir=save_dir) # Adding s1 (s3 should now be deleted as oldest in list) s1 = save2.save(sess, os.path.join(save_dir, "s1")) self.assertEqual([s2, s1], save2.last_checkpoints) self.assertFalse(checkpoint_management.checkpoint_exists(s3)) self.assertFalse( checkpoint_management.checkpoint_exists( checkpoint_management.meta_graph_filename(s3))) self.assertTrue(checkpoint_management.checkpoint_exists(s2)) self.assertTrue( checkpoint_management.checkpoint_exists( checkpoint_management.meta_graph_filename(s2))) self.assertTrue(checkpoint_management.checkpoint_exists(s1)) self.assertTrue( checkpoint_management.checkpoint_exists( checkpoint_management.meta_graph_filename(s1))) self.assertCheckpointState( model_checkpoint_path=s1, all_model_checkpoint_paths=[s2, s1], save_dir=save_dir) # Exercise the third helper. # Adding s2 again (but helper is unaware of previous s2) s2 = save3.save(sess, os.path.join(save_dir, "s2")) self.assertEqual([s2], save3.last_checkpoints) # Created by the first helper. self.assertTrue(checkpoint_management.checkpoint_exists(s1)) self.assertTrue( checkpoint_management.checkpoint_exists( checkpoint_management.meta_graph_filename(s1))) # Deleted by the first helper. self.assertFalse(checkpoint_management.checkpoint_exists(s3)) self.assertFalse( checkpoint_management.checkpoint_exists( checkpoint_management.meta_graph_filename(s3))) self.assertTrue(checkpoint_management.checkpoint_exists(s2)) self.assertTrue( checkpoint_management.checkpoint_exists( checkpoint_management.meta_graph_filename(s2))) # Even though the file for s1 exists, this saver isn't aware of it, which # is why it doesn't end up in the checkpoint state. self.assertCheckpointState( model_checkpoint_path=s2, all_model_checkpoint_paths=[s2], save_dir=save_dir) # Adding s1 (s3 should not be deleted because helper is unaware of it) s1 = save3.save(sess, os.path.join(save_dir, "s1")) self.assertEqual([s2, s1], save3.last_checkpoints) self.assertFalse(checkpoint_management.checkpoint_exists(s3)) self.assertFalse( checkpoint_management.checkpoint_exists( checkpoint_management.meta_graph_filename(s3))) self.assertTrue(checkpoint_management.checkpoint_exists(s2)) self.assertTrue( checkpoint_management.checkpoint_exists( checkpoint_management.meta_graph_filename(s2))) self.assertTrue(checkpoint_management.checkpoint_exists(s1)) self.assertTrue( checkpoint_management.checkpoint_exists( checkpoint_management.meta_graph_filename(s1))) self.assertCheckpointState( model_checkpoint_path=s1, all_model_checkpoint_paths=[s2, s1], save_dir=save_dir) def testSharded(self): save_dir = self._get_test_dir("max_to_keep_sharded") with session.Session( target="", config=config_pb2.ConfigProto(device_count={"CPU": 2})) as sess: with sess.graph.device("/cpu:0"): v0 = variables.VariableV1(111, name="v0") with sess.graph.device("/cpu:1"): v1 = variables.VariableV1(222, name="v1") save = saver_module.Saver( { "v0": v0, "v1": v1 }, sharded=True, max_to_keep=2) self.evaluate(variables.global_variables_initializer()) self.assertEqual([], save.last_checkpoints) s1 = save.save(sess, os.path.join(save_dir, "s1")) self.assertEqual([s1], save.last_checkpoints) if save._write_version is saver_pb2.SaverDef.V1: self.assertEqual(2, len(gfile.Glob(s1))) else: self.assertEqual(4, len(gfile.Glob(s1 + "*"))) self.assertTrue( gfile.Exists(checkpoint_management.meta_graph_filename(s1))) s2 = save.save(sess, os.path.join(save_dir, "s2")) self.assertEqual([s1, s2], save.last_checkpoints) if save._write_version is saver_pb2.SaverDef.V1: self.assertEqual(2, len(gfile.Glob(s1))) else: self.assertEqual(4, len(gfile.Glob(s1 + "*"))) self.assertTrue( gfile.Exists(checkpoint_management.meta_graph_filename(s1))) if save._write_version is saver_pb2.SaverDef.V1: self.assertEqual(2, len(gfile.Glob(s2))) else: self.assertEqual(4, len(gfile.Glob(s2 + "*"))) self.assertTrue( gfile.Exists(checkpoint_management.meta_graph_filename(s2))) s3 = save.save(sess, os.path.join(save_dir, "s3")) self.assertEqual([s2, s3], save.last_checkpoints) self.assertEqual(0, len(gfile.Glob(s1 + "*"))) self.assertFalse( gfile.Exists(checkpoint_management.meta_graph_filename(s1))) if save._write_version is saver_pb2.SaverDef.V1: self.assertEqual(2, len(gfile.Glob(s2))) else: self.assertEqual(4, len(gfile.Glob(s2 + "*"))) self.assertTrue( gfile.Exists(checkpoint_management.meta_graph_filename(s2))) if save._write_version is saver_pb2.SaverDef.V1: self.assertEqual(2, len(gfile.Glob(s3))) else: self.assertEqual(4, len(gfile.Glob(s3 + "*"))) self.assertTrue( gfile.Exists(checkpoint_management.meta_graph_filename(s3))) def testNoMaxToKeep(self): save_dir = self._get_test_dir("no_max_to_keep") save_dir2 = self._get_test_dir("max_to_keep_0") with self.cached_session() as sess: v = variables.VariableV1(10.0, name="v") self.evaluate(variables.global_variables_initializer()) # Test max_to_keep being None. save = saver_module.Saver({"v": v}, max_to_keep=None) self.assertEqual([], save.last_checkpoints) s1 = save.save(sess, os.path.join(save_dir, "s1")) self.assertEqual([], save.last_checkpoints) self.assertTrue(checkpoint_management.checkpoint_exists(s1)) s2 = save.save(sess, os.path.join(save_dir, "s2")) self.assertEqual([], save.last_checkpoints) self.assertTrue(checkpoint_management.checkpoint_exists(s2)) # Test max_to_keep being 0. save2 = saver_module.Saver({"v": v}, max_to_keep=0) self.assertEqual([], save2.last_checkpoints) s1 = save2.save(sess, os.path.join(save_dir2, "s1")) self.assertEqual([], save2.last_checkpoints) self.assertTrue(checkpoint_management.checkpoint_exists(s1)) s2 = save2.save(sess, os.path.join(save_dir2, "s2")) self.assertEqual([], save2.last_checkpoints) self.assertTrue(checkpoint_management.checkpoint_exists(s2)) def testNoMetaGraph(self): save_dir = self._get_test_dir("no_meta_graph") with self.cached_session() as sess: v = variables.VariableV1(10.0, name="v") save = saver_module.Saver({"v": v}) self.evaluate(variables.global_variables_initializer()) s1 = save.save(sess, os.path.join(save_dir, "s1"), write_meta_graph=False) self.assertTrue(checkpoint_management.checkpoint_exists(s1)) self.assertFalse( gfile.Exists(checkpoint_management.meta_graph_filename(s1))) class KeepCheckpointEveryNHoursTest(test.TestCase): def _get_test_dir(self, dirname): test_dir = os.path.join(self.get_temp_dir(), dirname) gfile.MakeDirs(test_dir) return test_dir @test_util.run_in_graph_and_eager_modes @test.mock.patch.object(saver_module, "time") def testNonSharded(self, mock_time): save_dir = self._get_test_dir("keep_checkpoint_every_n_hours") with self.cached_session() as sess: v = variable_scope.variable([10.0], name="v") # Run the initializer NOW to avoid the 0.5s overhead of the first Run() # call, which throws the test timing off in fastbuild mode. self.evaluate(variables.global_variables_initializer()) # Create a saver that will keep the last 2 checkpoints plus one every 0.7 # seconds. start_time = time.time() mock_time.time.return_value = start_time save = saver_module.Saver( { "v": v }, max_to_keep=2, keep_checkpoint_every_n_hours=0.7 / 3600) self.assertEqual([], save.last_checkpoints) # Wait till 1 seconds have elapsed so s1 will be old enough to keep. # sleep may return early, don't trust it. mock_time.time.return_value = start_time + 1.0 s1 = save.save(sess, os.path.join(save_dir, "s1")) self.assertEqual([s1], save.last_checkpoints) s2 = save.save(sess, os.path.join(save_dir, "s2")) self.assertEqual([s1, s2], save.last_checkpoints) # We now have 2 'last_checkpoints': [s1, s2]. The next call to Save(), # would normally delete s1, because max_to_keep is 2. However, s1 is # older than 0.7s so we must keep it. s3 = save.save(sess, os.path.join(save_dir, "s3")) self.assertEqual([s2, s3], save.last_checkpoints) # s1 should still be here, we are Not checking now to reduce time # variance in the test. # We now have 2 'last_checkpoints': [s2, s3], and s1 on disk. The next # call to Save(), will delete s2, because max_to_keep is 2, and because # we already kept the old s1. s2 is very close in time to s1 so it gets # deleted. s4 = save.save(sess, os.path.join(save_dir, "s4")) self.assertEqual([s3, s4], save.last_checkpoints) # Check that s1 is still here, but s2 is gone. self.assertTrue(checkpoint_management.checkpoint_exists(s1)) self.assertFalse(checkpoint_management.checkpoint_exists(s2)) self.assertTrue(checkpoint_management.checkpoint_exists(s3)) self.assertTrue(checkpoint_management.checkpoint_exists(s4)) class SaveRestoreWithVariableNameMap(test.TestCase): def _testNonReshape(self, variable_op): save_path = os.path.join(self.get_temp_dir(), "non_reshape") with self.session(graph=ops_lib.Graph()) as sess: # Build a graph with 2 parameter nodes, and Save and # Restore nodes for them. v0 = variable_op(10.0, name="v0") v1 = variable_op(20.0, name="v1") save = saver_module.Saver({"save_prefix/v0": v0, "save_prefix/v1": v1}) self.evaluate(variables.global_variables_initializer()) # Check that the parameter nodes have been initialized. self.assertEqual(10.0, self.evaluate(v0)) self.assertEqual(20.0, self.evaluate(v1)) # Save the initialized values in the file at "save_path" # Use a variable name map to set the saved tensor names val = save.save(sess, save_path) self.assertTrue(isinstance(val, six.string_types)) self.assertEqual(save_path, val) # Verify that the original names are not in the Saved file save = saver_module.Saver({"v0": v0, "v1": v1}) with self.assertRaisesOpError("not found in checkpoint"): save.restore(sess, save_path) # Verify that the mapped names are present in the Saved file and can be # Restored using remapped names. with self.session(graph=ops_lib.Graph()) as sess: v0 = variable_op(-1.0, name="v0") v1 = variable_op(-1.0, name="v1") if not context.executing_eagerly(): with self.assertRaisesOpError("uninitialized"): self.evaluate(v0) with self.assertRaisesOpError("uninitialized"): self.evaluate(v1) save = saver_module.Saver({"save_prefix/v0": v0, "save_prefix/v1": v1}) save.restore(sess, save_path) # Check that the parameter nodes have been restored. if not context.executing_eagerly(): self.assertEqual(10.0, self.evaluate(v0)) self.assertEqual(20.0, self.evaluate(v1)) # Add a prefix to the node names in the current graph and Restore using # remapped names. with self.session(graph=ops_lib.Graph()) as sess: v0 = variable_op(-1.0, name="restore_prefix/v0") v1 = variable_op(-1.0, name="restore_prefix/v1") if not context.executing_eagerly(): with self.assertRaisesOpError("uninitialized"): self.evaluate(v0) with self.assertRaisesOpError("uninitialized"): self.evaluate(v1) # Restore the saved values in the parameter nodes. save = saver_module.Saver({"save_prefix/v0": v0, "save_prefix/v1": v1}) save.restore(sess, save_path) # Check that the parameter nodes have been restored. self.assertEqual(10.0, self.evaluate(v0)) self.assertEqual(20.0, self.evaluate(v1)) @test_util.run_in_graph_and_eager_modes def testNonReshapeResourceVariable(self): self._testNonReshape(resource_variable_ops.ResourceVariable) def testNonReshapeVariable(self): self._testNonReshape(variables.Variable) class MetaGraphTest(test.TestCase): def _get_test_dir(self, dirname): test_dir = os.path.join(self.get_temp_dir(), dirname) gfile.MakeDirs(test_dir) return test_dir @test_util.run_v1_only("b/120545219") def testAddCollectionDef(self): test_dir = self._get_test_dir("good_collection") filename = os.path.join(test_dir, "metafile") with self.cached_session(): # Creates a graph. v0 = variables.VariableV1(1.0, name="v0") control_flow_ops.cond( math_ops.less(v0, 10), lambda: math_ops.add(v0, 1), lambda: math_ops.subtract(v0, 1)) control_flow_ops.while_loop(lambda i: math_ops.less(i, 10), lambda i: math_ops.add(i, 1), [v0]) var = variables.VariableV1(constant_op.constant(0, dtype=dtypes.int64)) count_up_to = var.count_up_to(3) input_queue = data_flow_ops.FIFOQueue( 30, dtypes.float32, shared_name="collection_queue") qr = queue_runner_impl.QueueRunner(input_queue, [count_up_to]) variables.global_variables_initializer() # Creates a saver. save = saver_module.Saver({"v0": v0}) # Adds a set of collections. ops_lib.add_to_collection("int_collection", 3) ops_lib.add_to_collection("float_collection", 3.5) ops_lib.add_to_collection("string_collection", "hello") ops_lib.add_to_collection("variable_collection", v0) # Add QueueRunners. queue_runner_impl.add_queue_runner(qr) # Adds user_defined proto in three formats: string, bytes and Any. queue_runner = queue_runner_pb2.QueueRunnerDef(queue_name="test_queue") ops_lib.add_to_collection("user_defined_string_collection", str(queue_runner)) ops_lib.add_to_collection("user_defined_bytes_collection", queue_runner.SerializeToString()) any_buf = Any() any_buf.Pack(queue_runner) ops_lib.add_to_collection("user_defined_any_collection", any_buf) # Generates MetaGraphDef. meta_graph_def = save.export_meta_graph(filename) self.assertTrue(meta_graph_def.HasField("saver_def")) self.assertTrue(meta_graph_def.HasField("graph_def")) self.assertTrue(meta_graph_def.HasField("meta_info_def")) self.assertNotEqual(meta_graph_def.meta_info_def.tensorflow_version, "") self.assertNotEqual(meta_graph_def.meta_info_def.tensorflow_git_version, "") collection_def = meta_graph_def.collection_def self.assertEqual(len(collection_def), 12) with ops_lib.Graph().as_default(): # Restores from MetaGraphDef. new_saver = saver_module.import_meta_graph(filename) # Generates a new MetaGraphDef. new_meta_graph_def = new_saver.export_meta_graph() # It should be the same as the original. test_util.assert_meta_graph_protos_equal( self, meta_graph_def, new_meta_graph_def) def testAddCollectionDefFails(self): with self.cached_session(): # Creates a graph. v0 = variables.VariableV1(10.0, name="v0") # Creates a saver. save = saver_module.Saver({"v0": v0}) # Generates MetaGraphDef. meta_graph_def = meta_graph_pb2.MetaGraphDef() # Verifies that collection with unsupported key will not be added. ops_lib.add_to_collection(save, 3) save._add_collection_def(meta_graph_def, save) self.assertEqual(len(meta_graph_def.collection_def), 0) # Verifies that collection where item type does not match expected # type will not be added. ops_lib.add_to_collection("int_collection", 3) ops_lib.add_to_collection("int_collection", 3.5) save._add_collection_def(meta_graph_def, "int_collection") self.assertEqual(len(meta_graph_def.collection_def), 0) def _testMultiSaverCollectionSave(self, test_dir): filename = os.path.join(test_dir, "metafile") saver0_ckpt = os.path.join(test_dir, "saver0.ckpt") saver1_ckpt = os.path.join(test_dir, "saver1.ckpt") with self.session(graph=ops_lib.Graph()) as sess: # Creates a graph. v0 = variables.VariableV1([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], name="v0") v1 = variables.VariableV1(11.0, name="v1") # Creates 2 savers. saver0 = saver_module.Saver({"v0": v0}, name="saver0") saver1 = saver_module.Saver({"v1": v1}, name="saver1") ops_lib.add_to_collection("savers", saver0) ops_lib.add_to_collection("savers", saver1) self.evaluate(variables.global_variables_initializer()) # Saves to different checkpoints. saver0.save(sess, saver0_ckpt) saver1.save(sess, saver1_ckpt) # Generates MetaGraphDef. meta_graph_def = saver_module.export_meta_graph(filename) meta_graph_def0 = saver0.export_meta_graph() meta_graph_def1 = saver1.export_meta_graph() # Verifies that there is no saver_def in meta_graph_def. self.assertFalse(meta_graph_def.HasField("saver_def")) # Verifies that there is saver_def in meta_graph_def0 and 1. self.assertTrue(meta_graph_def0.HasField("saver_def")) self.assertTrue(meta_graph_def1.HasField("saver_def")) # Verifies SAVERS is saved as bytes_list for meta_graph_def. collection_def = meta_graph_def.collection_def["savers"] kind = collection_def.WhichOneof("kind") self.assertEqual(kind, "bytes_list") # Verifies that there are 2 entries in SAVERS collection. savers = getattr(collection_def, kind) self.assertEqual(2, len(savers.value)) # Verifies SAVERS collection is saved as bytes_list for meta_graph_def0. collection_def = meta_graph_def0.collection_def["savers"] kind = collection_def.WhichOneof("kind") self.assertEqual(kind, "bytes_list") # Verifies that there are 2 entries in SAVERS collection. savers = getattr(collection_def, kind) self.assertEqual(2, len(savers.value)) def _testMultiSaverCollectionRestore(self, test_dir): filename = os.path.join(test_dir, "metafile") saver0_ckpt = os.path.join(test_dir, "saver0.ckpt") saver1_ckpt = os.path.join(test_dir, "saver1.ckpt") with self.session(graph=ops_lib.Graph()) as sess: # Imports from meta_graph. saver_module.import_meta_graph(filename) # Retrieves SAVERS collection. Verifies there are 2 entries. savers = ops_lib.get_collection("savers") self.assertEqual(2, len(savers)) # Retrieves saver0. Verifies that new_saver0 can restore v0, but not v1. new_saver0 = savers[0] new_saver0.restore(sess, saver0_ckpt) v0 = sess.graph.get_tensor_by_name("v0:0") v1 = sess.graph.get_tensor_by_name("v1:0") self.assertAllEqual([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], self.evaluate(v0)) self.assertEqual([3, 2], v0.get_shape()) self.assertEqual([], v1.get_shape()) with self.assertRaisesWithPredicateMatch( errors_impl.OpError, lambda e: "uninitialized value v1" in e.message): self.evaluate(v1) # Retrieves saver1. Verifies that new_saver1 can restore v1. new_saver1 = savers[1] new_saver1.restore(sess, saver1_ckpt) v1 = sess.graph.get_tensor_by_name("v1:0") self.assertEqual(11.0, self.evaluate(v1)) @test_util.run_v1_only("b/120545219") def testMultiSaverCollection(self): test_dir = self._get_test_dir("saver_collection") self._testMultiSaverCollectionSave(test_dir) self._testMultiSaverCollectionRestore(test_dir) @test_util.run_v1_only("b/120545219") def testClearExtraneousSavers(self): test_dir = self._get_test_dir("clear_extraneous_savers") filename = os.path.join(test_dir, "metafile") saver0_ckpt = os.path.join(test_dir, "saver0.ckpt") saver1_ckpt = os.path.join(test_dir, "saver1.ckpt") with self.session(graph=ops_lib.Graph()) as sess: # Creates a graph. v0 = variables.VariableV1([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], name="v0") v1 = variables.VariableV1(11.0, name="v1") # Creates 2 savers. saver0 = saver_module.Saver({"v0": v0}, name="saver0") saver1 = saver_module.Saver({"v1": v1}, name="saver1") ops_lib.add_to_collection("savers", saver0) ops_lib.add_to_collection("savers", saver1) self.evaluate(variables.global_variables_initializer()) # Saves to different checkpoints. saver0.save(sess, saver0_ckpt) saver1.save(sess, saver1_ckpt) # Generates MetaGraphDef. meta_graph_def = saver_module.export_meta_graph(filename) meta_graph_def0 = saver0.export_meta_graph() meta_graph_def1 = saver1.export_meta_graph(clear_extraneous_savers=True) # Verifies that there is no saver_def in meta_graph_def. self.assertFalse(meta_graph_def.HasField("saver_def")) # Verifies that there is saver_def in meta_graph_def0 and 1. self.assertTrue(meta_graph_def0.HasField("saver_def")) self.assertTrue(meta_graph_def1.HasField("saver_def")) # Verifies SAVERS is saved as bytes_list for meta_graph_def. collection_def = meta_graph_def.collection_def["savers"] kind = collection_def.WhichOneof("kind") self.assertEqual(kind, "bytes_list") # Verifies that there are 2 entries in SAVERS collection. savers = getattr(collection_def, kind) self.assertEqual(2, len(savers.value)) # Verifies SAVERS collection is saved as bytes_list for meta_graph_def1. collection_def = meta_graph_def1.collection_def["savers"] kind = collection_def.WhichOneof("kind") self.assertEqual(kind, "bytes_list") # Verifies that there is 1 entry in SAVERS collection. savers = getattr(collection_def, kind) self.assertEqual(1, len(savers.value)) # Verifies that saver0 graph nodes are omitted from the saver1 export self.assertEqual(33, len(meta_graph_def0.graph_def.node)) self.assertEqual(21, len(meta_graph_def1.graph_def.node)) @test_util.run_deprecated_v1 def testBinaryAndTextFormat(self): test_dir = self._get_test_dir("binary_and_text") filename = os.path.join(test_dir, "metafile") with self.session(graph=ops_lib.Graph()): # Creates a graph. variables.VariableV1(10.0, name="v0") # Exports the graph as binary format. saver_module.export_meta_graph(filename, as_text=False) with self.session(graph=ops_lib.Graph()): # Imports the binary format graph. saver = saver_module.import_meta_graph(filename) self.assertIsNotNone(saver) # Exports the graph as text format. saver.export_meta_graph(filename, as_text=True) with self.session(graph=ops_lib.Graph()): # Imports the text format graph. saver_module.import_meta_graph(filename) # Writes wrong contents to the file. graph_io.write_graph(saver.as_saver_def(), os.path.dirname(filename), os.path.basename(filename)) with self.session(graph=ops_lib.Graph()): # Import should fail. with self.assertRaisesWithPredicateMatch(IOError, lambda e: "Cannot parse file"): saver_module.import_meta_graph(filename) # Deletes the file gfile.Remove(filename) with self.assertRaisesWithPredicateMatch(IOError, lambda e: "does not exist"): saver_module.import_meta_graph(filename) @test_util.run_v1_only("b/120545219") def testSliceVariable(self): test_dir = self._get_test_dir("slice_saver") filename = os.path.join(test_dir, "metafile") with self.cached_session(): v1 = variables.VariableV1([20.0], name="v1") v2 = variables.VariableV1([20.0], name="v2") v2._set_save_slice_info( variables.Variable.SaveSliceInfo("v1", [1], [0], [1])) # The names are different and will work. slice_saver = saver_module.Saver({"first": v1, "second": v2}) self.evaluate(variables.global_variables_initializer()) # Exports to meta_graph meta_graph_def = slice_saver.export_meta_graph(filename) with ops_lib.Graph().as_default(): # Restores from MetaGraphDef. new_saver = saver_module.import_meta_graph(filename) self.assertIsNotNone(new_saver) # Generates a new MetaGraphDef. new_meta_graph_def = new_saver.export_meta_graph() # It should be the same as the original. test_util.assert_meta_graph_protos_equal(self, meta_graph_def, new_meta_graph_def) def _testGraphExtensionSave(self, test_dir): filename = os.path.join(test_dir, "metafile") saver0_ckpt = os.path.join(test_dir, "saver0.ckpt") # Creates an inference graph. # Hidden 1 images = constant_op.constant(1.2, dtypes.float32, shape=[100, 28]) with ops_lib.name_scope("hidden1"): weights = variables.VariableV1( random_ops.truncated_normal( [28, 128], stddev=1.0 / math.sqrt(float(28))), name="weights") # The use of control_flow_ops.cond here is purely for adding test coverage # the save and restore of control flow context (which doesn't make any # sense here from a machine learning perspective). The typical biases is # a simple Variable without the conditions. biases = variables.VariableV1( control_flow_ops.cond( math_ops.less(random.random(), 0.5), lambda: array_ops.ones([128]), lambda: array_ops.zeros([128])), name="biases") hidden1 = nn_ops.relu(math_ops.matmul(images, weights) + biases) # Hidden 2 with ops_lib.name_scope("hidden2"): weights = variables.VariableV1( random_ops.truncated_normal( [128, 32], stddev=1.0 / math.sqrt(float(128))), name="weights") # The use of control_flow_ops.while_loop here is purely for adding test # coverage the save and restore of control flow context (which doesn't # make any sense here from a machine learning perspective). The typical # biases is a simple Variable without the conditions. def loop_cond(it, _): return it < 2 def loop_body(it, biases): biases += constant_op.constant(0.1, shape=[32]) return it + 1, biases _, biases = control_flow_ops.while_loop( loop_cond, loop_body, [constant_op.constant(0), variables.VariableV1(array_ops.zeros([32]))]) hidden2 = nn_ops.relu(math_ops.matmul(hidden1, weights) + biases) # Linear with ops_lib.name_scope("softmax_linear"): weights = variables.VariableV1( random_ops.truncated_normal( [32, 10], stddev=1.0 / math.sqrt(float(32))), name="weights") biases = variables.VariableV1(array_ops.zeros([10]), name="biases") logits = math_ops.matmul(hidden2, weights) + biases ops_lib.add_to_collection("logits", logits) init_all_op = variables.global_variables_initializer() with self.cached_session() as sess: # Initializes all the variables. self.evaluate(init_all_op) # Runs to logit. self.evaluate(logits) # Creates a saver. saver0 = saver_module.Saver() saver0.save(sess, saver0_ckpt) # Generates