// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_ARM64 #include "src/assembler.h" #include "src/base/bits.h" #include "src/base/division-by-constant.h" #include "src/bootstrapper.h" #include "src/callable.h" #include "src/code-factory.h" #include "src/code-stubs.h" #include "src/debug/debug.h" #include "src/external-reference-table.h" #include "src/frame-constants.h" #include "src/frames-inl.h" #include "src/heap/heap-inl.h" #include "src/instruction-stream.h" #include "src/register-configuration.h" #include "src/runtime/runtime.h" #include "src/snapshot/snapshot.h" #include "src/wasm/wasm-code-manager.h" #include "src/arm64/macro-assembler-arm64-inl.h" #include "src/arm64/macro-assembler-arm64.h" // Cannot be the first include namespace v8 { namespace internal { MacroAssembler::MacroAssembler(Isolate* isolate, const AssemblerOptions& options, void* buffer, int size, CodeObjectRequired create_code_object) : TurboAssembler(isolate, options, buffer, size, create_code_object) { if (create_code_object == CodeObjectRequired::kYes) { // Unlike TurboAssembler, which can be used off the main thread and may not // allocate, macro assembler creates its own copy of the self-reference // marker in order to disambiguate between self-references during nested // code generation (e.g.: codegen of the current object triggers stub // compilation through CodeStub::GetCode()). code_object_ = Handle::New( *isolate->factory()->NewSelfReferenceMarker(), isolate); } } CPURegList TurboAssembler::DefaultTmpList() { return CPURegList(ip0, ip1); } CPURegList TurboAssembler::DefaultFPTmpList() { return CPURegList(fp_scratch1, fp_scratch2); } int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, Register exclusion) const { int bytes = 0; auto list = kCallerSaved; DCHECK_EQ(list.Count() % 2, 0); // We only allow one exclusion register, so if the list is of even length // before exclusions, it must still be afterwards, to maintain alignment. // Therefore, we can ignore the exclusion register in the computation. // However, we leave it in the argument list to mirror the prototype for // Push/PopCallerSaved(). USE(exclusion); bytes += list.Count() * kXRegSizeInBits / 8; if (fp_mode == kSaveFPRegs) { DCHECK_EQ(kCallerSavedV.Count() % 2, 0); bytes += kCallerSavedV.Count() * kDRegSizeInBits / 8; } return bytes; } int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion) { int bytes = 0; auto list = kCallerSaved; DCHECK_EQ(list.Count() % 2, 0); if (!exclusion.Is(no_reg)) { // Replace the excluded register with padding to maintain alignment. list.Remove(exclusion); list.Combine(padreg); } PushCPURegList(list); bytes += list.Count() * kXRegSizeInBits / 8; if (fp_mode == kSaveFPRegs) { DCHECK_EQ(kCallerSavedV.Count() % 2, 0); PushCPURegList(kCallerSavedV); bytes += kCallerSavedV.Count() * kDRegSizeInBits / 8; } return bytes; } int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion) { int bytes = 0; if (fp_mode == kSaveFPRegs) { DCHECK_EQ(kCallerSavedV.Count() % 2, 0); PopCPURegList(kCallerSavedV); bytes += kCallerSavedV.Count() * kDRegSizeInBits / 8; } auto list = kCallerSaved; DCHECK_EQ(list.Count() % 2, 0); if (!exclusion.Is(no_reg)) { // Replace the excluded register with padding to maintain alignment. list.Remove(exclusion); list.Combine(padreg); } PopCPURegList(list); bytes += list.Count() * kXRegSizeInBits / 8; return bytes; } void TurboAssembler::LogicalMacro(const Register& rd, const Register& rn, const Operand& operand, LogicalOp op) { UseScratchRegisterScope temps(this); if (operand.NeedsRelocation(this)) { Register temp = temps.AcquireX(); Ldr(temp, operand.immediate()); Logical(rd, rn, temp, op); } else if (operand.IsImmediate()) { int64_t immediate = operand.ImmediateValue(); unsigned reg_size = rd.SizeInBits(); // If the operation is NOT, invert the operation and immediate. if ((op & NOT) == NOT) { op = static_cast(op & ~NOT); immediate = ~immediate; } // Ignore the top 32 bits of an immediate if we're moving to a W register. if (rd.Is32Bits()) { // Check that the top 32 bits are consistent. DCHECK(((immediate >> kWRegSizeInBits) == 0) || ((immediate >> kWRegSizeInBits) == -1)); immediate &= kWRegMask; } DCHECK(rd.Is64Bits() || is_uint32(immediate)); // Special cases for all set or all clear immediates. if (immediate == 0) { switch (op) { case AND: Mov(rd, 0); return; case ORR: // Fall through. case EOR: Mov(rd, rn); return; case ANDS: // Fall through. case BICS: break; default: UNREACHABLE(); } } else if ((rd.Is64Bits() && (immediate == -1L)) || (rd.Is32Bits() && (immediate == 0xFFFFFFFFL))) { switch (op) { case AND: Mov(rd, rn); return; case ORR: Mov(rd, immediate); return; case EOR: Mvn(rd, rn); return; case ANDS: // Fall through. case BICS: break; default: UNREACHABLE(); } } unsigned n, imm_s, imm_r; if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) { // Immediate can be encoded in the instruction. LogicalImmediate(rd, rn, n, imm_s, imm_r, op); } else { // Immediate can't be encoded: synthesize using move immediate. Register temp = temps.AcquireSameSizeAs(rn); // If the left-hand input is the stack pointer, we can't pre-shift the // immediate, as the encoding won't allow the subsequent post shift. PreShiftImmMode mode = rn.Is(sp) ? kNoShift : kAnyShift; Operand imm_operand = MoveImmediateForShiftedOp(temp, immediate, mode); if (rd.IsSP()) { // If rd is the stack pointer we cannot use it as the destination // register so we use the temp register as an intermediate again. Logical(temp, rn, imm_operand, op); Mov(sp, temp); } else { Logical(rd, rn, imm_operand, op); } } } else if (operand.IsExtendedRegister()) { DCHECK(operand.reg().SizeInBits() <= rd.SizeInBits()); // Add/sub extended supports shift <= 4. We want to support exactly the // same modes here. DCHECK_LE(operand.shift_amount(), 4); DCHECK(operand.reg().Is64Bits() || ((operand.extend() != UXTX) && (operand.extend() != SXTX))); Register temp = temps.AcquireSameSizeAs(rn); EmitExtendShift(temp, operand.reg(), operand.extend(), operand.shift_amount()); Logical(rd, rn, temp, op); } else { // The operand can be encoded in the instruction. DCHECK(operand.IsShiftedRegister()); Logical(rd, rn, operand, op); } } void TurboAssembler::Mov(const Register& rd, uint64_t imm) { DCHECK(allow_macro_instructions()); DCHECK(is_uint32(imm) || is_int32(imm) || rd.Is64Bits()); DCHECK(!rd.IsZero()); // TODO(all) extend to support more immediates. // // Immediates on Aarch64 can be produced using an initial value, and zero to // three move keep operations. // // Initial values can be generated with: // 1. 64-bit move zero (movz). // 2. 32-bit move inverted (movn). // 3. 64-bit move inverted. // 4. 32-bit orr immediate. // 5. 64-bit orr immediate. // Move-keep may then be used to modify each of the 16-bit half-words. // // The code below supports all five initial value generators, and // applying move-keep operations to move-zero and move-inverted initial // values. // Try to move the immediate in one instruction, and if that fails, switch to // using multiple instructions. if (!TryOneInstrMoveImmediate(rd, imm)) { unsigned reg_size = rd.SizeInBits(); // Generic immediate case. Imm will be represented by // [imm3, imm2, imm1, imm0], where each imm is 16 bits. // A move-zero or move-inverted is generated for the first non-zero or // non-0xFFFF immX, and a move-keep for subsequent non-zero immX. uint64_t ignored_halfword = 0; bool invert_move = false; // If the number of 0xFFFF halfwords is greater than the number of 0x0000 // halfwords, it's more efficient to use move-inverted. if (CountClearHalfWords(~imm, reg_size) > CountClearHalfWords(imm, reg_size)) { ignored_halfword = 0xFFFFL; invert_move = true; } // Mov instructions can't move immediate values into the stack pointer, so // set up a temporary register, if needed. UseScratchRegisterScope temps(this); Register temp = rd.IsSP() ? temps.AcquireSameSizeAs(rd) : rd; // Iterate through the halfwords. Use movn/movz for the first non-ignored // halfword, and movk for subsequent halfwords. DCHECK_EQ(reg_size % 16, 0); bool first_mov_done = false; for (int i = 0; i < (rd.SizeInBits() / 16); i++) { uint64_t imm16 = (imm >> (16 * i)) & 0xFFFFL; if (imm16 != ignored_halfword) { if (!first_mov_done) { if (invert_move) { movn(temp, (~imm16) & 0xFFFFL, 16 * i); } else { movz(temp, imm16, 16 * i); } first_mov_done = true; } else { // Construct a wider constant. movk(temp, imm16, 16 * i); } } } DCHECK(first_mov_done); // Move the temporary if the original destination register was the stack // pointer. if (rd.IsSP()) { mov(rd, temp); } } } void TurboAssembler::Mov(const Register& rd, const Operand& operand, DiscardMoveMode discard_mode) { DCHECK(allow_macro_instructions()); DCHECK(!rd.IsZero()); // Provide a swap register for instructions that need to write into the // system stack pointer (and can't do this inherently). UseScratchRegisterScope temps(this); Register dst = (rd.IsSP()) ? temps.AcquireSameSizeAs(rd) : rd; if (operand.NeedsRelocation(this)) { if (FLAG_embedded_builtins) { if (root_array_available_ && options().isolate_independent_code) { if (operand.ImmediateRMode() == RelocInfo::EXTERNAL_REFERENCE) { Address addr = static_cast
(operand.ImmediateValue()); ExternalReference reference = bit_cast(addr); IndirectLoadExternalReference(rd, reference); return; } else if (operand.ImmediateRMode() == RelocInfo::EMBEDDED_OBJECT) { Handle x( reinterpret_cast(operand.ImmediateValue())); IndirectLoadConstant(rd, x); return; } } } Ldr(dst, operand); } else if (operand.IsImmediate()) { // Call the macro assembler for generic immediates. Mov(dst, operand.ImmediateValue()); } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) { // Emit a shift instruction if moving a shifted register. This operation // could also be achieved using an orr instruction (like orn used by Mvn), // but using a shift instruction makes the disassembly clearer. EmitShift(dst, operand.reg(), operand.shift(), operand.shift_amount()); } else if (operand.IsExtendedRegister()) { // Emit an extend instruction if moving an extended register. This handles // extend with post-shift operations, too. EmitExtendShift(dst, operand.reg(), operand.extend(), operand.shift_amount()); } else { // Otherwise, emit a register move only if the registers are distinct, or // if they are not X registers. // // Note that mov(w0, w0) is not a no-op because it clears the top word of // x0. A flag is provided (kDiscardForSameWReg) if a move between the same W // registers is not required to clear the top word of the X register. In // this case, the instruction is discarded. // // If sp is an operand, add #0 is emitted, otherwise, orr #0. if (!rd.Is(operand.reg()) || (rd.Is32Bits() && (discard_mode == kDontDiscardForSameWReg))) { Assembler::mov(rd, operand.reg()); } // This case can handle writes into the system stack pointer directly. dst = rd; } // Copy the result to the system stack pointer. if (!dst.Is(rd)) { DCHECK(rd.IsSP()); Assembler::mov(rd, dst); } } void TurboAssembler::Movi16bitHelper(const VRegister& vd, uint64_t imm) { DCHECK(is_uint16(imm)); int byte1 = (imm & 0xFF); int byte2 = ((imm >> 8) & 0xFF); if (byte1 == byte2) { movi(vd.Is64Bits() ? vd.V8B() : vd.V16B(), byte1); } else if (byte1 == 0) { movi(vd, byte2, LSL, 8); } else if (byte2 == 0) { movi(vd, byte1); } else if (byte1 == 0xFF) { mvni(vd, ~byte2 & 0xFF, LSL, 8); } else if (byte2 == 0xFF) { mvni(vd, ~byte1 & 0xFF); } else { UseScratchRegisterScope temps(this); Register temp = temps.AcquireW(); movz(temp, imm); dup(vd, temp); } } void TurboAssembler::Movi32bitHelper(const VRegister& vd, uint64_t imm) { DCHECK(is_uint32(imm)); uint8_t bytes[sizeof(imm)]; memcpy(bytes, &imm, sizeof(imm)); // All bytes are either 0x00 or 0xFF. { bool all0orff = true; for (int i = 0; i < 4; ++i) { if ((bytes[i] != 0) && (bytes[i] != 0xFF)) { all0orff = false; break; } } if (all0orff == true) { movi(vd.Is64Bits() ? vd.V1D() : vd.V2D(), ((imm << 32) | imm)); return; } } // Of the 4 bytes, only one byte is non-zero. for (int i = 0; i < 4; i++) { if ((imm & (0xFF << (i * 8))) == imm) { movi(vd, bytes[i], LSL, i * 8); return; } } // Of the 4 bytes, only one byte is not 0xFF. for (int i = 0; i < 4; i++) { uint32_t mask = ~(0xFF << (i * 8)); if ((imm & mask) == mask) { mvni(vd, ~bytes[i] & 0xFF, LSL, i * 8); return; } } // Immediate is of the form 0x00MMFFFF. if ((imm & 0xFF00FFFF) == 0x0000FFFF) { movi(vd, bytes[2], MSL, 16); return; } // Immediate is of the form 0x0000MMFF. if ((imm & 0xFFFF00FF) == 0x000000FF) { movi(vd, bytes[1], MSL, 8); return; } // Immediate is of the form 0xFFMM0000. if ((imm & 0xFF00FFFF) == 0xFF000000) { mvni(vd, ~bytes[2] & 0xFF, MSL, 16); return; } // Immediate is of the form 0xFFFFMM00. if ((imm & 0xFFFF00FF) == 0xFFFF0000) { mvni(vd, ~bytes[1] & 0xFF, MSL, 8); return; } // Top and bottom 16-bits are equal. if (((imm >> 16) & 0xFFFF) == (imm & 0xFFFF)) { Movi16bitHelper(vd.Is64Bits() ? vd.V4H() : vd.V8H(), imm & 0xFFFF); return; } // Default case. { UseScratchRegisterScope temps(this); Register temp = temps.AcquireW(); Mov(temp, imm); dup(vd, temp); } } void TurboAssembler::Movi64bitHelper(const VRegister& vd, uint64_t imm) { // All bytes are either 0x00 or 0xFF. { bool all0orff = true; for (int i = 0; i < 8; ++i) { int byteval = (imm >> (i * 8)) & 0xFF; if (byteval != 0 && byteval != 0xFF) { all0orff = false; break; } } if (all0orff == true) { movi(vd, imm); return; } } // Top and bottom 32-bits are equal. if (((imm >> 32) & 0xFFFFFFFF) == (imm & 0xFFFFFFFF)) { Movi32bitHelper(vd.Is64Bits() ? vd.V2S() : vd.V4S(), imm & 0xFFFFFFFF); return; } // Default case. { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Mov(temp, imm); if (vd.Is1D()) { mov(vd.D(), 0, temp); } else { dup(vd.V2D(), temp); } } } void TurboAssembler::Movi(const VRegister& vd, uint64_t imm, Shift shift, int shift_amount) { DCHECK(allow_macro_instructions()); if (shift_amount != 0 || shift != LSL) { movi(vd, imm, shift, shift_amount); } else if (vd.Is8B() || vd.Is16B()) { // 8-bit immediate. DCHECK(is_uint8(imm)); movi(vd, imm); } else if (vd.Is4H() || vd.Is8H()) { // 16-bit immediate. Movi16bitHelper(vd, imm); } else if (vd.Is2S() || vd.Is4S()) { // 32-bit immediate. Movi32bitHelper(vd, imm); } else { // 64-bit immediate. Movi64bitHelper(vd, imm); } } void TurboAssembler::Movi(const VRegister& vd, uint64_t hi, uint64_t lo) { // TODO(all): Move 128-bit values in a more efficient way. DCHECK(vd.Is128Bits()); UseScratchRegisterScope temps(this); Movi(vd.V2D(), lo); Register temp = temps.AcquireX(); Mov(temp, hi); Ins(vd.V2D(), 1, temp); } void TurboAssembler::Mvn(const Register& rd, const Operand& operand) { DCHECK(allow_macro_instructions()); if (operand.NeedsRelocation(this)) { Ldr(rd, operand.immediate()); mvn(rd, rd); } else if (operand.IsImmediate()) { // Call the macro assembler for generic immediates. Mov(rd, ~operand.ImmediateValue()); } else if (operand.IsExtendedRegister()) { // Emit two instructions for the extend case. This differs from Mov, as // the extend and invert can't be achieved in one instruction. EmitExtendShift(rd, operand.reg(), operand.extend(), operand.shift_amount()); mvn(rd, rd); } else { mvn(rd, operand); } } unsigned TurboAssembler::CountClearHalfWords(uint64_t imm, unsigned reg_size) { DCHECK_EQ(reg_size % 8, 0); int count = 0; for (unsigned i = 0; i < (reg_size / 16); i++) { if ((imm & 0xFFFF) == 0) { count++; } imm >>= 16; } return count; } // The movz instruction can generate immediates containing an arbitrary 16-bit // half-word, with remaining bits clear, eg. 0x00001234, 0x0000123400000000. bool TurboAssembler::IsImmMovz(uint64_t imm, unsigned reg_size) { DCHECK((reg_size == kXRegSizeInBits) || (reg_size == kWRegSizeInBits)); return CountClearHalfWords(imm, reg_size) >= ((reg_size / 16) - 1); } // The movn instruction can generate immediates containing an arbitrary 16-bit // half-word, with remaining bits set, eg. 0xFFFF1234, 0xFFFF1234FFFFFFFF. bool TurboAssembler::IsImmMovn(uint64_t imm, unsigned reg_size) { return IsImmMovz(~imm, reg_size); } void TurboAssembler::ConditionalCompareMacro(const Register& rn, const Operand& operand, StatusFlags nzcv, Condition cond, ConditionalCompareOp op) { DCHECK((cond != al) && (cond != nv)); if (operand.NeedsRelocation(this)) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Ldr(temp, operand.immediate()); ConditionalCompareMacro(rn, temp, nzcv, cond, op); } else if ((operand.IsShiftedRegister() && (operand.shift_amount() == 0)) || (operand.IsImmediate() && IsImmConditionalCompare(operand.ImmediateValue()))) { // The immediate can be encoded in the instruction, or the operand is an // unshifted register: call the assembler. ConditionalCompare(rn, operand, nzcv, cond, op); } else { // The operand isn't directly supported by the instruction: perform the // operation on a temporary register. UseScratchRegisterScope temps(this); Register temp = temps.AcquireSameSizeAs(rn); Mov(temp, operand); ConditionalCompare(rn, temp, nzcv, cond, op); } } void TurboAssembler::Csel(const Register& rd, const Register& rn, const Operand& operand, Condition cond) { DCHECK(allow_macro_instructions()); DCHECK(!rd.IsZero()); DCHECK((cond != al) && (cond != nv)); if (operand.IsImmediate()) { // Immediate argument. Handle special cases of 0, 1 and -1 using zero // register. int64_t imm = operand.ImmediateValue(); Register zr = AppropriateZeroRegFor(rn); if (imm == 0) { csel(rd, rn, zr, cond); } else if (imm == 1) { csinc(rd, rn, zr, cond); } else if (imm == -1) { csinv(rd, rn, zr, cond); } else { UseScratchRegisterScope temps(this); Register temp = temps.AcquireSameSizeAs(rn); Mov(temp, imm); csel(rd, rn, temp, cond); } } else if (operand.IsShiftedRegister() && (operand.shift_amount() == 0)) { // Unshifted register argument. csel(rd, rn, operand.reg(), cond); } else { // All other arguments. UseScratchRegisterScope temps(this); Register temp = temps.AcquireSameSizeAs(rn); Mov(temp, operand); csel(rd, rn, temp, cond); } } bool TurboAssembler::TryOneInstrMoveImmediate(const Register& dst, int64_t imm) { unsigned n, imm_s, imm_r; int reg_size = dst.SizeInBits(); if (IsImmMovz(imm, reg_size) && !dst.IsSP()) { // Immediate can be represented in a move zero instruction. Movz can't write // to the stack pointer. movz(dst, imm); return true; } else if (IsImmMovn(imm, reg_size) && !dst.IsSP()) { // Immediate can be represented in a move not instruction. Movn can't write // to the stack pointer. movn(dst, dst.Is64Bits() ? ~imm : (~imm & kWRegMask)); return true; } else if (IsImmLogical(imm, reg_size, &n, &imm_s, &imm_r)) { // Immediate can be represented in a logical orr instruction. LogicalImmediate(dst, AppropriateZeroRegFor(dst), n, imm_s, imm_r, ORR); return true; } return false; } Operand TurboAssembler::MoveImmediateForShiftedOp(const Register& dst, int64_t imm, PreShiftImmMode mode) { int reg_size = dst.SizeInBits(); // Encode the immediate in a single move instruction, if possible. if (TryOneInstrMoveImmediate(dst, imm)) { // The move was successful; nothing to do here. } else { // Pre-shift the immediate to the least-significant bits of the register. int shift_low = CountTrailingZeros(imm, reg_size); if (mode == kLimitShiftForSP) { // When applied to the stack pointer, the subsequent arithmetic operation // can use the extend form to shift left by a maximum of four bits. Right // shifts are not allowed, so we filter them out later before the new // immediate is tested. shift_low = std::min(shift_low, 4); } int64_t imm_low = imm >> shift_low; // Pre-shift the immediate to the most-significant bits of the register. We // insert set bits in the least-significant bits, as this creates a // different immediate that may be encodable using movn or orr-immediate. // If this new immediate is encodable, the set bits will be eliminated by // the post shift on the following instruction. int shift_high = CountLeadingZeros(imm, reg_size); int64_t imm_high = (imm << shift_high) | ((INT64_C(1) << shift_high) - 1); if ((mode != kNoShift) && TryOneInstrMoveImmediate(dst, imm_low)) { // The new immediate has been moved into the destination's low bits: // return a new leftward-shifting operand. return Operand(dst, LSL, shift_low); } else if ((mode == kAnyShift) && TryOneInstrMoveImmediate(dst, imm_high)) { // The new immediate has been moved into the destination's high bits: // return a new rightward-shifting operand. return Operand(dst, LSR, shift_high); } else { // Use the generic move operation to set up the immediate. Mov(dst, imm); } } return Operand(dst); } void TurboAssembler::AddSubMacro(const Register& rd, const Register& rn, const Operand& operand, FlagsUpdate S, AddSubOp op) { if (operand.IsZero() && rd.Is(rn) && rd.Is64Bits() && rn.Is64Bits() && !operand.NeedsRelocation(this) && (S == LeaveFlags)) { // The instruction would be a nop. Avoid generating useless code. return; } if (operand.NeedsRelocation(this)) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Ldr(temp, operand.immediate()); AddSubMacro(rd, rn, temp, S, op); } else if ((operand.IsImmediate() && !IsImmAddSub(operand.ImmediateValue())) || (rn.IsZero() && !operand.IsShiftedRegister()) || (operand.IsShiftedRegister() && (operand.shift() == ROR))) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireSameSizeAs(rn); if (operand.IsImmediate()) { PreShiftImmMode mode = kAnyShift; // If the destination or source register is the stack pointer, we can // only pre-shift the immediate right by values supported in the add/sub // extend encoding. if (rd.Is(sp)) { // If the destination is SP and flags will be set, we can't pre-shift // the immediate at all. mode = (S == SetFlags) ? kNoShift : kLimitShiftForSP; } else if (rn.Is(sp)) { mode = kLimitShiftForSP; } Operand imm_operand = MoveImmediateForShiftedOp(temp, operand.ImmediateValue(), mode); AddSub(rd, rn, imm_operand, S, op); } else { Mov(temp, operand); AddSub(rd, rn, temp, S, op); } } else { AddSub(rd, rn, operand, S, op); } } void TurboAssembler::AddSubWithCarryMacro(const Register& rd, const Register& rn, const Operand& operand, FlagsUpdate S, AddSubWithCarryOp op) { DCHECK(rd.SizeInBits() == rn.SizeInBits()); UseScratchRegisterScope temps(this); if (operand.NeedsRelocation(this)) { Register temp = temps.AcquireX(); Ldr(temp, operand.immediate()); AddSubWithCarryMacro(rd, rn, temp, S, op); } else if (operand.IsImmediate() || (operand.IsShiftedRegister() && (operand.shift() == ROR))) { // Add/sub with carry (immediate or ROR shifted register.) Register temp = temps.AcquireSameSizeAs(rn); Mov(temp, operand); AddSubWithCarry(rd, rn, temp, S, op); } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) { // Add/sub with carry (shifted register). DCHECK(operand.reg().SizeInBits() == rd.SizeInBits()); DCHECK(operand.shift() != ROR); DCHECK(is_uintn(operand.shift_amount(), rd.SizeInBits() == kXRegSizeInBits ? kXRegSizeInBitsLog2 : kWRegSizeInBitsLog2)); Register temp = temps.AcquireSameSizeAs(rn); EmitShift(temp, operand.reg(), operand.shift(), operand.shift_amount()); AddSubWithCarry(rd, rn, temp, S, op); } else if (operand.IsExtendedRegister()) { // Add/sub with carry (extended register). DCHECK(operand.reg().SizeInBits() <= rd.SizeInBits()); // Add/sub extended supports a shift <= 4. We want to support exactly the // same modes. DCHECK_LE(operand.shift_amount(), 4); DCHECK(operand.reg().Is64Bits() || ((operand.extend() != UXTX) && (operand.extend() != SXTX))); Register temp = temps.AcquireSameSizeAs(rn); EmitExtendShift(temp, operand.reg(), operand.extend(), operand.shift_amount()); AddSubWithCarry(rd, rn, temp, S, op); } else { // The addressing mode is directly supported by the instruction. AddSubWithCarry(rd, rn, operand, S, op); } } void TurboAssembler::LoadStoreMacro(const CPURegister& rt, const MemOperand& addr, LoadStoreOp op) { int64_t offset = addr.offset(); unsigned size = CalcLSDataSize(op); // Check if an immediate offset fits in the immediate field of the // appropriate instruction. If not, emit two instructions to perform // the operation. if (addr.IsImmediateOffset() && !IsImmLSScaled(offset, size) && !IsImmLSUnscaled(offset)) { // Immediate offset that can't be encoded using unsigned or unscaled // addressing modes. UseScratchRegisterScope temps(this); Register temp = temps.AcquireSameSizeAs(addr.base()); Mov(temp, addr.offset()); LoadStore(rt, MemOperand(addr.base(), temp), op); } else if (addr.IsPostIndex() && !IsImmLSUnscaled(offset)) { // Post-index beyond unscaled addressing range. LoadStore(rt, MemOperand(addr.base()), op); add(addr.base(), addr.base(), offset); } else