MetaGraphDef. saver0.export_meta_graph(filename) def _testGraphExtensionRestore(self, test_dir): filename = os.path.join(test_dir, "metafile") train_filename = os.path.join(test_dir, "train_metafile") saver0_ckpt = os.path.join(test_dir, "saver0.ckpt") with self.session(graph=ops_lib.Graph()) as sess: # Restores from MetaGraphDef. new_saver = saver_module.import_meta_graph(filename) # Generates a new MetaGraphDef. new_saver.export_meta_graph() # Restores from checkpoint. new_saver.restore(sess, saver0_ckpt) # Adds loss and train. labels = constant_op.constant(0, dtypes.int32, shape=[100], name="labels") batch_size = array_ops.size(labels) labels = array_ops.expand_dims(labels, 1) indices = array_ops.expand_dims(math_ops.range(0, batch_size), 1) concated = array_ops.concat([indices, labels], 1) onehot_labels = sparse_ops.sparse_to_dense( concated, array_ops.stack([batch_size, 10]), 1.0, 0.0) logits = ops_lib.get_collection("logits")[0] cross_entropy = nn_ops.softmax_cross_entropy_with_logits( labels=onehot_labels, logits=logits, name="xentropy") loss = math_ops.reduce_mean(cross_entropy, name="xentropy_mean") summary.scalar("loss", loss) # Creates the gradient descent optimizer with the given learning rate. optimizer = gradient_descent.GradientDescentOptimizer(0.01) # Runs train_op. train_op = optimizer.minimize(loss) ops_lib.add_to_collection("train_op", train_op) # Runs train_op. self.evaluate(train_op) # Generates MetaGraphDef. saver_module.export_meta_graph(train_filename) def _testRestoreFromTrainGraphWithControlContext(self, test_dir): train_filename = os.path.join(test_dir, "train_metafile") saver0_ckpt = os.path.join(test_dir, "saver0.ckpt") with self.session(graph=ops_lib.Graph()) as sess: # Restores from MetaGraphDef. new_saver = saver_module.import_meta_graph(train_filename) # Restores from checkpoint. new_saver.restore(sess, saver0_ckpt) train_op = ops_lib.get_collection("train_op")[0] self.evaluate(train_op) @test_util.run_deprecated_v1 def testGraphExtension(self): test_dir = self._get_test_dir("graph_extension") self._testGraphExtensionSave(test_dir) self._testGraphExtensionRestore(test_dir) self._testRestoreFromTrainGraphWithControlContext(test_dir) def _testGradientSerDes(self, graph_fn): """Tests that gradients can be computed after exporting and importing. Builds a graph, exports it, and verifies that it can be imported and the gradient can be built and run correctly. Args: graph_fn: takes a single float Tensor argument as input, outputs a single Tensor """ test_dir = self._get_test_dir("nested_control_flow") filename = os.path.join(test_dir, "metafile") saver_ckpt = os.path.join(test_dir, "saver.ckpt") # Create while loop using `outer_body_fn`. with ops_lib.Graph().as_default(): var = variables.VariableV1(0.0) var_name = var.name output = graph_fn(var) output_name = output.name init_op = variables.global_variables_initializer() # Generate a MetaGraphDef containing the while loop. with session.Session() as sess: self.evaluate(init_op) self.evaluate(output) saver = saver_module.Saver() saver.save(sess, saver_ckpt) saver.export_meta_graph(filename) # Build and run the gradients of the while loop. We use this below to # verify that the gradients are correct with an imported MetaGraphDef. grad = gradients_impl.gradients([output], [var]) # Turn off constant folding to avoid breaking testNestedControlFlowSerDes. # It appears that a missing control dependency in the gradient graph # causes the fetch node to not be triggered. no_constfold_config = config_pb2.ConfigProto() no_constfold_config.graph_options.rewrite_options.constant_folding = ( rewriter_config_pb2.RewriterConfig.OFF) with session.Session(config=no_constfold_config) as sess: self.evaluate(init_op) expected_grad_value = self.evaluate(grad) # Restore the MetaGraphDef into a new Graph. with ops_lib.Graph().as_default(): with session.Session() as sess: saver = saver_module.import_meta_graph(filename) saver.restore(sess, saver_ckpt) # Make sure we can still build gradients and get the same result. var = ops_lib.get_default_graph().get_tensor_by_name(var_name) output = ops_lib.get_default_graph().get_tensor_by_name(output_name) grad = gradients_impl.gradients([output], [var]) init_op = variables.global_variables_initializer() with session.Session(config=no_constfold_config) as sess: self.evaluate(init_op) actual_grad_value = self.evaluate(grad) self.assertEqual(expected_grad_value, actual_grad_value) def _testWhileLoopAndGradientSerDes(self, outer_body_fn): # Build a while loop with `outer_body_fn`, export it, and verify that it can # be imported and the gradient can be built and run correctly. # pylint: disable=g-long-lambda return self._testGradientSerDes( lambda x: control_flow_ops.while_loop( lambda i, y: i < 5, outer_body_fn, [0, x])[1]) # pylint: enable=g-long-lambda def testNestedWhileLoopsSerDes(self): # Test two simple nested while loops. def body(i, x): _, r = control_flow_ops.while_loop(lambda j, y: j < 3, lambda j, y: (j + 1, y + x), [0, 0.0]) return i + 1, x + r self._testWhileLoopAndGradientSerDes(body) def testNestedControlFlowSerDes(self): # Test while loop in a cond in a while loop. # pylint: disable=g-long-lambda def body(i, x): cond_result = control_flow_ops.cond( i > 0, lambda: control_flow_ops.while_loop( lambda j, y: j < 3, lambda j, y: (j + 1, y + x), [0, 0.0])[1], lambda: x) return i + 1, cond_result # pylint: enable=g-long-lambda self._testWhileLoopAndGradientSerDes(body) def testNestedCondsSerDes(self): # Test conds in a cond. # pylint: disable=g-long-lambda self._testGradientSerDes(lambda x: control_flow_ops.cond( x > 0, lambda: control_flow_ops.cond(x > 3, lambda: array_ops.identity(x), lambda: math_ops.multiply(x, 2.0)), lambda: control_flow_ops.cond(x < -3, lambda: constant_op.constant(1.0), lambda: math_ops.multiply(x, -1.0)))) # pylint: enable=g-long-lambda @test_util.run_v1_only("b/120545219") def testStrippedOpListDef(self): with self.cached_session(): # Creates a graph. v0 = variables.VariableV1(0.0) var = variables.VariableV1(10.0) math_ops.add(v0, var) @function.Defun(dtypes.float32) def minus_one(x): return x - 1 minus_one(array_ops.identity(v0)) save = saver_module.Saver({"v0": v0}) variables.global_variables_initializer() # Generates MetaGraphDef. meta_graph_def = save.export_meta_graph() ops = [o.name for o in meta_graph_def.meta_info_def.stripped_op_list.op] if save._write_version is saver_pb2.SaverDef.V1: self.assertEqual(ops, [ "Add", "Assign", "Const", "Identity", "NoOp", "PlaceholderWithDefault", "RestoreV2", "SaveSlices", "Sub", "VariableV2" ]) else: self.assertEqual(ops, [ "Add", "Assign", "Const", "Identity", "NoOp", "PlaceholderWithDefault", "RestoreV2", "SaveV2", "Sub", "VariableV2" ]) # Test calling stripped_op_list_for_graph directly op_list = meta_graph.stripped_op_list_for_graph(meta_graph_def.graph_def) self.assertEqual(ops, [o.name for o in op_list.op]) for o in op_list.op: self.assertEqual(o.summary, "") self.assertEqual(o.description, "") @test_util.run_deprecated_v1 def testStripDefaultValuedAttrs(self): """Verifies that default valued attrs are stripped, unless disabled.""" # With strip_default_attrs enabled, attributes "T" (float32) and "Tout" # (complex64) in the "Complex" op must be removed. with self.cached_session(): real_num = variables.VariableV1(1.0, dtype=dtypes.float32, name="real") imag_num = variables.VariableV1(2.0, dtype=dtypes.float32, name="imag") math_ops.complex(real_num, imag_num, name="complex") save = saver_module.Saver({"real_num": real_num, "imag_num": imag_num}) variables.global_variables_initializer() meta_graph_def = save.export_meta_graph(strip_default_attrs=True) node_def = test_util.get_node_def_from_graph("complex", meta_graph_def.graph_def) self.assertNotIn("T", node_def.attr) self.assertNotIn("Tout", node_def.attr) # With strip_default_attrs disabled, attributes "T" (float32) and "Tout" # (complex64) in the "Complex" op must *not* be removed, even if they map # to their defaults. with self.session(graph=ops_lib.Graph()): real_num = variables.VariableV1(1.0, dtype=dtypes.float32, name="real") imag_num = variables.VariableV1(2.0, dtype=dtypes.float32, name="imag") math_ops.complex(real_num, imag_num, name="complex") save = saver_module.Saver({"real_num": real_num, "imag_num": imag_num}) variables.global_variables_initializer() meta_graph_def = save.export_meta_graph(strip_default_attrs=False) node_def = test_util.get_node_def_from_graph("complex", meta_graph_def.graph_def) self.assertIn("T", node_def.attr) self.assertIn("Tout", node_def.attr) @test_util.run_deprecated_v1 def testImportIntoNamescope(self): # Test that we can import a meta graph into a namescope. test_dir = self._get_test_dir("import_into_namescope") filename = os.path.join(test_dir, "ckpt") image = array_ops.placeholder(dtypes.float32, [None, 784], name="image") label = array_ops.placeholder(dtypes.float32, [None, 10], name="label") with session.Session() as sess: weights = variables.VariableV1( random_ops.random_uniform([784, 10]), name="weights") bias = variables.VariableV1(array_ops.zeros([10]), name="bias") logit = nn_ops.relu(math_ops.matmul(image, weights) + bias, name="logits") nn_ops.softmax(logit, name="prediction") cost = nn_ops.softmax_cross_entropy_with_logits(labels=label, logits=logit, name="cost") adam.AdamOptimizer().minimize(cost, name="optimize") saver = saver_module.Saver() self.evaluate(variables.global_variables_initializer()) saver.save(sess, filename) graph = ops_lib.Graph() with session.Session(graph=graph) as sess: new_saver = saver_module.import_meta_graph( filename + ".meta", graph=graph, import_scope="new_model") new_saver.restore(sess, filename) sess.run(["new_model/optimize"], { "new_model/image:0": np.random.random([1, 784]), "new_model/label:0": np.random.randint( 10, size=[1, 10]) }) def testImportIntoNamescopeWithoutVariables(self): # Save a simple graph that contains no variables into a checkpoint. test_dir = self._get_test_dir("no_vars_graph") filename = os.path.join(test_dir, "ckpt") graph_1 = ops_lib.Graph() with session.Session(graph=graph_1) as sess: constant_op.constant([1, 2, 3], name="x") constant_op.constant([1, 2, 3], name="y") saver = saver_module.Saver(allow_empty=True) saver.save(sess, filename) # Create a fresh graph. graph_2 = ops_lib.Graph() with session.Session(graph=graph_2) as sess: # Restore the above checkpoint under scope "subgraph_1". new_saver_1 = saver_module.import_meta_graph( filename + ".meta", graph=graph_2, import_scope="subgraph_1") # There are no variables to restore, so import_meta_graph should not # return a Saver. self.assertIsNone(new_saver_1) # Create a variable in graph_2 under scope "my_scope". variables.VariableV1(array_ops.zeros([10]), name="my_scope/my_var") self.evaluate(variables.global_variables_initializer()) # Restore the checkpoint into a different scope "subgraph_2". new_saver_2 = saver_module.import_meta_graph( filename + ".meta", graph=graph_2, import_scope="subgraph_2") # Because the variable does not live in scope "subgraph_2", # import_meta_graph should not attempt to restore the variable. So, # import_meta_graph still won't return a Saver instance. self.assertIsNone(new_saver_2) # However, if we restore the checkpoint under scope "my_scope", # import_meta_graph will detect the variable and return a Saver for # restoring it. This should happen even when the variable does not # originate from graph_1. new_saver_3 = saver_module.import_meta_graph( filename + ".meta", graph=graph_2, import_scope="my_scope") self.assertIsInstance(new_saver_3, saver_module.Saver) @test_util.run_deprecated_v1 def testImportIntoImplicitNamescope(self): # Test that we can import a meta graph into an implicit namescope. test_dir = self._get_test_dir("import_into_namescope") filename = os.path.join(test_dir, "ckpt") image = array_ops.placeholder(dtypes.float32, [None, 784], name="image") label = array_ops.placeholder(dtypes.float32, [None, 10], name="label") with session.Session() as sess: weights = variables.VariableV1( random_ops.random_uniform([784, 10]), name="weights") bias = variables.VariableV1(array_ops.zeros([10]), name="bias") logit = nn_ops.relu(math_ops.matmul(image, weights) + bias, name="logits") nn_ops.softmax(logit, name="prediction") cost = nn_ops.softmax_cross_entropy_with_logits(labels=label, logits=logit, name="cost") adam.AdamOptimizer().minimize(cost, name="optimize") saver = saver_module.Saver() self.evaluate(variables.global_variables_initializer()) saver.save(sess, filename) graph = ops_lib.Graph() with session.Session(graph=graph) as sess: with ops_lib.name_scope("new_model"): new_saver = saver_module.import_meta_graph( filename + ".meta", graph=graph) new_saver.restore(sess, filename) sess.run(["new_model/optimize"], { "new_model/image:0": np.random.random([1, 784]), "new_model/label:0": np.random.randint( 10, size=[1, 10]) }) def testClearDevicesOnImport(self): # Test that we import a graph without its devices and run successfully. with ops_lib.Graph().as_default(): with ops_lib.device("/job:ps/replica:0/task:0/device:GPU:0"): image = array_ops.placeholder(dtypes.float32, [None, 784], name="image") label = array_ops.placeholder(dtypes.float32, [None, 10], name="label") weights = variables.VariableV1( random_ops.random_uniform([784, 10]), name="weights") bias = variables.VariableV1(array_ops.zeros([10]), name="bias") logit = nn_ops.relu(math_ops.matmul(image, weights) + bias) nn_ops.softmax(logit, name="prediction") cost = nn_ops.softmax_cross_entropy_with_logits(labels=label, logits=logit) adam.AdamOptimizer().minimize(cost, name="optimize") meta_graph_def = saver_module.export_meta_graph() with session.Session(graph=ops_lib.Graph()) as sess: saver_module.import_meta_graph( meta_graph_def, clear_devices=False, import_scope="new_model") # Device refers to GPU, which is not available here. with self.assertRaises(errors_impl.InvalidArgumentError): self.evaluate(variables.global_variables_initializer()) with session.Session(graph=ops_lib.Graph()) as sess: saver_module.import_meta_graph( meta_graph_def, clear_devices=True, import_scope="new_model") self.evaluate(variables.global_variables_initializer()) sess.run(["new_model/optimize"], { "new_model/image:0": np.random.random([1, 784]), "new_model/label:0": np.random.randint( 10, size=[1, 10]) }) def testClearDevicesOnExport(self): # Test that we export a graph without its devices and run successfully. with ops_lib.Graph().as_default(): with ops_lib.device("/job:ps/replica:0/task:0/device:GPU:0"): image = array_ops.placeholder(dtypes.float32, [None, 784], name="image") label = array_ops.placeholder(dtypes.float32, [None, 10], name="label") weights = variables.VariableV1( random_ops.random_uniform([784, 10]), name="weights") bias = variables.VariableV1(array_ops.zeros([10]), name="bias") logit = nn_ops.relu(math_ops.matmul(image, weights) + bias) nn_ops.softmax(logit, name="prediction") cost = nn_ops.softmax_cross_entropy_with_logits(labels=label, logits=logit) adam.AdamOptimizer().minimize(cost, name="optimize") meta_graph_def = saver_module.export_meta_graph(clear_devices=True) graph_io.write_graph(meta_graph_def, self.get_temp_dir(), "meta_graph.pbtxt") with session.Session(graph=ops_lib.Graph()) as sess: saver_module.import_meta_graph(meta_graph_def, import_scope="new_model") self.evaluate(variables.global_variables_initializer()) sess.run(["new_model/optimize"], { "new_model/image:0": np.random.random([1, 784]), "new_model/label:0": np.random.randint( 10, size=[1, 10]) }) def testPreserveDatasetAndFunctions(self): with ops_lib.Graph().as_default() as g: dataset = dataset_ops.Dataset.range(10).map(lambda x: x * x) iterator = dataset_ops.make_one_shot_iterator(dataset) next_element = iterator.get_next() _ = array_ops.identity(next_element, name="output") # Generate three MetaGraphDef protos using different code paths. meta_graph_def_simple = saver_module.export_meta_graph() meta_graph_def_devices_cleared = saver_module.export_meta_graph( clear_devices=True) meta_graph_def_from_graph_def = saver_module.export_meta_graph( clear_devices=True, graph_def=g.as_graph_def()) for meta_graph_def in [meta_graph_def_simple, meta_graph_def_devices_cleared, meta_graph_def_from_graph_def]: with session.Session(graph=ops_lib.Graph()) as sess: saver_module.import_meta_graph(meta_graph_def, import_scope="new_model") self.evaluate(variables.global_variables_initializer()) for i in range(10): self.assertEqual(i * i, sess.run("new_model/output:0")) with self.assertRaises(errors.OutOfRangeError): sess.run("new_model/output:0") class CheckpointReaderTest(test.TestCase): _WRITE_VERSION = saver_pb2.SaverDef.V1 @test_util.run_deprecated_v1 def testDebugString(self): # Builds a graph. v0 = variables.VariableV1( [[1, 2, 3], [4, 5, 6]], dtype=dtypes.float32, name="v0") v1 = variables.VariableV1( [[[1], [2]], [[3], [4]], [[5], [6]]], dtype=dtypes.float32, name="v1") init_all_op = variables.global_variables_initializer() save = saver_module.Saver( { "v0": v0, "v1": v1 }, write_version=self._WRITE_VERSION) save_path = os.path.join(self.get_temp_dir(), "ckpt_for_debug_string" + str(self._WRITE_VERSION)) with self.cached_session() as sess: self.evaluate(init_all_op) # Saves a checkpoint. save.save(sess, save_path) # Creates a reader. reader = pywrap_tensorflow.NewCheckpointReader(save_path) # Verifies that the tensors exist. self.assertTrue(reader.has_tensor("v0")) self.assertTrue(reader.has_tensor("v1")) debug_string = reader.debug_string() # Verifies that debug string contains the right strings. self.assertTrue(compat.as_bytes("v0 (DT_FLOAT) [2,3]") in debug_string) self.assertTrue(compat.as_bytes("v1 (DT_FLOAT) [3,2,1]") in debug_string) # Verifies get_variable_to_shape_map() returns the correct information. var_map = reader.get_variable_to_shape_map() self.assertEqual([2, 3], var_map["v0"]) self.assertEqual([3, 2, 1], var_map["v1"]) # Verifies get_tensor() returns the tensor value. v0_tensor = reader.get_tensor("v0") v1_tensor = reader.get_tensor("v1") self.assertAllEqual(v0.eval(), v0_tensor) self.assertAllEqual(v1.eval(), v1_tensor) # Verifies get_tensor() fails for non-existent tensors. with self.assertRaisesRegexp(errors.NotFoundError, "v3 not found in checkpoint"): reader.get_tensor("v3") def testNonexistentPath(self): with self.assertRaisesRegexp(errors.NotFoundError, "Unsuccessful TensorSliceReader"): pywrap_tensorflow.NewCheckpointReader("non-existent") class CheckpointReaderForV2Test(CheckpointReaderTest): _WRITE_VERSION = saver_pb2.SaverDef.V2 class WriteGraphTest(test.TestCase): def _get_test_dir(self, dirname): test_dir = os.path.join(self.get_temp_dir(), dirname) gfile.MakeDirs(test_dir) return test_dir def testWriteGraph(self): test_dir = self._get_test_dir("write_graph_dir") variables.VariableV1( [[1, 2, 3], [4, 5, 6]], dtype=dtypes.float32, name="v0") path = graph_io.write_graph(ops_lib.get_default_graph(), os.path.join(test_dir, "l1"), "graph.pbtxt") truth = os.path.join(test_dir, "l1", "graph.pbtxt") self.assertEqual(path, truth) self.assertTrue(os.path.exists(path)) def testRecursiveCreate(self): test_dir = self._get_test_dir("deep_dir") variables.VariableV1( [[1, 2, 3], [4, 5, 6]], dtype=dtypes.float32, name="v0") path = graph_io.write_graph(ops_lib.get_default_graph().as_graph_def(), os.path.join(test_dir, "l1", "l2", "l3"), "graph.pbtxt") truth = os.path.join(test_dir, "l1", "l2", "l3", "graph.pbtxt") self.assertEqual(path, truth) self.assertTrue(os.path.exists(path)) class ScopedGraphTest(test.TestCase): def _get_test_dir(self, dirname): test_dir = os.path.join(self.get_temp_dir(), dirname) gfile.MakeDirs(test_dir) return test_dir def _testScopedSave(self, test_dir, exported_filename, ckpt_filename): graph = ops_lib.Graph() with graph.as_default(): # Creates an inference graph. # Hidden 1 images = constant_op.constant( 1.2, dtypes.float32, shape=[100, 28], name="images") with ops_lib.name_scope("hidden1"): weights1 = variables.VariableV1( random_ops.truncated_normal( [28, 128], stddev=1.0 / math.sqrt(float(28))), name="weights") # The use of control_flow_ops.cond here is purely for adding test # coverage the save and restore of control flow context (which doesn't # make any sense here from a machine learning perspective). The typical # biases is a simple Variable without the conditions. biases1 = variables.VariableV1( control_flow_ops.cond( math_ops.less(random.random(), 0.5), lambda: array_ops.ones([128]), lambda: array_ops.zeros([128])), name="biases") hidden1 = nn_ops.relu(math_ops.matmul(images, weights1) + biases1) # Hidden 2 with ops_lib.name_scope("hidden2"): weights2 = variables.VariableV1( random_ops.truncated_normal( [128, 32], stddev=1.0 / math.sqrt(float(128))), name="weights") # The use of control_flow_ops.while_loop here is purely for adding test # coverage the save and restore of control flow context (which doesn't # make any sense here from a machine learning perspective). The typical # biases is a simple Variable without the conditions. def loop_cond(it, _): return it < 2 def loop_body(it, biases2): biases2 += constant_op.constant(0.1, shape=[32]) return it + 1, biases2 _, biases2 = control_flow_ops.while_loop(loop_cond, loop_body, [ constant_op.constant(0), variables.VariableV1(array_ops.zeros([32])) ]) hidden2 = nn_ops.relu(math_ops.matmul(hidden1, weights2) + biases2) # Linear with ops_lib.name_scope("softmax_linear"): weights3 = variables.VariableV1( random_ops.truncated_normal( [32, 10], stddev=1.0 / math.sqrt(float(32))), name="weights") biases3 = variables.VariableV1(array_ops.zeros([10]), name="biases") logits = math_ops.matmul(hidden2, weights3) + biases3 ops_lib.add_to_collection("logits", logits) # Adds user_defined proto in three formats: string, bytes and Any. # Any proto should just pass through. queue_runner = queue_runner_pb2.QueueRunnerDef(queue_name="test_queue") ops_lib.add_to_collection("user_defined_string_collection", str(queue_runner)) ops_lib.add_to_collection("user_defined_bytes_collection", queue_runner.SerializeToString()) any_buf = Any() any_buf.Pack(queue_runner) ops_lib.add_to_collection("user_defined_any_collection", any_buf) _, var_list = meta_graph.export_scoped_meta_graph( filename=os.path.join(test_dir, exported_filename), graph=ops_lib.get_default_graph(), export_scope="hidden1") self.assertEqual(["biases:0", "weights:0"], sorted(var_list.keys())) with self.session(graph=graph) as sess: self.evaluate(variables.global_variables_initializer()) saver = saver_module.Saver(var_list=var_list, max_to_keep=1) saver.save(sess, os.path.join(test_dir, ckpt_filename), write_state=False) def _testScopedRestore(self, test_dir, exported_filename, new_exported_filename, ckpt_filename): graph = ops_lib.Graph() # Create all the missing inputs. with graph.as_default(): new_image = constant_op.constant( 1.2, dtypes.float32, shape=[100, 28], name="images") var_list = meta_graph.import_scoped_meta_graph( os.path.join(test_dir, exported_filename), graph=graph, input_map={"$unbound_inputs_images": new_image}, import_scope="new_hidden1") self.assertEqual(["biases:0", "weights:0"], sorted(var_list.keys())) hidden1 = graph.as_graph_element("new_hidden1/Relu:0") weights1 = graph.as_graph_element("new_hidden1/weights:0") biases1 = graph.as_graph_element("new_hidden1/biases:0") with graph.as_default(): # Hidden 2 with ops_lib.name_scope("hidden2"): weights = variables.VariableV1( random_ops.truncated_normal( [128, 32], stddev=1.0 / math.sqrt(float(128))), name="weights") # The use of control_flow_ops.while_loop here is purely for adding test # coverage the save and restore of control flow context (which doesn't # make any sense here from a machine learning perspective). The typical # biases is a simple Variable without the conditions. def loop_cond(it, _): return it < 2 def loop_body(it, biases): biases += constant_op.constant(0.1, shape=[32]) return it + 1, biases _, biases = control_flow_ops.while_loop(loop_cond, loop_body, [ constant_op.constant(0), variables.VariableV1(array_ops.zeros([32])) ]) hidden2 = nn_ops.relu(math_ops.matmul(hidden1, weights) + biases) # Linear with ops_lib.name_scope("softmax_linear"): weights = variables.VariableV1( random_ops.truncated_normal( [32, 10], stddev=1.0 / math.sqrt(float(32))), name="weights") biases = variables.VariableV1(array_ops.zeros([10]), name="biases") logits = math_ops.matmul(hidden2, weights) + biases ops_lib.add_to_collection("logits", logits) # The rest of the variables. rest_variables = list( set(variables.global_variables()) - set(var_list.keys())) init_rest_op = variables.variables_initializer(rest_variables) with self.session(graph=graph) as sess: saver = saver_module.Saver(var_list=var_list, max_to_keep=1) saver.restore(sess, os.path.join(test_dir, ckpt_filename)) # Verify that we have restored weights1 and biases1. self.evaluate([weights1, biases1]) # Initialize the rest of the variables and run logits. self.evaluate(init_rest_op) self.evaluate(logits) # Verifies that we can save the subgraph under "hidden1" and restore it # into "new_hidden1" in the new graph. @test_util.run_deprecated_v1 def testScopedSaveAndRestore(self): test_dir = self._get_test_dir("scoped_export_import") ckpt_filename = "ckpt" self._testScopedSave(test_dir, "exported_hidden1.pbtxt", ckpt_filename) self._testScopedRestore(test_dir, "exported_hidden1.pbtxt", "exported_new_hidden1.pbtxt", ckpt_filename) # Verifies that we can copy the subgraph under "hidden1" and copy it # to different name scope in the same graph or different graph. @test_util.run_deprecated_v1 def testCopyScopedGraph(self): test_dir = self._get_test_dir("scoped_copy") saver0_ckpt = os.path.join(test_dir, "saver0.ckpt") graph1 = ops_lib.Graph() with graph1.as_default(): with ops_lib.name_scope("hidden1"): images = constant_op.constant( 1.0, dtypes.float32, shape=[3, 2], name="images") weights1 = variables.VariableV1( [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], name="weights") biases1 = variables.VariableV1([0.1] * 3, name="biases") nn_ops.relu(math_ops.matmul(images, weights1) + biases1, name="relu") # Run the graph and save scoped checkpoint. with self.session(graph=graph1) as sess: self.evaluate(variables.global_variables_initializer()) _, var_list_1 = meta_graph.export_scoped_meta_graph( export_scope="hidden1") saver = saver_module.Saver(var_list=var_list_1, max_to_keep=1) saver.save(sess, saver0_ckpt, write_state=False) expected = np.reshape([[5.0999999, 7.0999999, 9.10000038] * 3], (3, 3)) # Verifies copy to the same graph with the same name fails. with graph1.as_default(): with self.assertRaisesWithPredicateMatch( ValueError, lambda e: "need to be different" in str(e)): meta_graph.copy_scoped_meta_graph( from_scope="hidden1", to_scope="hidden1") # Verifies copy to the same graph. with graph1.as_default(): var_list_2 = meta_graph.copy_scoped_meta_graph( from_scope="hidden1", to_scope="hidden2") with self.session(graph=graph1) as sess: saver1 = saver_module.Saver(var_list=var_list_1, max_to_keep=1) saver1.restore(sess, saver0_ckpt) saver2 = saver_module.Saver(var_list=var_list_2, max_to_keep=1) saver2.restore(sess, saver0_ckpt) self.assertAllClose(expected, sess.run("hidden1/relu:0")) self.assertAllClose(expected, sess.run("hidden2/relu:0")) # Verifies copy to differen graph. graph2 = ops_lib.Graph() new_var_list_1 = meta_graph.copy_scoped_meta_graph( from_scope="hidden1", to_scope="new_hidden1", from_graph=graph1, to_graph=graph2) with self.session(graph=graph2) as sess: saver3 = saver_module.Saver(var_list=new_var_list_1, max_to_keep=1) saver3.restore(sess, saver0_ckpt) self.assertAllClose(expected, sess.run("new_hidden1/relu:0")) @test_util.run_deprecated_v1 def testExportGraphDefWithScope(self): test_dir = self._get_test_dir("export_graph_def") saver0_ckpt = os.path.join(test_dir, "saver0.ckpt") graph1 = ops_lib.Graph() with graph1.as_default(): with ops_lib.name_scope("hidden1"): images = constant_op.constant( 1.0, dtypes.float32, shape=[3, 2], name="images") weights1 = variables.VariableV1( [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], name="weights") biases1 = variables.VariableV1([0.1] * 3, name="biases") nn_ops.relu(math_ops.matmul(images, weights1) + biases1, name="relu") # Run the graph and save scoped checkpoint. with self.session(graph=graph1) as sess: self.evaluate(variables.global_variables_initializer()) _, var_list_1 = meta_graph.export_scoped_meta_graph( graph_def=graph1.as_graph_def(), export_scope="hidden1") saver = saver_module.Saver(var_list=var_list_1, max_to_keep=1) saver.save(sess, saver0_ckpt, write_state=False) expected = np.reshape([[5.0999999, 7.0999999, 9.10000038] * 3], (3, 3)) # Verifies that we can run successfully after restoring. graph2 = ops_lib.Graph() new_var_list_1 = meta_graph.copy_scoped_meta_graph( from_scope="hidden1", to_scope="new_hidden1", from_graph=graph1, to_graph=graph2) with self.session(graph=graph2) as sess: saver3 = saver_module.Saver(var_list=new_var_list_1, max_to_keep=1) saver3.restore(sess, saver0_ckpt) self.assertAllClose(expected, sess.run("new_hidden1/relu:0")) @test_util.run_deprecated_v1 def testSerializeSaverWithScope(self): test_dir = self._get_test_dir("export_graph_def") saver1_ckpt = os.path.join(test_dir, "saver1.ckpt") saver2_ckpt = os.path.join(test_dir, "saver2.ckpt") graph = ops_lib.Graph() with graph.as_default(): with ops_lib.name_scope("hidden1"): variable1 = variables.VariableV1([1.0], name="variable1") saver1 = saver_module.Saver(var_list=[variable1]) graph.add_to_collection(ops_lib.GraphKeys.SAVERS, saver1) with ops_lib.name_scope("hidden2"): variable2 = variables.VariableV1([2.0], name="variable2") saver2 = saver_module.Saver(var_list=[variable2], name="hidden2/") graph.add_to_collection(ops_lib.GraphKeys.SAVERS, saver2) with self.session(graph=graph) as sess: self.evaluate(variables.global_variables_initializer()) saver1.save(sess, saver1_ckpt, write_state=False) saver2.save(sess, saver2_ckpt, write_state=False) graph1 = ops_lib.Graph() var_dict1 = meta_graph.copy_scoped_meta_graph( from_scope="hidden1", to_scope="new_hidden1", from_graph=graph, to_graph=graph1) self.assertEqual(1, len(var_dict1)) saver_list1 = graph1.get_collection(ops_lib.GraphKeys.SAVERS) self.assertEqual(1, len(saver_list1)) with self.session(graph=graph1) as sess: saver_list1[0].restore(sess, saver1_ckpt) self.assertEqual(1.0, self.evaluate(var_dict1["variable1:0"])) graph2 = ops_lib.Graph() var_dict2 = meta_graph.copy_scoped_meta_graph( from_scope="hidden2", to_scope="new_hidden2", from_graph=graph, to_graph=graph2) self.assertEqual(1, len(var_dict2)) saver_list2 = graph2.get_collection(ops_lib.GraphKeys.SAVERS) self.assertEqual(1, len(saver_list2)) with self.session(graph=graph2) as sess: saver_list2[0].restore(sess, saver2_ckpt) self.assertEqual(2.0, self.evaluate(var_dict2["variable2:0"])) class _OwnsAVariableSimple(trackable_base.Trackable): """A Trackable object which can be saved using a tf.train.Saver.""" def __init__(self): self.non_dep_variable = variable_scope.get_variable( name="non_dep_variable", initializer=6., use_resource=True) def _gather_saveables_for_checkpoint(self): return {trackable_base.VARIABLE_VALUE_KEY: self.non_dep_variable} # The Saver sorts by name before parsing, so we need a name property. @property def name(self): return self.non_dep_variable.name class _MirroringSaveable( saver_module.BaseSaverBuilder.ResourceVariableSaveable): def __init__(self, primary_variable, mirrored_variable, name): self._primary_variable = primary_variable self._mirrored_variable = mirrored_variable super(_MirroringSaveable, self).__init__( self._primary_variable, "", name) def restore(self, restored_tensors, restored_shapes): """Restore the same value into both variables.""" tensor, = restored_tensors return control_flow_ops.group( self._primary_variable.assign(tensor), self._mirrored_variable.assign(tensor)) class _OwnsMirroredVariables(trackable_base.Trackable): """A Trackable object which returns a more complex SaveableObject.""" def __init__(self): self.non_dep_variable = variable_scope.get_variable( name="non_dep_variable", initializer=6., use_resource=True) self.mirrored = variable_scope.get_variable( name="mirrored", initializer=15., use_resource=True) def _gather_saveables_for_checkpoint(self): def _saveable_factory(name=self.non_dep_variable.name): return _MirroringSaveable( primary_variable=self.non_dep_variable, mirrored_variable=self.mirrored, name=name) return {trackable_base.VARIABLE_VALUE_KEY: _saveable_factory} # The Saver sorts by name before parsing, so we need a name property. @property def name(self): return self.non_dep_variable.name class NonLayerTrackable(trackable_tracking.AutoTrackable): def __init__(self): super(NonLayerTrackable, self).__init__() self.a_variable = trackable_utils.add_variable( self, name="a_variable", shape=[]) class MyModel(training.Model): """A concrete Model for testing.""" def __init__(self): super(MyModel, self).__init__() self._named_dense = core.Dense(1, use_bias=True) self._second = core.Dense(1, use_bias=False) # We can still track Trackables which aren't Layers. self._non_layer = NonLayerTrackable() def call(self, values): ret = self._second(self._named_dense(values)) return ret class TrackableCompatibilityTests(test.TestCase): # TODO(allenl): Track down python3 reference cycles in these tests. @test_util.run_in_graph_and_eager_modes def testNotSaveableButIsTrackable(self): v = _OwnsAVariableSimple() test_dir = self.get_temp_dir() prefix = os.path.join(test_dir, "ckpt") for saver in (saver_module.Saver(var_list=[v]), saver_module.Saver(var_list={"v": v})): with self.cached_session() as sess: self.evaluate(v.non_dep_variable.assign(42.)) save_path = saver.save(sess, prefix) self.evaluate(v.non_dep_variable.assign(43.)) saver.restore(sess, save_path) self.assertEqual(42., self.evaluate(v.non_dep_variable)) @test_util.run_in_graph_and_eager_modes def testMoreComplexSaveableReturned(self): v = _OwnsMirroredVariables() test_dir = self.get_temp_dir() prefix = os.path.join(test_dir, "ckpt") self.evaluate(v.non_dep_variable.assign(42.)) for saver in (saver_module.Saver(var_list=[v]), saver_module.Saver(var_list={"v": v})): with self.cached_session() as sess: save_path = saver.save(sess, prefix) self.evaluate(v.non_dep_variable.assign(43.)) self.evaluate(v.mirrored.assign(44.)) saver.restore(sess, save_path) self.assertEqual(42., self.evaluate(v.non_dep_variable)) self.assertEqual(42., self.evaluate(v.mirrored)) def testSingleTensorEvaluation(self): class _CountingSaveable(saver_module.BaseSaverBuilder.SaveableObject): def __init__(self, name): self.eval_count = 0 def _tensor(): self.eval_count += 1 return constant_op.constant([1.]) dummy_op = constant_op.constant([2.]) super(_CountingSaveable, self).__init__( dummy_op, [saver_module.BaseSaverBuilder.SaveSpec( _tensor, "", name, dtype=dummy_op.dtype)], name) def restore(self, restored_tensors, restored_shapes): """Restore the same value into both variables.""" pass with context.eager_mode(): v = _CountingSaveable("foo") saver = saver_module.Saver(var_list=[v]) test_dir = self.get_temp_dir() prefix = os.path.join(test_dir, "ckpt") with self.cached_session() as sess: save_path = saver.save(sess, prefix) self.assertEqual(1, v.eval_count) saver.restore(sess, save_path) self.assertEqual(1, v.eval_count) def _initialized_model(self): input_value = constant_op.constant([[3.]]) model = MyModel() optimizer = adam.AdamOptimizer(0.001) optimizer_step = training_util.get_or_create_global_step() root_trackable = trackable_utils.Checkpoint( optimizer=optimizer, model=model, optimizer_step=optimizer_step) train_op = optimizer.minimize( functools.partial(model, input_value), global_step=optimizer_step) self.evaluate(trackable_utils.gather_initializers( root_trackable)) self.evaluate(train_op) # A regular variable, a slot variable, and a non-slot Optimizer variable # with known values to check when loading. self.evaluate(model._named_dense.bias.assign([1.])) self.evaluate(optimizer.get_slot( var=model._named_dense.bias, name="m").assign([2.])) beta1_power, _ = optimizer._get_beta_accumulators() self.evaluate(beta1_power.assign(3.)) return root_trackable def _set_sentinels(self, root_trackable): self.evaluate(root_trackable.model._named_dense.bias.assign([101.])) self.evaluate( root_trackable.optimizer.get_slot( var=root_trackable.model._named_dense.bias, name="m") .assign([102.])) beta1_power, _ = root_trackable.optimizer._get_beta_accumulators() self.evaluate(beta1_power.assign(103.)) def _check_sentinels(self, root_trackable): self.assertAllEqual( [1.], self.evaluate(root_trackable.model._named_dense.bias)) self.assertAllEqual([2.], self.evaluate( root_trackable.optimizer.get_slot( var=root_trackable.model._named_dense.bias, name="m"))) beta1_power, _ = root_trackable.optimizer._get_beta_accumulators() self.assertAllEqual(3., self.evaluate(beta1_power)) def testVariableNotFoundErrorRaised(self): # Restore does some tricky exception handling to figure out if it should # load an object-based checkpoint. Tests that the exception handling isn't # too broad. checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") a = resource_variable_ops.ResourceVariable(1., name="a") b = resource_variable_ops.ResourceVariable(1., name="b") a_saver = saver_module.Saver([a]) b_saver = saver_module.Saver([b]) with self.cached_session() as sess: self.evaluate(a.initializer) save_path = a_saver.save(sess=sess, save_path=checkpoint_prefix) with self.assertRaisesRegexp( errors.NotFoundError, "Key b not found in checkpoint"): b_saver.restore(sess=sess, save_path=save_path) with self.assertRaises(errors.NotFoundError) as cs: b_saver.restore(sess=sess, save_path=save_path) # Make sure we don't have a confusing "During handling of the above # exception" block in Python 3. self.assertNotIn("NewCheckpointReader", cs.exception.message) @test_util.run_v1_only("b/120545219") def testGraphChangedForRestoreErrorRaised(self): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") with ops_lib.Graph().as_default() as g: a = variables.VariableV1(1., name="a") a_saver = saver_module.Saver([a]) with self.session(graph=g) as sess: self.evaluate(a.initializer) save_path = a_saver.save(sess=sess, save_path=checkpoint_prefix) with ops_lib.Graph().as_default() as g: a = variables.VariableV1([1.], name="a") a_saver = saver_module.Saver([a]) with self.session(graph=g) as sess: with self.assertRaisesRegexp( errors.InvalidArgumentError, "a mismatch between the current graph and the graph"): a_saver.restore(sess=sess, save_path=save_path) def testLoadFromObjectBasedGraph(self): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") save_graph = ops_lib.Graph() with save_graph.as_default(), self.session(graph=save_graph) as sess: root = self._initialized_model() object_saver = trackable_utils.Checkpoint(root=root) save_path = object_saver.save(file_prefix=checkpoint_prefix) # An incompatible object-based checkpoint to check error messages var = resource_variable_ops.ResourceVariable(1., name="a") self.evaluate(var.initializer) second_saver = trackable_utils.Checkpoint(v=var) second_path = second_saver.save(file_prefix=os.path.join( checkpoint_directory, "second")) restore_graph = ops_lib.Graph() with restore_graph.as_default(), self.session( graph=restore_graph) as sess: root = self._initialized_model() self._set_sentinels(root) saver = saver_module.Saver() saver.restore(sess=sess, save_path=save_path) self._check_sentinels(root) before_second_restore_ops = restore_graph.get_operations() # Test that multiple restores do not pollute the graph saver.restore(sess=sess, save_path=save_path) self.assertEqual(before_second_restore_ops, restore_graph.get_operations()) with self.assertRaisesRegexp(errors.NotFoundError, "Could not find some variables"): saver.restore(sess=sess, save_path=second_path) def testLoadFromObjectBasedEager(self): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") save_graph = ops_lib.Graph() with save_graph.as_default(), self.session(graph=save_graph): root = self._initialized_model() object_saver = trackable_utils.Checkpoint(root=root) save_path = object_saver.save(file_prefix=checkpoint_prefix) with context.eager_mode(): root = self._initialized_model() self._set_sentinels(root) saver = saver_module.Saver( root.model.variables + root.optimizer.variables()) saver.restore(sess=None, save_path=save_path) self._check_sentinels(root) if __name__ == "__main__": test.main()