if (addr.IsPreIndex() && !IsImmLSUnscaled(offset)) { // Pre-index beyond unscaled addressing range. add(addr.base(), addr.base(), offset); LoadStore(rt, MemOperand(addr.base()), op); } else { // Encodable in one load/store instruction. LoadStore(rt, addr, op); } } void TurboAssembler::LoadStorePairMacro(const CPURegister& rt, const CPURegister& rt2, const MemOperand& addr, LoadStorePairOp op) { // TODO(all): Should we support register offset for load-store-pair? DCHECK(!addr.IsRegisterOffset()); int64_t offset = addr.offset(); unsigned size = CalcLSPairDataSize(op); // Check if the offset fits in the immediate field of the appropriate // instruction. If not, emit two instructions to perform the operation. if (IsImmLSPair(offset, size)) { // Encodable in one load/store pair instruction. LoadStorePair(rt, rt2, addr, op); } else { Register base = addr.base(); if (addr.IsImmediateOffset()) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireSameSizeAs(base); Add(temp, base, offset); LoadStorePair(rt, rt2, MemOperand(temp), op); } else if (addr.IsPostIndex()) { LoadStorePair(rt, rt2, MemOperand(base), op); Add(base, base, offset); } else { DCHECK(addr.IsPreIndex()); Add(base, base, offset); LoadStorePair(rt, rt2, MemOperand(base), op); } } } bool TurboAssembler::NeedExtraInstructionsOrRegisterBranch( Label* label, ImmBranchType b_type) { bool need_longer_range = false; // There are two situations in which we care about the offset being out of // range: // - The label is bound but too far away. // - The label is not bound but linked, and the previous branch // instruction in the chain is too far away. if (label->is_bound() || label->is_linked()) { need_longer_range = !Instruction::IsValidImmPCOffset(b_type, label->pos() - pc_offset()); } if (!need_longer_range && !label->is_bound()) { int max_reachable_pc = pc_offset() + Instruction::ImmBranchRange(b_type); unresolved_branches_.insert( std::pair(max_reachable_pc, FarBranchInfo(pc_offset(), label))); // Also maintain the next pool check. next_veneer_pool_check_ = Min(next_veneer_pool_check_, max_reachable_pc - kVeneerDistanceCheckMargin); } return need_longer_range; } void TurboAssembler::Adr(const Register& rd, Label* label, AdrHint hint) { DCHECK(allow_macro_instructions()); DCHECK(!rd.IsZero()); if (hint == kAdrNear) { adr(rd, label); return; } DCHECK_EQ(hint, kAdrFar); if (label->is_bound()) { int label_offset = label->pos() - pc_offset(); if (Instruction::IsValidPCRelOffset(label_offset)) { adr(rd, label); } else { DCHECK_LE(label_offset, 0); int min_adr_offset = -(1 << (Instruction::ImmPCRelRangeBitwidth - 1)); adr(rd, min_adr_offset); Add(rd, rd, label_offset - min_adr_offset); } } else { UseScratchRegisterScope temps(this); Register scratch = temps.AcquireX(); InstructionAccurateScope scope( this, PatchingAssembler::kAdrFarPatchableNInstrs); adr(rd, label); for (int i = 0; i < PatchingAssembler::kAdrFarPatchableNNops; ++i) { nop(ADR_FAR_NOP); } movz(scratch, 0); } } void TurboAssembler::B(Label* label, BranchType type, Register reg, int bit) { DCHECK((reg.Is(NoReg) || type >= kBranchTypeFirstUsingReg) && (bit == -1 || type >= kBranchTypeFirstUsingBit)); if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) { B(static_cast(type), label); } else { switch (type) { case always: B(label); break; case never: break; case reg_zero: Cbz(reg, label); break; case reg_not_zero: Cbnz(reg, label); break; case reg_bit_clear: Tbz(reg, bit, label); break; case reg_bit_set: Tbnz(reg, bit, label); break; default: UNREACHABLE(); } } } void TurboAssembler::B(Label* label, Condition cond) { DCHECK(allow_macro_instructions()); DCHECK((cond != al) && (cond != nv)); Label done; bool need_extra_instructions = NeedExtraInstructionsOrRegisterBranch(label, CondBranchType); if (need_extra_instructions) { b(&done, NegateCondition(cond)); B(label); } else { b(label, cond); } bind(&done); } void TurboAssembler::Tbnz(const Register& rt, unsigned bit_pos, Label* label) { DCHECK(allow_macro_instructions()); Label done; bool need_extra_instructions = NeedExtraInstructionsOrRegisterBranch(label, TestBranchType); if (need_extra_instructions) { tbz(rt, bit_pos, &done); B(label); } else { tbnz(rt, bit_pos, label); } bind(&done); } void TurboAssembler::Tbz(const Register& rt, unsigned bit_pos, Label* label) { DCHECK(allow_macro_instructions()); Label done; bool need_extra_instructions = NeedExtraInstructionsOrRegisterBranch(label, TestBranchType); if (need_extra_instructions) { tbnz(rt, bit_pos, &done); B(label); } else { tbz(rt, bit_pos, label); } bind(&done); } void TurboAssembler::Cbnz(const Register& rt, Label* label) { DCHECK(allow_macro_instructions()); Label done; bool need_extra_instructions = NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType); if (need_extra_instructions) { cbz(rt, &done); B(label); } else { cbnz(rt, label); } bind(&done); } void TurboAssembler::Cbz(const Register& rt, Label* label) { DCHECK(allow_macro_instructions()); Label done; bool need_extra_instructions = NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType); if (need_extra_instructions) { cbnz(rt, &done); B(label); } else { cbz(rt, label); } bind(&done); } // Pseudo-instructions. void TurboAssembler::Abs(const Register& rd, const Register& rm, Label* is_not_representable, Label* is_representable) { DCHECK(allow_macro_instructions()); DCHECK(AreSameSizeAndType(rd, rm)); Cmp(rm, 1); Cneg(rd, rm, lt); // If the comparison sets the v flag, the input was the smallest value // representable by rm, and the mathematical result of abs(rm) is not // representable using two's complement. if ((is_not_representable != nullptr) && (is_representable != nullptr)) { B(is_not_representable, vs); B(is_representable); } else if (is_not_representable != nullptr) { B(is_not_representable, vs); } else if (is_representable != nullptr) { B(is_representable, vc); } } // Abstracted stack operations. void TurboAssembler::Push(const CPURegister& src0, const CPURegister& src1, const CPURegister& src2, const CPURegister& src3) { DCHECK(AreSameSizeAndType(src0, src1, src2, src3)); int count = 1 + src1.IsValid() + src2.IsValid() + src3.IsValid(); int size = src0.SizeInBytes(); DCHECK_EQ(0, (size * count) % 16); PushHelper(count, size, src0, src1, src2, src3); } void TurboAssembler::Push(const CPURegister& src0, const CPURegister& src1, const CPURegister& src2, const CPURegister& src3, const CPURegister& src4, const CPURegister& src5, const CPURegister& src6, const CPURegister& src7) { DCHECK(AreSameSizeAndType(src0, src1, src2, src3, src4, src5, src6, src7)); int count = 5 + src5.IsValid() + src6.IsValid() + src6.IsValid(); int size = src0.SizeInBytes(); DCHECK_EQ(0, (size * count) % 16); PushHelper(4, size, src0, src1, src2, src3); PushHelper(count - 4, size, src4, src5, src6, src7); } void TurboAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1, const CPURegister& dst2, const CPURegister& dst3) { // It is not valid to pop into the same register more than once in one // instruction, not even into the zero register. DCHECK(!AreAliased(dst0, dst1, dst2, dst3)); DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3)); DCHECK(dst0.IsValid()); int count = 1 + dst1.IsValid() + dst2.IsValid() + dst3.IsValid(); int size = dst0.SizeInBytes(); DCHECK_EQ(0, (size * count) % 16); PopHelper(count, size, dst0, dst1, dst2, dst3); } void TurboAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1, const CPURegister& dst2, const CPURegister& dst3, const CPURegister& dst4, const CPURegister& dst5, const CPURegister& dst6, const CPURegister& dst7) { // It is not valid to pop into the same register more than once in one // instruction, not even into the zero register. DCHECK(!AreAliased(dst0, dst1, dst2, dst3, dst4, dst5, dst6, dst7)); DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3, dst4, dst5, dst6, dst7)); DCHECK(dst0.IsValid()); int count = 5 + dst5.IsValid() + dst6.IsValid() + dst7.IsValid(); int size = dst0.SizeInBytes(); DCHECK_EQ(0, (size * count) % 16); PopHelper(4, size, dst0, dst1, dst2, dst3); PopHelper(count - 4, size, dst4, dst5, dst6, dst7); } void TurboAssembler::Push(const Register& src0, const VRegister& src1) { int size = src0.SizeInBytes() + src1.SizeInBytes(); DCHECK_EQ(0, size % 16); // Reserve room for src0 and push src1. str(src1, MemOperand(sp, -size, PreIndex)); // Fill the gap with src0. str(src0, MemOperand(sp, src1.SizeInBytes())); } void MacroAssembler::PushPopQueue::PushQueued() { DCHECK_EQ(0, size_ % 16); if (queued_.empty()) return; size_t count = queued_.size(); size_t index = 0; while (index < count) { // PushHelper can only handle registers with the same size and type, and it // can handle only four at a time. Batch them up accordingly. CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg}; int batch_index = 0; do { batch[batch_index++] = queued_[index++]; } while ((batch_index < 4) && (index < count) && batch[0].IsSameSizeAndType(queued_[index])); masm_->PushHelper(batch_index, batch[0].SizeInBytes(), batch[0], batch[1], batch[2], batch[3]); } queued_.clear(); } void MacroAssembler::PushPopQueue::PopQueued() { DCHECK_EQ(0, size_ % 16); if (queued_.empty()) return; size_t count = queued_.size(); size_t index = 0; while (index < count) { // PopHelper can only handle registers with the same size and type, and it // can handle only four at a time. Batch them up accordingly. CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg}; int batch_index = 0; do { batch[batch_index++] = queued_[index++]; } while ((batch_index < 4) && (index < count) && batch[0].IsSameSizeAndType(queued_[index])); masm_->PopHelper(batch_index, batch[0].SizeInBytes(), batch[0], batch[1], batch[2], batch[3]); } queued_.clear(); } void TurboAssembler::PushCPURegList(CPURegList registers) { int size = registers.RegisterSizeInBytes(); DCHECK_EQ(0, (size * registers.Count()) % 16); // Push up to four registers at a time. while (!registers.IsEmpty()) { int count_before = registers.Count(); const CPURegister& src0 = registers.PopHighestIndex(); const CPURegister& src1 = registers.PopHighestIndex(); const CPURegister& src2 = registers.PopHighestIndex(); const CPURegister& src3 = registers.PopHighestIndex(); int count = count_before - registers.Count(); PushHelper(count, size, src0, src1, src2, src3); } } void TurboAssembler::PopCPURegList(CPURegList registers) { int size = registers.RegisterSizeInBytes(); DCHECK_EQ(0, (size * registers.Count()) % 16); // Pop up to four registers at a time. while (!registers.IsEmpty()) { int count_before = registers.Count(); const CPURegister& dst0 = registers.PopLowestIndex(); const CPURegister& dst1 = registers.PopLowestIndex(); const CPURegister& dst2 = registers.PopLowestIndex(); const CPURegister& dst3 = registers.PopLowestIndex(); int count = count_before - registers.Count(); PopHelper(count, size, dst0, dst1, dst2, dst3); } } void MacroAssembler::PushMultipleTimes(CPURegister src, Register count) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireSameSizeAs(count); if (FLAG_optimize_for_size) { Label loop, done; Subs(temp, count, 1); B(mi, &done); // Push all registers individually, to save code size. Bind(&loop); Subs(temp, temp, 1); PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg); B(pl, &loop); Bind(&done); } else { Label loop, leftover2, leftover1, done; Subs(temp, count, 4); B(mi, &leftover2); // Push groups of four first. Bind(&loop); Subs(temp, temp, 4); PushHelper(4, src.SizeInBytes(), src, src, src, src); B(pl, &loop); // Push groups of two. Bind(&leftover2); Tbz(count, 1, &leftover1); PushHelper(2, src.SizeInBytes(), src, src, NoReg, NoReg); // Push the last one (if required). Bind(&leftover1); Tbz(count, 0, &done); PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg); Bind(&done); } } void TurboAssembler::PushHelper(int count, int size, const CPURegister& src0, const CPURegister& src1, const CPURegister& src2, const CPURegister& src3) { // Ensure that we don't unintentially modify scratch or debug registers. InstructionAccurateScope scope(this); DCHECK(AreSameSizeAndType(src0, src1, src2, src3)); DCHECK(size == src0.SizeInBytes()); // When pushing multiple registers, the store order is chosen such that // Push(a, b) is equivalent to Push(a) followed by Push(b). switch (count) { case 1: DCHECK(src1.IsNone() && src2.IsNone() && src3.IsNone()); str(src0, MemOperand(sp, -1 * size, PreIndex)); break; case 2: DCHECK(src2.IsNone() && src3.IsNone()); stp(src1, src0, MemOperand(sp, -2 * size, PreIndex)); break; case 3: DCHECK(src3.IsNone()); stp(src2, src1, MemOperand(sp, -3 * size, PreIndex)); str(src0, MemOperand(sp, 2 * size)); break; case 4: // Skip over 4 * size, then fill in the gap. This allows four W registers // to be pushed using sp, whilst maintaining 16-byte alignment for sp // at all times. stp(src3, src2, MemOperand(sp, -4 * size, PreIndex)); stp(src1, src0, MemOperand(sp, 2 * size)); break; default: UNREACHABLE(); } } void TurboAssembler::PopHelper(int count, int size, const CPURegister& dst0, const CPURegister& dst1, const CPURegister& dst2, const CPURegister& dst3) { // Ensure that we don't unintentially modify scratch or debug registers. InstructionAccurateScope scope(this); DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3)); DCHECK(size == dst0.SizeInBytes()); // When popping multiple registers, the load order is chosen such that // Pop(a, b) is equivalent to Pop(a) followed by Pop(b). switch (count) { case 1: DCHECK(dst1.IsNone() && dst2.IsNone() && dst3.IsNone()); ldr(dst0, MemOperand(sp, 1 * size, PostIndex)); break; case 2: DCHECK(dst2.IsNone() && dst3.IsNone()); ldp(dst0, dst1, MemOperand(sp, 2 * size, PostIndex)); break; case 3: DCHECK(dst3.IsNone()); ldr(dst2, MemOperand(sp, 2 * size)); ldp(dst0, dst1, MemOperand(sp, 3 * size, PostIndex)); break; case 4: // Load the higher addresses first, then load the lower addresses and // skip the whole block in the second instruction. This allows four W // registers to be popped using sp, whilst maintaining 16-byte alignment // for sp at all times. ldp(dst2, dst3, MemOperand(sp, 2 * size)); ldp(dst0, dst1, MemOperand(sp, 4 * size, PostIndex)); break; default: UNREACHABLE(); } } void TurboAssembler::Poke(const CPURegister& src, const Operand& offset) { if (offset.IsImmediate()) { DCHECK_GE(offset.ImmediateValue(), 0); } else if (emit_debug_code()) { Cmp(xzr, offset); Check(le, AbortReason::kStackAccessBelowStackPointer); } Str(src, MemOperand(sp, offset)); } void TurboAssembler::Peek(const CPURegister& dst, const Operand& offset) { if (offset.IsImmediate()) { DCHECK_GE(offset.ImmediateValue(), 0); } else if (emit_debug_code()) { Cmp(xzr, offset); Check(le, AbortReason::kStackAccessBelowStackPointer); } Ldr(dst, MemOperand(sp, offset)); } void TurboAssembler::PokePair(const CPURegister& src1, const CPURegister& src2, int offset) { DCHECK(AreSameSizeAndType(src1, src2)); DCHECK((offset >= 0) && ((offset % src1.SizeInBytes()) == 0)); Stp(src1, src2, MemOperand(sp, offset)); } void MacroAssembler::PeekPair(const CPURegister& dst1, const CPURegister& dst2, int offset) { DCHECK(AreSameSizeAndType(dst1, dst2)); DCHECK((offset >= 0) && ((offset % dst1.SizeInBytes()) == 0)); Ldp(dst1, dst2, MemOperand(sp, offset)); } void MacroAssembler::PushCalleeSavedRegisters() { // Ensure that the macro-assembler doesn't use any scratch registers. InstructionAccurateScope scope(this); MemOperand tos(sp, -2 * static_cast(kXRegSize), PreIndex); stp(d14, d15, tos); stp(d12, d13, tos); stp(d10, d11, tos); stp(d8, d9, tos); stp(x29, x30, tos); stp(x27, x28, tos); stp(x25, x26, tos); stp(x23, x24, tos); stp(x21, x22, tos); stp(x19, x20, tos); } void MacroAssembler::PopCalleeSavedRegisters() { // Ensure that the macro-assembler doesn't use any scratch registers. InstructionAccurateScope scope(this); MemOperand tos(sp, 2 * kXRegSize, PostIndex); ldp(x19, x20, tos); ldp(x21, x22, tos); ldp(x23, x24, tos); ldp(x25, x26, tos); ldp(x27, x28, tos); ldp(x29, x30, tos); ldp(d8, d9, tos); ldp(d10, d11, tos); ldp(d12, d13, tos); ldp(d14, d15, tos); } void TurboAssembler::AssertSpAligned() { if (emit_debug_code()) { HardAbortScope hard_abort(this); // Avoid calls to Abort. // Arm64 requires the stack pointer to be 16-byte aligned prior to address // calculation. UseScratchRegisterScope scope(this); Register temp = scope.AcquireX(); Mov(temp, sp); Tst(temp, 15); Check(eq, AbortReason::kUnexpectedStackPointer); } } void TurboAssembler::CopySlots(int dst, Register src, Register slot_count) { DCHECK(!src.IsZero()); UseScratchRegisterScope scope(this); Register dst_reg = scope.AcquireX(); SlotAddress(dst_reg, dst); SlotAddress(src, src); CopyDoubleWords(dst_reg, src, slot_count); } void TurboAssembler::CopySlots(Register dst, Register src, Register slot_count) { DCHECK(!dst.IsZero() && !src.IsZero()); SlotAddress(dst, dst); SlotAddress(src, src); CopyDoubleWords(dst, src, slot_count); } void TurboAssembler::CopyDoubleWords(Register dst, Register src, Register count, CopyDoubleWordsMode mode) { DCHECK(!AreAliased(dst, src, count)); if (emit_debug_code()) { Register pointer1 = dst; Register pointer2 = src; if (mode == kSrcLessThanDst) { pointer1 = src; pointer2 = dst; } // Copy requires pointer1 < pointer2 || (pointer1 - pointer2) >= count. Label pointer1_below_pointer2; Subs(pointer1, pointer1, pointer2); B(lt, &pointer1_below_pointer2); Cmp(pointer1, count); Check(ge, AbortReason::kOffsetOutOfRange); Bind(&pointer1_below_pointer2); Add(pointer1, pointer1, pointer2); } static_assert(kPointerSize == kDRegSize, "pointers must be the same size as doubles"); int direction = (mode == kDstLessThanSrc) ? 1 : -1; UseScratchRegisterScope scope(this); VRegister temp0 = scope.AcquireD(); VRegister temp1 = scope.AcquireD(); Label pairs, loop, done; Tbz(count, 0, &pairs); Ldr(temp0, MemOperand(src, direction * kPointerSize, PostIndex)); Sub(count, count, 1); Str(temp0, MemOperand(dst, direction * kPointerSize, PostIndex)); Bind(&pairs); if (mode == kSrcLessThanDst) { // Adjust pointers for post-index ldp/stp with negative offset: Sub(dst, dst, kPointerSize); Sub(src, src, kPointerSize); } Bind(&loop); Cbz(count, &done); Ldp(temp0, temp1, MemOperand(src, 2 * direction * kPointerSize, PostIndex)); Sub(count, count, 2); Stp(temp0, temp1, MemOperand(dst, 2 * direction * kPointerSize, PostIndex)); B(&loop); // TODO(all): large copies may benefit from using temporary Q registers // to copy four double words per iteration. Bind(&done); } void TurboAssembler::SlotAddress(Register dst, int slot_offset) { Add(dst, sp, slot_offset << kPointerSizeLog2); } void TurboAssembler::SlotAddress(Register dst, Register slot_offset) { Add(dst, sp, Operand(slot_offset, LSL, kPointerSizeLog2)); } void TurboAssembler::AssertFPCRState(Register fpcr) { if (emit_debug_code()) { Label unexpected_mode, done; UseScratchRegisterScope temps(this); if (fpcr.IsNone()) { fpcr = temps.AcquireX(); Mrs(fpcr, FPCR); } // Settings left to their default values: // - Assert that flush-to-zero is not set. Tbnz(fpcr, FZ_offset, &unexpected_mode); // - Assert that the rounding mode is nearest-with-ties-to-even. STATIC_ASSERT(FPTieEven == 0); Tst(fpcr, RMode_mask); B(eq, &done); Bind(&unexpected_mode); Abort(AbortReason::kUnexpectedFPCRMode); Bind(&done); } } void TurboAssembler::CanonicalizeNaN(const VRegister& dst, const VRegister& src) { AssertFPCRState(); // Subtracting 0.0 preserves all inputs except for signalling NaNs, which // become quiet NaNs. We use fsub rather than fadd because fsub preserves -0.0 // inputs: -0.0 + 0.0 = 0.0, but -0.0 - 0.0 = -0.0. Fsub(dst, src, fp_zero); } void TurboAssembler::LoadRoot(Register destination, Heap::RootListIndex index) { // TODO(jbramley): Most root values are constants, and can be synthesized // without a load. Refer to the ARM back end for details. Ldr(destination, MemOperand(kRootRegister, RootRegisterOffset(index))); } void MacroAssembler::LoadObject(Register result, Handle object) { AllowDeferredHandleDereference heap_object_check; if (object->IsHeapObject()) { Mov(result, Handle::cast(object)); } else { Mov(result, Operand(Smi::cast(*object))); } } void TurboAssembler::Move(Register dst, Smi* src) { Mov(dst, src); } void TurboAssembler::Swap(Register lhs, Register rhs) { DCHECK(lhs.IsSameSizeAndType(rhs)); DCHECK(!lhs.Is(rhs)); UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Mov(temp, rhs); Mov(rhs, lhs); Mov(lhs, temp); } void TurboAssembler::Swap(VRegister lhs, VRegister rhs) { DCHECK(lhs.IsSameSizeAndType(rhs)); DCHECK(!lhs.Is(rhs)); UseScratchRegisterScope temps(this); VRegister temp = VRegister::no_reg(); if (lhs.IsS()) { temp = temps.AcquireS(); } else if (lhs.IsD()) { temp = temps.AcquireD(); } else { DCHECK(lhs.IsQ()); temp = temps.AcquireQ(); } Mov(temp, rhs); Mov(rhs, lhs); Mov(lhs, temp); } void TurboAssembler::AssertSmi(Register object, AbortReason reason) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); Tst(object, kSmiTagMask); Check(eq, reason); } } void MacroAssembler::AssertNotSmi(Register object, AbortReason reason) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); Tst(object, kSmiTagMask); Check(ne, reason); } } void MacroAssembler::AssertConstructor(Register object) { if (emit_debug_code()) { AssertNotSmi(object, AbortReason::kOperandIsASmiAndNotAConstructor); UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset)); Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset)); Tst(temp, Operand(Map::IsConstructorBit::kMask)); Check(ne, AbortReason::kOperandIsNotAConstructor); } } void MacroAssembler::AssertFunction(Register object) { if (emit_debug_code()) { AssertNotSmi(object, AbortReason::kOperandIsASmiAndNotAFunction); UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); CompareObjectType(object, temp, temp, JS_FUNCTION_TYPE); Check(eq, AbortReason::kOperandIsNotAFunction); } } void MacroAssembler::AssertBoundFunction(Register object) { if (emit_debug_code()) { AssertNotSmi(object, AbortReason::kOperandIsASmiAndNotABoundFunction); UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); CompareObjectType(object, temp, temp, JS_BOUND_FUNCTION_TYPE); Check(eq, AbortReason::kOperandIsNotABoundFunction); } } void MacroAssembler::AssertGeneratorObject(Register object) { if (!emit_debug_code()) return; AssertNotSmi(object, AbortReason::kOperandIsASmiAndNotAGeneratorObject); // Load map UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset)); Label do_check; // Load instance type and check if JSGeneratorObject CompareInstanceType(temp, temp, JS_GENERATOR_OBJECT_TYPE); B(eq, &do_check); // Check if JSAsyncGeneratorObject Cmp(temp, JS_ASYNC_GENERATOR_OBJECT_TYPE); bind(&do_check); // Restore generator object to register and perform assertion Check(eq, AbortReason::kOperandIsNotAGeneratorObject); } void MacroAssembler::AssertUndefinedOrAllocationSite(Register object) { if (emit_debug_code()) { UseScratchRegisterScope temps(this); Register scratch = temps.AcquireX(); Label done_checking; AssertNotSmi(object); JumpIfRoot(object, Heap::kUndefinedValueRootIndex, &done_checking); Ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); CompareInstanceType(scratch, scratch, ALLOCATION_SITE_TYPE); Assert(eq, AbortReason::kExpectedUndefinedOrCell); Bind(&done_checking); } } void TurboAssembler::AssertPositiveOrZero(Register value) { if (emit_debug_code()) { Label done; int sign_bit = value.Is64Bits() ? kXSignBit : kWSignBit; Tbz(value, sign_bit, &done); Abort(AbortReason::kUnexpectedNegativeValue); Bind(&done); } } void TurboAssembler::CallStubDelayed(CodeStub* stub) { DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs. BlockPoolsScope scope(this); #ifdef DEBUG Label start; Bind(&start); #endif Operand operand = Operand::EmbeddedCode(stub); near_call(operand.heap_object_request()); DCHECK_EQ(kNearCallSize, SizeOfCodeGeneratedSince(&start)); } void MacroAssembler::CallStub(CodeStub* stub) { DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs. Call(stub->GetCode(), RelocInfo::CODE_TARGET); } void MacroAssembler::TailCallStub(CodeStub* stub) { Jump(stub->GetCode(), RelocInfo::CODE_TARGET); } void TurboAssembler::CallRuntimeWithCEntry(Runtime::FunctionId fid, Register centry) { const Runtime::Function* f = Runtime::FunctionForId(fid); // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. Mov(x0, f->nargs); Mov(x1, ExternalReference::Create(f)); DCHECK(!AreAliased(centry, x0, x1)); Add(centry, centry, Operand(Code::kHeaderSize - kHeapObjectTag)); Call(centry); } void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments, SaveFPRegsMode save_doubles) { // All arguments must be on the stack before this function is called. // x0 holds the return value after the call. // Check that the number of arguments matches what the function expects. // If f->nargs is -1, the function can accept a variable number of arguments. CHECK(f->nargs < 0 || f->nargs == num_arguments); // Place the necessary arguments. Mov(x0, num_arguments); Mov(x1, ExternalReference::Create(f)); Handle code = CodeFactory::CEntry(isolate(), f->result_size, save_doubles); Call(code, RelocInfo::CODE_TARGET); } void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin, bool builtin_exit_frame) { Mov(x1, builtin); Handle code = CodeFactory::CEntry(isolate(), 1, kDontSaveFPRegs, kArgvOnStack, builtin_exit_frame); Jump(code, RelocInfo::CODE_TARGET); } void MacroAssembler::JumpToInstructionStream(Address entry) { Mov(kOffHeapTrampolineRegister, Operand(entry, RelocInfo::OFF_HEAP_TARGET)); Br(kOffHeapTrampolineRegister); } void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) { const Runtime::Function* function = Runtime::FunctionForId(fid); DCHECK_EQ(1, function->result_size); if (function->nargs >= 0) { // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. Mov(x0, function->nargs); } JumpToExternalReference(ExternalReference::Create(fid)); } int TurboAssembler::ActivationFrameAlignment() { #if V8_HOST_ARCH_ARM64 // Running on the real platform. Use the alignment as mandated by the local // environment. // Note: This will break if we ever start generating snapshots on one ARM // platform for another ARM platform with a different alignment. return base::OS::ActivationFrameAlignment(); #else // V8_HOST_ARCH_ARM64 // If we are using the simulator then we should always align to the expected // alignment. As the simulator is used to generate snapshots we do not know // if the target platform will need alignment, so this is controlled from a // flag. return FLAG_sim_stack_alignment; #endif // V8_HOST_ARCH_ARM64 } void TurboAssembler::CallCFunction(ExternalReference function, int num_of_reg_args) { CallCFunction(function, num_of_reg_args, 0); } void TurboAssembler::CallCFunction(ExternalReference function, int num_of_reg_args, int num_of_double_args) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Mov(temp, function); CallCFunction(temp, num_of_reg_args, num_of_double_args); } static const int kRegisterPassedArguments = 8; void TurboAssembler::CallCFunction(Register function, int num_of_reg_args, int num_of_double_args) { DCHECK_LE(num_of_reg_args + num_of_double_args, kMaxCParameters); DCHECK(has_frame()); // If we're passing doubles, we're limited to the following prototypes // (defined by ExternalReference::Type): // BUILTIN_COMPARE_CALL: int f(double, double) // BUILTIN_FP_FP_CALL: double f(double, double) // BUILTIN_FP_CALL: double f(double) // BUILTIN_FP_INT_CALL: double f(double, int) if (num_of_double_args > 0) { DCHECK_LE(num_of_reg_args, 1); DCHECK_LE(num_of_double_args + num_of_reg_args, 2); } // Call directly. The function called cannot cause a GC, or allow preemption, // so the return address in the link register stays correct. Call(function); if (num_of_reg_args > kRegisterPassedArguments) { // Drop the register passed arguments. int claim_slots = RoundUp(num_of_reg_args - kRegisterPassedArguments, 2); Drop(claim_slots); } } void TurboAssembler::LoadFromConstantsTable(Register destination, int constant_index) { DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant( Heap::kBuiltinsConstantsTableRootIndex)); LoadRoot(destination, Heap::kBuiltinsConstantsTableRootIndex); Ldr(destination, FieldMemOperand(destination, FixedArray::kHeaderSize + constant_index * kPointerSize)); } void TurboAssembler::LoadRootRelative(Register destination, int32_t offset) { Ldr(destination, MemOperand(kRootRegister, offset)); } void TurboAssembler::LoadRootRegisterOffset(Register destination, intptr_t offset) { if (offset == 0) { Mov(destination, kRootRegister); } else { Add(destination, kRootRegister, offset); } } void TurboAssembler::Jump(Register target, Condition cond) { if (cond == nv) return; Label done; if (cond != al) B(NegateCondition(cond), &done); Br(target); Bind(&done); } void TurboAssembler::JumpHelper(int64_t offset, RelocInfo::Mode rmode, Condition cond) { if (cond == nv) return; Label done; if (cond != al) B(NegateCondition(cond), &done); if (CanUseNearCallOrJump(rmode)) { DCHECK(IsNearCallOffset(offset)); near_jump(static_cast(offset), rmode); } else { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); uint64_t imm = reinterpret_cast(pc_) + offset * kInstrSize; Mov(temp, Immediate(imm, rmode)); Br(temp); } Bind(&done); } namespace { // The calculated offset is either: // * the 'target' input unmodified if this is a WASM call, or // * the offset of the target from the current PC, in instructions, for any // other type of call. static int64_t CalculateTargetOffset(Address target, RelocInfo::Mode rmode, byte* pc) { int64_t offset = static_cast(target); // The target of WebAssembly calls is still an index instead of an actual // address at this point, and needs to be encoded as-is. if (rmode != RelocInfo::WASM_CALL && rmode != RelocInfo::WASM_STUB_CALL) { offset -= reinterpret_cast(pc); DCHECK_EQ(offset % kInstrSize, 0); offset = offset / static_cast(kInstrSize); } return offset; } } // namespace void TurboAssembler::Jump(Address target, RelocInfo::Mode rmode, Condition cond) { JumpHelper(CalculateTargetOffset(target, rmode, pc_), rmode, cond); } void TurboAssembler::Jump(Handle code, RelocInfo::Mode rmode, Condition cond) { DCHECK(RelocInfo::IsCodeTarget(rmode)); if (FLAG_embedded_builtins) { if (root_array_available_ && options().isolate_independent_code && !Builtins::IsIsolateIndependentBuiltin(*code)) { // Calls to embedded targets are initially generated as standard // pc-relative calls below. When creating the embedded blob, call offsets // are patched up to point directly to the off-heap instruction start. // Note: It is safe to dereference {code} above since code generation // for builtins and code stubs happens on the main thread. UseScratchRegisterScope temps(this); Register scratch = temps.AcquireX(); IndirectLoadConstant(scratch, code); Add(scratch, scratch, Operand(Code::kHeaderSize - kHeapObjectTag)); Jump(scratch, cond); return; } else if (options().inline_offheap_trampolines) { int builtin_index = Builtins::kNoBuiltinId; if (isolate()->builtins()->IsBuiltinHandle(code, &builtin_index) && Builtins::IsIsolateIndependent(builtin_index)) { // Inline the trampoline. RecordCommentForOffHeapTrampoline(builtin_index); CHECK_NE(builtin_index, Builtins::kNoBuiltinId); UseScratchRegisterScope temps(this); Register scratch = temps.AcquireX(); EmbeddedData d = EmbeddedData::FromBlob(); Address entry = d.InstructionStartOfBuiltin(builtin_index); Mov(scratch, Operand(entry, RelocInfo::OFF_HEAP_TARGET)); Jump(scratch, cond); return; } } } if (CanUseNearCallOrJump(rmode)) { JumpHelper(static_cast(AddCodeTarget(code)), rmode, cond); } else { Jump(code.address(), rmode, cond); } } void TurboAssembler::Call(Register target) { BlockPoolsScope scope(this); Blr(target); } void TurboAssembler::Call(Address target, RelocInfo::Mode rmode) { BlockPoolsScope scope(this); if (CanUseNearCallOrJump(rmode)) { int64_t offset = CalculateTargetOffset(target, rmode, pc_); DCHECK(IsNearCallOffset(offset)); near_call(static_cast(offset), rmode); } else { IndirectCall(target, rmode); } } void TurboAssembler::Call(Handle code, RelocInfo::Mode rmode) { BlockPoolsScope scope(this); if (FLAG_embedded_builtins) { if (root_array_available_ && options().isolate_independent_code && !Builtins::IsIsolateIndependentBuiltin(*code)) { // Calls to embedded targets are initially generated as standard // pc-relative calls below. When creating the embedded blob, call offsets // are patched up to point directly to the off-heap instruction start. // Note: It is safe to dereference {code} above since code generation // for builtins and code stubs happens on the main thread. UseScratchRegisterScope temps(this); Register scratch = temps.AcquireX(); IndirectLoadConstant(scratch, code); Add(scratch, scratch, Operand(Code::kHeaderSize - kHeapObjectTag)); Call(scratch); return; } else if (options().inline_offheap_trampolines) { int builtin_index = Builtins::kNoBuiltinId; if (isolate()->builtins()->IsBuiltinHandle(code, &builtin_index) && Builtins::IsIsolateIndependent(builtin_index)) { // Inline the trampoline. RecordCommentForOffHeapTrampoline(builtin_index); CHECK_NE(builtin_index, Builtins::kNoBuiltinId); UseScratchRegisterScope temps(this); Register scratch = temps.AcquireX(); EmbeddedData d = EmbeddedData::FromBlob(); Address entry = d.InstructionStartOfBuiltin(builtin_index); Mov(scratch, Operand(entry, RelocInfo::OFF_HEAP_TARGET)); Call(scratch); return; } } } if (CanUseNearCallOrJump(rmode)) { near_call(AddCodeTarget(code), rmode); } else { IndirectCall(code.address(), rmode); } } void TurboAssembler::Call(ExternalReference target) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Mov(temp, target); Call(temp); } void TurboAssembler::IndirectCall(Address target, RelocInfo::Mode rmode) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Mov(temp, Immediate(target, rmode)); Blr(temp); } bool TurboAssembler::IsNearCallOffset(int64_t offset) { return is_int26(offset); } void TurboAssembler::CallForDeoptimization(Address target, int deopt_id, RelocInfo::Mode rmode) { DCHECK_EQ(rmode, RelocInfo::RUNTIME_ENTRY); BlockPoolsScope scope(this); #ifdef DEBUG Label start; Bind(&start); #endif // The deoptimizer requires the deoptimization id to be in x16. UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); DCHECK(temp.Is(x16)); // Make sure that the deopt id can be encoded in 16 bits, so can be encoded // in a single movz instruction with a zero shift. DCHECK(is_uint16(deopt_id)); movz(temp, deopt_id); int64_t offset = static_cast(target) - static_cast(options().code_range_start); DCHECK_EQ(offset % kInstrSize, 0); offset = offset / static_cast(kInstrSize); DCHECK(IsNearCallOffset(offset)); near_call(static_cast(offset), RelocInfo::RUNTIME_ENTRY); DCHECK_EQ(kNearCallSize + kInstrSize, SizeOfCodeGeneratedSince(&start)); } void MacroAssembler::TryRepresentDoubleAsInt(Register as_int, VRegister value, VRegister scratch_d, Label* on_successful_conversion, Label* on_failed_conversion) { // Convert to an int and back again, then compare with the original value. Fcvtzs(as_int, value); Scvtf(scratch_d, as_int); Fcmp(value, scratch_d); if (on_successful_conversion) { B(on_successful_conversion, eq); } if (on_failed_conversion) { B(on_failed_conversion, ne); } } void TurboAssembler::PrepareForTailCall(const ParameterCount& callee_args_count, Register caller_args_count_reg, Register scratch0, Register scratch1) { #if DEBUG if (callee_args_count.is_reg()) { DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0, scratch1)); } else { DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1)); } #endif // Calculate the end of destination area where we will put the arguments // after we drop current frame. We add kPointerSize to count the receiver // argument which is not included into formal parameters count. Register dst_reg = scratch0; Add(dst_reg, fp, Operand(caller_args_count_reg, LSL, kPointerSizeLog2)); Add(dst_reg, dst_reg, StandardFrameConstants::kCallerSPOffset + kPointerSize); // Round dst_reg up to a multiple of 16 bytes, so that we overwrite any // potential padding. Add(dst_reg, dst_reg, 15); Bic(dst_reg, dst_reg, 15); Register src_reg = caller_args_count_reg; // Calculate the end of source area. +kPointerSize is for the receiver. if (callee_args_count.is_reg()) { Add(src_reg, sp, Operand(callee_args_count.reg(), LSL, kPointerSizeLog2)); Add(src_reg, src_reg, kPointerSize); } else { Add(src_reg, sp, (callee_args_count.immediate() + 1) * kPointerSize); } // Round src_reg up to a multiple of 16 bytes, so we include any potential // padding in the copy. Add(src_reg, src_reg, 15); Bic(src_reg, src_reg, 15); if (FLAG_debug_code) { Cmp(src_reg, dst_reg); Check(lo, AbortReason::kStackAccessBelowStackPointer); } // Restore caller's frame pointer and return address now as they will be // overwritten by the copying loop. Ldr(lr, MemOperand(fp, StandardFrameConstants::kCallerPCOffset)); Ldr(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); // Now copy callee arguments to the caller frame going backwards to avoid // callee arguments corruption (source and destination areas could overlap). // Both src_reg and dst_reg are pointing to the word after the one to copy, // so they must be pre-decremented in the loop. Register tmp_reg = scratch1; Label loop, entry; B(&entry); bind(&loop); Ldr(tmp_reg, MemOperand(src_reg, -kPointerSize, PreIndex)); Str(tmp_reg, MemOperand(dst_reg, -kPointerSize, PreIndex)); bind(&entry); Cmp(sp, src_reg); B(ne, &loop); // Leave current frame. Mov(sp, dst_reg); } void MacroAssembler::InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Label* done, InvokeFlag flag, bool* definitely_mismatches) { bool definitely_matches = false; *definitely_mismatches = false; Label regular_invoke; // Check whether the expected and actual arguments count match. If not, // setup registers according to contract with ArgumentsAdaptorTrampoline: // x0: actual arguments count. // x1: function (passed through to callee). // x2: expected arguments count. // The code below is made a lot easier because the calling code already sets // up actual and expected registers according to the contract if values are // passed in registers. DCHECK(actual.is_immediate() || actual.reg().is(x0)); DCHECK(expected.is_immediate() || expected.reg().is(x2)); if (expected.is_immediate()) { DCHECK(actual.is_immediate()); Mov(x0, actual.immediate()); if (expected.immediate() == actual.immediate()) { definitely_matches = true; } else { if (expected.immediate() == SharedFunctionInfo::kDontAdaptArgumentsSentinel) { // Don't worry about adapting arguments for builtins that // don't want that done. Skip adaption code by making it look // like we have a match between expected and actual number of // arguments. definitely_matches = true; } else { *definitely_mismatches = true; // Set up x2 for the argument adaptor. Mov(x2, expected.immediate()); } } } else { // expected is a register. Operand actual_op = actual.is_immediate() ? Operand(actual.immediate()) : Operand(actual.reg()); Mov(x0, actual_op); // If actual == expected perform a regular invocation. Cmp(expected.reg(), actual_op); B(eq, ®ular_invoke); } // If the argument counts may mismatch, generate a call to the argument // adaptor. if (!definitely_matches) { Handle adaptor = BUILTIN_CODE(isolate(), ArgumentsAdaptorTrampoline); if (flag == CALL_FUNCTION) { Call(adaptor); if (!*definitely_mismatches) { // If the arg counts don't match, no extra code is emitted by // MAsm::InvokeFunctionCode and we can just fall through. B(done); } } else { Jump(adaptor, RelocInfo::CODE_TARGET); } } Bind(®ular_invoke); } void MacroAssembler::CheckDebugHook(Register fun, Register new_target, const ParameterCount& expected, const ParameterCount& actual) { Label skip_hook; Mov(x4, ExternalReference::debug_hook_on_function_call_address(isolate())); Ldrsb(x4, MemOperand(x4)); Cbz(x4, &skip_hook); { // Load receiver to pass it later to DebugOnFunctionCall hook. Operand actual_op = actual.is_immediate() ? Operand(actual.immediate()) : Operand(actual.reg()); Mov(x4, actual_op); Ldr(x4, MemOperand(sp, x4, LSL, kPointerSizeLog2)); FrameScope frame(this, has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); Register expected_reg = padreg; Register actual_reg = padreg; if (expected.is_reg()) expected_reg = expected.reg(); if (actual.is_reg()) actual_reg = actual.reg(); if (!new_target.is_valid()) new_target = padreg; // Save values on stack. SmiTag(expected_reg); SmiTag(actual_reg); Push(expected_reg, actual_reg, new_target, fun); Push(fun, x4); CallRuntime(Runtime::kDebugOnFunctionCall); // Restore values from stack. Pop(fun, new_target, actual_reg, expected_reg); SmiUntag(actual_reg); SmiUntag(expected_reg); } Bind(&skip_hook); } void MacroAssembler::InvokeFunctionCode(Register function, Register new_target, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); DCHECK(function.is(x1)); DCHECK_IMPLIES(new_target.is_valid(), new_target.is(x3)); // On function call, call into the debugger if necessary. CheckDebugHook(function, new_target, expected, actual); // Clear the new.target register if not given. if (!new_target.is_valid()) { LoadRoot(x3, Heap::kUndefinedValueRootIndex); } Label done; bool definitely_mismatches = false; InvokePrologue(expected, actual, &done, flag, &definitely_mismatches); // If we are certain that actual != expected, then we know InvokePrologue will // have handled the call through the argument adaptor mechanism. // The called function expects the call kind in x5. if (!definitely_mismatches) { // We call indirectly through the code field in the function to // allow recompilation to take effect without changing any of the // call sites. Register code = kJavaScriptCallCodeStartRegister; Ldr(code, FieldMemOperand(function, JSFunction::kCodeOffset)); Add(code, code, Operand(Code::kHeaderSize - kHeapObjectTag)); if (flag == CALL_FUNCTION) { Call(code); } else { DCHECK(flag == JUMP_FUNCTION); Jump(code); } } // Continue here if InvokePrologue does handle the invocation due to // mismatched parameter counts. Bind(&done); } void MacroAssembler::InvokeFunction(Register function, Register new_target, const ParameterCount& actual, InvokeFlag flag) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); // Contract with called JS functions requires that function is passed in x1. // (See FullCodeGenerator::Generate().) DCHECK(function.is(x1)); Register expected_reg = x2; Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset)); // The number of arguments is stored as an int32_t, and -1 is a marker // (SharedFunctionInfo::kDontAdaptArgumentsSentinel), so we need sign // extension to correctly handle it. Ldr(expected_reg, FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); Ldrh(expected_reg, FieldMemOperand(expected_reg, SharedFunctionInfo::kFormalParameterCountOffset)); ParameterCount expected(expected_reg); InvokeFunctionCode(function, new_target, expected, actual, flag); } void MacroAssembler::InvokeFunction(Register function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); // Contract with called JS functions requires that function is passed in x1. // (See FullCodeGenerator::Generate().) DCHECK(function.Is(x1)); // Set up the context. Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset)); InvokeFunctionCode(function, no_reg, expected, actual, flag); } void TurboAssembler::TryConvertDoubleToInt64(Register result, DoubleRegister double_input, Label* done) { // Try to convert with an FPU convert instruction. It's trivial to compute // the modulo operation on an integer register so we convert to a 64-bit // integer. // // Fcvtzs will saturate to INT64_MIN (0x800...00) or INT64_MAX (0x7FF...FF) // when the double is out of range. NaNs and infinities will be converted to 0 // (as ECMA-262 requires). Fcvtzs(result.X(), double_input); // The values INT64_MIN (0x800...00) or INT64_MAX (0x7FF...FF) are not // representable using a double, so if the result is one of those then we know // that saturation occurred, and we need to manually handle the conversion. // // It is easy to detect INT64_MIN and INT64_MAX because adding or subtracting // 1 will cause signed overflow. Cmp(result.X(), 1); Ccmp(result.X(), -1, VFlag, vc); B(vc, done); } void TurboAssembler::TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result, DoubleRegister double_input, StubCallMode stub_mode) { Label done; // Try to convert the double to an int64. If successful, the bottom 32 bits // contain our truncated int32 result. TryConvertDoubleToInt64(result, double_input, &done); // If we fell through then inline version didn't succeed - call stub instead. Push(lr, double_input); // DoubleToI preserves any registers it needs to clobber. if (stub_mode == StubCallMode::kCallWasmRuntimeStub) { Call(wasm::WasmCode::kDoubleToI, RelocInfo::WASM_STUB_CALL); } else { Call(BUILTIN_CODE(isolate, DoubleToI), RelocInfo::CODE_TARGET); } Ldr(result, MemOperand(sp, 0)); DCHECK_EQ(xzr.SizeInBytes(), double_input.SizeInBytes()); Pop(xzr, lr); // xzr to drop the double input on the stack. Bind(&done); // Keep our invariant that the upper 32 bits are zero. Uxtw(result.W(), result.W()); } void TurboAssembler::Prologue() { Push(lr, fp, cp, x1); Add(fp, sp, StandardFrameConstants::kFixedFrameSizeFromFp); } void TurboAssembler::EnterFrame(StackFrame::Type type) { UseScratchRegisterScope temps(this); if (type == StackFrame::INTERNAL) { Register type_reg = temps.AcquireX(); Mov(type_reg, StackFrame::TypeToMarker(type)); // type_reg pushed twice for alignment. Push(lr, fp, type_reg, type_reg); const int kFrameSize = TypedFrameConstants::kFixedFrameSizeFromFp + kPointerSize; Add(fp, sp, kFrameSize); // sp[3] : lr // sp[2] : fp // sp[1] : type // sp[0] : for alignment } else if (type == StackFrame::WASM_COMPILED || type == StackFrame::WASM_COMPILE_LAZY) { Register type_reg = temps.AcquireX(); Mov(type_reg, StackFrame::TypeToMarker(type)); Push(lr, fp); Mov(fp, sp); Push(type_reg, padreg); // sp[3] : lr // sp[2] : fp // sp[1] : type // sp[0] : for alignment } else { DCHECK_EQ(type, StackFrame::CONSTRUCT); Register type_reg = temps.AcquireX(); Mov(type_reg, StackFrame::TypeToMarker(type)); // Users of this frame type push a context pointer after the type field, // so do it here to keep the stack pointer aligned. Push(lr, fp, type_reg, cp); // The context pointer isn't part of the fixed frame, so add an extra slot // to account for it. Add(fp, sp, TypedFrameConstants::kFixedFrameSizeFromFp + kPointerSize); // sp[3] : lr // sp[2] : fp // sp[1] : type // sp[0] : cp } } void TurboAssembler::LeaveFrame(StackFrame::Type type) { // Drop the execution stack down to the frame pointer and restore // the caller frame pointer and return address. Mov(sp, fp); Pop(fp, lr); } void MacroAssembler::ExitFramePreserveFPRegs() { DCHECK_EQ(kCallerSavedV.Count() % 2, 0); PushCPURegList(kCallerSavedV); } void MacroAssembler::ExitFrameRestoreFPRegs() { // Read the registers from the stack without popping them. The stack pointer // will be reset as part of the unwinding process. CPURegList saved_fp_regs = kCallerSavedV; DCHECK_EQ(saved_fp_regs.Count() % 2, 0); int offset = ExitFrameConstants::kLastExitFrameField; while (!saved_fp_regs.IsEmpty()) { const CPURegister& dst0 = saved_fp_regs.PopHighestIndex(); const CPURegister& dst1 = saved_fp_regs.PopHighestIndex(); offset -= 2 * kDRegSize; Ldp(dst1, dst0, MemOperand(fp, offset)); } } void MacroAssembler::EnterExitFrame(bool save_doubles, const Register& scratch, int extra_space, StackFrame::Type frame_type) { DCHECK(frame_type == StackFrame::EXIT || frame_type == StackFrame::BUILTIN_EXIT); // Set up the new stack frame. Push(lr, fp); Mov(fp, sp); Mov(scratch, StackFrame::TypeToMarker(frame_type)); Push(scratch, xzr); Mov(scratch, CodeObject()); Push(scratch, padreg); // fp[8]: CallerPC (lr) // fp -> fp[0]: CallerFP (old fp) // fp[-8]: STUB marker // fp[-16]: Space reserved for SPOffset. // fp[-24]: CodeObject() // sp -> fp[-32]: padding STATIC_ASSERT((2 * kPointerSize) == ExitFrameConstants::kCallerSPOffset); STATIC_ASSERT((1 * kPointerSize) == ExitFrameConstants::kCallerPCOffset); STATIC_ASSERT((0 * kPointerSize) == ExitFrameConstants::kCallerFPOffset); STATIC_ASSERT((-2 * kPointerSize) == ExitFrameConstants::kSPOffset); STATIC_ASSERT((-3 * kPointerSize) == ExitFrameConstants::kCodeOffset); STATIC_ASSERT((-4 * kPointerSize) == ExitFrameConstants::kPaddingOffset); // Save the frame pointer and context pointer in the top frame. Mov(scratch, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate())); Str(fp, MemOperand(scratch)); Mov(scratch, ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); Str(cp, MemOperand(scratch)); STATIC_ASSERT((-4 * kPointerSize) == ExitFrameConstants::kLastExitFrameField); if (save_doubles) { ExitFramePreserveFPRegs(); } // Round the number of space we need to claim to a multiple of two. int slots_to_claim = RoundUp(extra_space + 1, 2); // Reserve space for the return address and for user requested memory. // We do this before aligning to make sure that we end up correctly // aligned with the minimum of wasted space. Claim(slots_to_claim, kXRegSize); // fp[8]: CallerPC (lr) // fp -> fp[0]: CallerFP (old fp) // fp[-8]: STUB marker // fp[-16]: Space reserved for SPOffset. // fp[-24]: CodeObject() // fp[-24 - fp_size]: Saved doubles (if save_doubles is true). // sp[8]: Extra space reserved for caller (if extra_space != 0). // sp -> sp[0]: Space reserved for the return address. // ExitFrame::GetStateForFramePointer expects to find the return address at // the memory address immediately below the pointer stored in SPOffset. // It is not safe to derive much else from SPOffset, because the size of the // padding can vary. Add(scratch, sp, kXRegSize); Str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset)); } // Leave the current exit frame. void MacroAssembler::LeaveExitFrame(bool restore_doubles, const Register& scratch, const Register& scratch2) { if (restore_doubles) { ExitFrameRestoreFPRegs(); } // Restore the context pointer from the top frame. Mov(scratch, ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); Ldr(cp, MemOperand(scratch)); if (emit_debug_code()) { // Also emit debug code to clear the cp in the top frame. Mov(scratch2, Operand(Context::kInvalidContext)); Mov(scratch, ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); Str(scratch2, MemOperand(scratch)); } // Clear the frame pointer from the top frame. Mov(scratch, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate())); Str(xzr, MemOperand(scratch)); // Pop the exit frame. // fp[8]: CallerPC (lr) // fp -> fp[0]: CallerFP (old fp) // fp[...]: The rest of the frame. Mov(sp, fp); Pop(fp, lr); } void MacroAssembler::LoadWeakValue(Register out, Register in, Label* target_if_cleared) { CompareAndBranch(in, Operand(kClearedWeakHeapObject), eq, target_if_cleared); and_(out, in, Operand(~kWeakHeapObjectMask)); } void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { DCHECK_NE(value, 0); if (FLAG_native_code_counters && counter->Enabled()) { Mov(scratch2, ExternalReference::Create(counter)); Ldr(scratch1.W(), MemOperand(scratch2)); Add(scratch1.W(), scratch1.W(), value); Str(scratch1.W(), MemOperand(scratch2)); } } void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { IncrementCounter(counter, -value, scratch1, scratch2); } void MacroAssembler::MaybeDropFrames() { // Check whether we need to drop frames to restart a function on the stack. Mov(x1, ExternalReference::debug_restart_fp_address(isolate())); Ldr(x1, MemOperand(x1)); Tst(x1, x1); Jump(BUILTIN_CODE(isolate(), FrameDropperTrampoline), RelocInfo::CODE_TARGET, ne); } void MacroAssembler::JumpIfObjectType(Register object, Register map, Register type_reg, InstanceType type, Label* if_cond_pass, Condition cond) { CompareObjectType(object, map, type_reg, type); B(cond, if_cond_pass); } // Sets condition flags based on comparison, and returns type in type_reg. void MacroAssembler::CompareObjectType(Register object, Register map, Register type_reg, InstanceType type) { Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset)); CompareInstanceType(map, type_reg, type); } // Sets condition flags based on comparison, and returns type in type_reg. void MacroAssembler::CompareInstanceType(Register map, Register type_reg, InstanceType type) { Ldrh(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); Cmp(type_reg, type); } void MacroAssembler::LoadElementsKindFromMap(Register result, Register map) { // Load the map's "bit field 2". Ldrb(result, FieldMemOperand(map, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. DecodeField(result); } void MacroAssembler::CompareRoot(const Register& obj, Heap::RootListIndex index) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); DCHECK(!AreAliased(obj, temp)); LoadRoot(temp, index); Cmp(obj, temp); } void MacroAssembler::JumpIfRoot(const Register& obj, Heap::RootListIndex index, Label* if_equal) { CompareRoot(obj, index); B(eq, if_equal); } void MacroAssembler::JumpIfNotRoot(const Register& obj, Heap::RootListIndex index, Label* if_not_equal) { CompareRoot(obj, index); B(ne, if_not_equal); } void MacroAssembler::CompareAndSplit(const Register& lhs, const Operand& rhs, Condition cond, Label* if_true, Label* if_false, Label* fall_through) { if ((if_true == if_false) && (if_false == fall_through)) { // Fall through. } else if (if_true == if_false) { B(if_true); } else if (if_false == fall_through) { CompareAndBranch(lhs, rhs, cond, if_true); } else if (if_true == fall_through) { CompareAndBranch(lhs, rhs, NegateCondition(cond), if_false); } else { CompareAndBranch(lhs, rhs, cond, if_true); B(if_false); } } void MacroAssembler::TestAndSplit(const Register& reg, uint64_t bit_pattern, Label* if_all_clear, Label* if_any_set, Label* fall_through) { if ((if_all_clear == if_any_set) && (if_any_set == fall_through)) { // Fall through. } else if (if_all_clear == if_any_set) { B(if_all_clear); } else if (if_all_clear == fall_through) { TestAndBranchIfAnySet(reg, bit_pattern, if_any_set); } else if (if_any_set == fall_through) { TestAndBranchIfAllClear(reg, bit_pattern, if_all_clear); } else { TestAndBranchIfAnySet(reg, bit_pattern, if_any_set); B(if_all_clear); } } bool TurboAssembler::AllowThisStubCall(CodeStub* stub) { return has_frame() || !stub->SometimesSetsUpAFrame(); } void MacroAssembler::PopSafepointRegisters() { const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; DCHECK_GE(num_unsaved, 0); DCHECK_EQ(num_unsaved % 2, 0); DCHECK_EQ(kSafepointSavedRegisters % 2, 0); PopXRegList(kSafepointSavedRegisters); Drop(num_unsaved); } void MacroAssembler::PushSafepointRegisters() { // Safepoints expect a block of kNumSafepointRegisters values on the stack, so // adjust the stack for unsaved registers. const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; DCHECK_GE(num_unsaved, 0); DCHECK_EQ(num_unsaved % 2, 0); DCHECK_EQ(kSafepointSavedRegisters % 2, 0); Claim(num_unsaved); PushXRegList(kSafepointSavedRegisters); } int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { // Make sure the safepoint registers list is what we expect. DCHECK_EQ(CPURegList::GetSafepointSavedRegisters().list(), 0x6FFCFFFF); // Safepoint registers are stored contiguously on the stack, but not all the // registers are saved. The following registers are excluded: // - x16 and x17 (ip0 and ip1) because they shouldn't be preserved outside of // the macro assembler. // - x31 (sp) because the system stack pointer doesn't need to be included // in safepoint registers. // // This function implements the mapping of register code to index into the // safepoint register slots. if ((reg_code >= 0) && (reg_code <= 15)) { return reg_code; } else if ((reg_code >= 18) && (reg_code <= 30)) { // Skip ip0 and ip1. return reg_code - 2; } else { // This register has no safepoint register slot. UNREACHABLE(); } } void MacroAssembler::CheckPageFlag(const Register& object, const Register& scratch, int mask, Condition cc, Label* condition_met) { And(scratch, object, ~kPageAlignmentMask); Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); if (cc == eq) { TestAndBranchIfAnySet(scratch, mask, condition_met); } else { TestAndBranchIfAllClear(scratch, mask, condition_met); } } void TurboAssembler::CheckPageFlagSet(const Register& object, const Register& scratch, int mask, Label* if_any_set) { And(scratch, object, ~kPageAlignmentMask); Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); TestAndBranchIfAnySet(scratch, mask, if_any_set); } void TurboAssembler::CheckPageFlagClear(const Register& object, const Register& scratch, int mask, Label* if_all_clear) { And(scratch, object, ~kPageAlignmentMask); Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); TestAndBranchIfAllClear(scratch, mask, if_all_clear); } void MacroAssembler::RecordWriteField(Register object, int offset, Register value, Register scratch, LinkRegisterStatus lr_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action, SmiCheck smi_check) { // First, check if a write barrier is even needed. The tests below // catch stores of Smis. Label done; // Skip the barrier if writing a smi. if (smi_check == INLINE_SMI_CHECK) { JumpIfSmi(value, &done); } // Although the object register is tagged, the offset is relative to the start // of the object, so offset must be a multiple of kPointerSize. DCHECK(IsAligned(offset, kPointerSize)); Add(scratch, object, offset - kHeapObjectTag); if (emit_debug_code()) { Label ok; Tst(scratch, kPointerSize - 1); B(eq, &ok); Abort(AbortReason::kUnalignedCellInWriteBarrier); Bind(&ok); } RecordWrite(object, scratch, value, lr_status, save_fp, remembered_set_action, OMIT_SMI_CHECK); Bind(&done); // Clobber clobbered input registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { Mov(value, Operand(bit_cast(kZapValue + 4))); Mov(scratch, Operand(bit_cast(kZapValue + 8))); } } void TurboAssembler::SaveRegisters(RegList registers) { DCHECK_GT(NumRegs(registers), 0); CPURegList regs(lr); for (int i = 0; i < Register::kNumRegisters; ++i) { if ((registers >> i) & 1u) { regs.Combine(Register::XRegFromCode(i)); } } PushCPURegList(regs); } void TurboAssembler::RestoreRegisters(RegList registers) { DCHECK_GT(NumRegs(registers), 0); CPURegList regs(lr); for (int i = 0; i < Register::kNumRegisters; ++i) { if ((registers >> i) & 1u) { regs.Combine(Register::XRegFromCode(i)); } } PopCPURegList(regs); } void TurboAssembler::CallRecordWriteStub( Register object, Register address, RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode) { // TODO(albertnetymk): For now we ignore remembered_set_action and fp_mode, // i.e. always emit remember set and save FP registers in RecordWriteStub. If // large performance regression is observed, we should use these values to // avoid unnecessary work. Callable const callable = Builtins::CallableFor(isolate(), Builtins::kRecordWrite); RegList registers = callable.descriptor().allocatable_registers(); SaveRegisters(registers); Register object_parameter(callable.descriptor().GetRegisterParameter( RecordWriteDescriptor::kObject)); Register slot_parameter( callable.descriptor().GetRegisterParameter(RecordWriteDescriptor::kSlot)); Register isolate_parameter(callable.descriptor().GetRegisterParameter( RecordWriteDescriptor::kIsolate)); Register remembered_set_parameter(callable.descriptor().GetRegisterParameter( RecordWriteDescriptor::kRememberedSet)); Register fp_mode_parameter(callable.descriptor().GetRegisterParameter( RecordWriteDescriptor::kFPMode)); Push(object, address); Pop(slot_parameter, object_parameter); Mov(isolate_parameter, ExternalReference::isolate_address(isolate())); Mov(remembered_set_parameter, Smi::FromEnum(remembered_set_action)); Mov(fp_mode_parameter, Smi::FromEnum(fp_mode)); Call(callable.code(), RelocInfo::CODE_TARGET); RestoreRegisters(registers); } // Will clobber: object, address, value. // If lr_status is kLRHasBeenSaved, lr will also be clobbered. // // The register 'object' contains a heap object pointer. The heap object tag is // shifted away. void MacroAssembler::RecordWrite(Register object, Register address, Register value, LinkRegisterStatus lr_status, SaveFPRegsMode fp_mode, RememberedSetAction remembered_set_action, SmiCheck smi_check) { ASM_LOCATION_IN_ASSEMBLER("MacroAssembler::RecordWrite"); DCHECK(!AreAliased(object, value)); if (emit_debug_code()) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Ldr(temp, MemOperand(address)); Cmp(temp, value); Check(eq, AbortReason::kWrongAddressOrValuePassedToRecordWrite); } // First, check if a write barrier is even needed. The tests below // catch stores of smis and stores into the young generation. Label done; if (smi_check == INLINE_SMI_CHECK) { DCHECK_EQ(0, kSmiTag); JumpIfSmi(value, &done); } CheckPageFlagClear(value, value, // Used as scratch. MemoryChunk::kPointersToHereAreInterestingMask, &done); CheckPageFlagClear(object, value, // Used as scratch. MemoryChunk::kPointersFromHereAreInterestingMask, &done); // Record the actual write. if (lr_status == kLRHasNotBeenSaved) { Push(padreg, lr); } CallRecordWriteStub(object, address, remembered_set_action, fp_mode); if (lr_status == kLRHasNotBeenSaved) { Pop(lr, padreg); } Bind(&done); // Count number of write barriers in generated code. isolate()->counters()->write_barriers_static()->Increment(); IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, address, value); // Clobber clobbered registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { Mov(address, Operand(bit_cast(kZapValue + 12))); Mov(value, Operand(bit_cast(kZapValue + 16))); } } void TurboAssembler::Assert(Condition cond, AbortReason reason) { if (emit_debug_code()) { Check(cond, reason); } } void TurboAssembler::AssertUnreachable(AbortReason reason) { if (emit_debug_code()) Abort(reason); } void MacroAssembler::AssertRegisterIsRoot(Register reg, Heap::RootListIndex index, AbortReason reason) { if (emit_debug_code()) { CompareRoot(reg, index); Check(eq, reason); } } void TurboAssembler::Check(Condition cond, AbortReason reason) { Label ok; B(cond, &ok); Abort(reason); // Will not return here. Bind(&ok); } void TurboAssembler::Abort(AbortReason reason) { #ifdef DEBUG RecordComment("Abort message: "); RecordComment(GetAbortReason(reason)); #endif // Avoid emitting call to builtin if requested. if (trap_on_abort()) { Brk(0); return; } // We need some scratch registers for the MacroAssembler, so make sure we have // some. This is safe here because Abort never returns. RegList old_tmp_list = TmpList()->list(); TmpList()->Combine(MacroAssembler::DefaultTmpList()); if (should_abort_hard()) { // We don't care if we constructed a frame. Just pretend we did. FrameScope assume_frame(this, StackFrame::NONE); Mov(w0, static_cast(reason)); Call(ExternalReference::abort_with_reason()); return; } // Avoid infinite recursion; Push contains some assertions that use Abort. HardAbortScope hard_aborts(this); Mov(x1, Smi::FromInt(static_cast(reason))); if (!has_frame_) { // We don't actually want to generate a pile of code for this, so just // claim there is a stack frame, without generating one. FrameScope scope(this, StackFrame::NONE); Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); } else { Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); } TmpList()->set_list(old_tmp_list); } void MacroAssembler::LoadNativeContextSlot(int index, Register dst) { Ldr(dst, NativeContextMemOperand()); Ldr(dst, ContextMemOperand(dst, index)); } // This is the main Printf implementation. All other Printf variants call // PrintfNoPreserve after setting up one or more PreserveRegisterScopes. void MacroAssembler::PrintfNoPreserve(const char * format, const CPURegister& arg0, const CPURegister& arg1, const CPURegister& arg2, const CPURegister& arg3) { // We cannot handle a caller-saved stack pointer. It doesn't make much sense // in most cases anyway, so this restriction shouldn't be too serious. DCHECK(!kCallerSaved.IncludesAliasOf(sp)); // The provided arguments, and their proper procedure-call standard registers. CPURegister args[kPrintfMaxArgCount] = {arg0, arg1, arg2, arg3}; CPURegister pcs[kPrintfMaxArgCount] = {NoReg, NoReg, NoReg, NoReg}; int arg_count = kPrintfMaxArgCount; // The PCS varargs registers for printf. Note that x0 is used for the printf // format string. static const CPURegList kPCSVarargs = CPURegList(CPURegister::kRegister, kXRegSizeInBits, 1, arg_count); static const CPURegList kPCSVarargsFP = CPURegList(CPURegister::kVRegister, kDRegSizeInBits, 0, arg_count - 1); // We can use caller-saved registers as scratch values, except for the // arguments and the PCS registers where they might need to go. CPURegList tmp_list = kCallerSaved; tmp_list.Remove(x0); // Used to pass the format string. tmp_list.Remove(kPCSVarargs); tmp_list.Remove(arg0, arg1, arg2, arg3); CPURegList fp_tmp_list = kCallerSavedV; fp_tmp_list.Remove(kPCSVarargsFP); fp_tmp_list.Remove(arg0, arg1, arg2, arg3); // Override the MacroAssembler's scratch register list. The lists will be // reset automatically at the end of the UseScratchRegisterScope. UseScratchRegisterScope temps(this); TmpList()->set_list(tmp_list.list()); FPTmpList()->set_list(fp_tmp_list.list()); // Copies of the printf vararg registers that we can pop from. CPURegList pcs_varargs = kPCSVarargs; CPURegList pcs_varargs_fp = kPCSVarargsFP; // Place the arguments. There are lots of clever tricks and optimizations we // could use here, but Printf is a debug tool so instead we just try to keep // it simple: Move each input that isn't already in the right place to a // scratch register, then move everything back. for (unsigned i = 0; i < kPrintfMaxArgCount; i++) { // Work out the proper PCS register for this argument. if (args[i].IsRegister()) { pcs[i] = pcs_varargs.PopLowestIndex().X(); // We might only need a W register here. We need to know the size of the // argument so we can properly encode it for the simulator call. if (args[i].Is32Bits()) pcs[i] = pcs[i].W(); } else if (args[i].IsVRegister()) { // In C, floats are always cast to doubles for varargs calls. pcs[i] = pcs_varargs_fp.PopLowestIndex().D(); } else { DCHECK(args[i].IsNone()); arg_count = i; break; } // If the argument is already in the right place, leave it where it is. if (args[i].Aliases(pcs[i])) continue; // Otherwise, if the argument is in a PCS argument register, allocate an // appropriate scratch register and then move it out of the way. if (kPCSVarargs.IncludesAliasOf(args[i]) || kPCSVarargsFP.IncludesAliasOf(args[i])) { if (args[i].IsRegister()) { Register old_arg = args[i].Reg(); Register new_arg = temps.AcquireSameSizeAs(old_arg); Mov(new_arg, old_arg); args[i] = new_arg; } else { VRegister old_arg = args[i].VReg(); VRegister new_arg = temps.AcquireSameSizeAs(old_arg); Fmov(new_arg, old_arg); args[i] = new_arg; } } } // Do a second pass to move values into their final positions and perform any // conversions that may be required. for (int i = 0; i < arg_count; i++) { DCHECK(pcs[i].type() == args[i].type()); if (pcs[i].IsRegister()) { Mov(pcs[i].Reg(), args[i].Reg(), kDiscardForSameWReg); } else { DCHECK(pcs[i].IsVRegister()); if (pcs[i].SizeInBytes() == args[i].SizeInBytes()) { Fmov(pcs[i].VReg(), args[i].VReg()); } else { Fcvt(pcs[i].VReg(), args[i].VReg()); } } } // Load the format string into x0, as per the procedure-call standard. // // To make the code as portable as possible, the format string is encoded // directly in the instruction stream. It might be cleaner to encode it in a // literal pool, but since Printf is usually used for debugging, it is // beneficial for it to be minimally dependent on other features. Label format_address; Adr(x0, &format_address); // Emit the format string directly in the instruction stream. { BlockPoolsScope scope(this); Label after_data; B(&after_data); Bind(&format_address); EmitStringData(format); Unreachable(); Bind(&after_data); } CallPrintf(arg_count, pcs); } void TurboAssembler::CallPrintf(int arg_count, const CPURegister* args) { // A call to printf needs special handling for the simulator, since the system // printf function will use a different instruction set and the procedure-call // standard will not be compatible. #ifdef USE_SIMULATOR { InstructionAccurateScope scope(this, kPrintfLength / kInstrSize); hlt(kImmExceptionIsPrintf); dc32(arg_count); // kPrintfArgCountOffset // Determine the argument pattern. uint32_t arg_pattern_list = 0; for (int i = 0; i < arg_count; i++) { uint32_t arg_pattern; if (args[i].IsRegister()) { arg_pattern = args[i].Is32Bits() ? kPrintfArgW : kPrintfArgX; } else { DCHECK(args[i].Is64Bits()); arg_pattern = kPrintfArgD; } DCHECK(arg_pattern < (1 << kPrintfArgPatternBits)); arg_pattern_list |= (arg_pattern << (kPrintfArgPatternBits * i)); } dc32(arg_pattern_list); // kPrintfArgPatternListOffset } #else Call(ExternalReference::printf_function()); #endif } void MacroAssembler::Printf(const char * format, CPURegister arg0, CPURegister arg1, CPURegister arg2, CPURegister arg3) { // Printf is expected to preserve all registers, so make sure that none are // available as scratch registers until we've preserved them. RegList old_tmp_list = TmpList()->list(); RegList old_fp_tmp_list = FPTmpList()->list(); TmpList()->set_list(0); FPTmpList()->set_list(0); // Preserve all caller-saved registers as well as NZCV. // PushCPURegList asserts that the size of each list is a multiple of 16 // bytes. PushCPURegList(kCallerSaved); PushCPURegList(kCallerSavedV); // We can use caller-saved registers as scratch values (except for argN). CPURegList tmp_list = kCallerSaved; CPURegList fp_tmp_list = kCallerSavedV; tmp_list.Remove(arg0, arg1, arg2, arg3); fp_tmp_list.Remove(arg0, arg1, arg2, arg3); TmpList()->set_list(tmp_list.list()); FPTmpList()->set_list(fp_tmp_list.list()); { UseScratchRegisterScope temps(this); // If any of the arguments are the current stack pointer, allocate a new // register for them, and adjust the value to compensate for pushing the // caller-saved registers. bool arg0_sp = sp.Aliases(arg0); bool arg1_sp = sp.Aliases(arg1); bool arg2_sp = sp.Aliases(arg2); bool arg3_sp = sp.Aliases(arg3); if (arg0_sp || arg1_sp || arg2_sp || arg3_sp) { // Allocate a register to hold the original stack pointer value, to pass // to PrintfNoPreserve as an argument. Register arg_sp = temps.AcquireX(); Add(arg_sp, sp, kCallerSaved.TotalSizeInBytes() + kCallerSavedV.TotalSizeInBytes()); if (arg0_sp) arg0 = Register::Create(arg_sp.code(), arg0.SizeInBits()); if (arg1_sp) arg1 = Register::Create(arg_sp.code(), arg1.SizeInBits()); if (arg2_sp) arg2 = Register::Create(arg_sp.code(), arg2.SizeInBits()); if (arg3_sp) arg3 = Register::Create(arg_sp.code(), arg3.SizeInBits()); } // Preserve NZCV. { UseScratchRegisterScope temps(this); Register tmp = temps.AcquireX(); Mrs(tmp, NZCV); Push(tmp, xzr); } PrintfNoPreserve(format, arg0, arg1, arg2, arg3); // Restore NZCV. { UseScratchRegisterScope temps(this); Register tmp = temps.AcquireX(); Pop(xzr, tmp); Msr(NZCV, tmp); } } PopCPURegList(kCallerSavedV); PopCPURegList(kCallerSaved); TmpList()->set_list(old_tmp_list); FPTmpList()->set_list(old_fp_tmp_list); } UseScratchRegisterScope::~UseScratchRegisterScope() { available_->set_list(old_available_); availablefp_->set_list(old_availablefp_); } Register UseScratchRegisterScope::AcquireSameSizeAs(const Register& reg) { int code = AcquireNextAvailable(available_).code(); return Register::Create(code, reg.SizeInBits()); } VRegister UseScratchRegisterScope::AcquireSameSizeAs(const VRegister& reg) { int code = AcquireNextAvailable(availablefp_).code(); return VRegister::Create(code, reg.SizeInBits()); } CPURegister UseScratchRegisterScope::AcquireNextAvailable( CPURegList* available) { CHECK(!available->IsEmpty()); CPURegister result = available->PopLowestIndex(); DCHECK(!AreAliased(result, xzr, sp)); return result; } MemOperand ContextMemOperand(Register context, int index) { return MemOperand(context, Context::SlotOffset(index)); } MemOperand NativeContextMemOperand() { return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX); } #define __ masm-> void InlineSmiCheckInfo::Emit(MacroAssembler* masm, const Register& reg, const Label* smi_check) { Assembler::BlockPoolsScope scope(masm); if (reg.IsValid()) { DCHECK(smi_check->is_bound()); DCHECK(reg.Is64Bits()); // Encode the register (x0-x30) in the lowest 5 bits, then the offset to // 'check' in the other bits. The possible offset is limited in that we // use BitField to pack the data, and the underlying data type is a // uint32_t. uint32_t delta = static_cast(__ InstructionsGeneratedSince(smi_check)); __ InlineData(RegisterBits::encode(reg.code()) | DeltaBits::encode(delta)); } else { DCHECK(!smi_check->is_bound()); // An offset of 0 indicates that there is no patch site. __ InlineData(0); } } InlineSmiCheckInfo::InlineSmiCheckInfo(Address info) : reg_(NoReg), smi_check_delta_(0), smi_check_(nullptr) { InstructionSequence* inline_data = InstructionSequence::At(info); DCHECK(inline_data->IsInlineData()); if (inline_data->IsInlineData()) { uint64_t payload = inline_data->InlineData(); // We use BitField to decode the payload, and BitField can only handle // 32-bit values. DCHECK(is_uint32(payload)); if (payload != 0) { uint32_t payload32 = static_cast(payload); int reg_code = RegisterBits::decode(payload32); reg_ = Register::XRegFromCode(reg_code); smi_check_delta_ = DeltaBits::decode(payload32); DCHECK_NE(0, smi_check_delta_); smi_check_ = inline_data->preceding(smi_check_delta_); } } } void TurboAssembler::ComputeCodeStartAddress(const Register& rd) { // We can use adr to load a pc relative location. adr(rd, -pc_offset()); } void TurboAssembler::ResetSpeculationPoisonRegister() { Mov(kSpeculationPoisonRegister, -1); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_ARM64