// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_MIPS64 #include "src/code-factory.h" #include "src/code-stubs.h" #include "src/counters.h" #include "src/debug/debug.h" #include "src/deoptimizer.h" #include "src/frame-constants.h" #include "src/frames.h" #include "src/mips64/constants-mips64.h" #include "src/objects-inl.h" #include "src/objects/js-generator.h" #include "src/runtime/runtime.h" #include "src/wasm/wasm-objects.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address, ExitFrameType exit_frame_type) { __ li(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address)); if (exit_frame_type == BUILTIN_EXIT) { __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame), RelocInfo::CODE_TARGET); } else { DCHECK(exit_frame_type == EXIT); __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithExitFrame), RelocInfo::CODE_TARGET); } } void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- ra : return address // -- sp[...]: constructor arguments // ----------------------------------- Label generic_array_code, one_or_more_arguments, two_or_more_arguments; if (FLAG_debug_code) { // Initial map for the builtin InternalArray functions should be maps. __ Ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); __ SmiTst(a2, a4); __ Assert(ne, AbortReason::kUnexpectedInitialMapForInternalArrayFunction, a4, Operand(zero_reg)); __ GetObjectType(a2, a3, a4); __ Assert(eq, AbortReason::kUnexpectedInitialMapForInternalArrayFunction, a4, Operand(MAP_TYPE)); } // Run the native code for the InternalArray function called as a normal // function. __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); __ Jump(BUILTIN_CODE(masm->isolate(), InternalArrayConstructorImpl), RelocInfo::CODE_TARGET); } static void GenerateTailCallToReturnedCode(MacroAssembler* masm, Runtime::FunctionId function_id) { // ----------- S t a t e ------------- // -- a0 : argument count (preserved for callee) // -- a1 : target function (preserved for callee) // -- a3 : new target (preserved for callee) // ----------------------------------- { FrameScope scope(masm, StackFrame::INTERNAL); // Push a copy of the function onto the stack. // Push a copy of the target function and the new target. __ SmiTag(a0); __ Push(a0, a1, a3, a1); __ CallRuntime(function_id, 1); // Restore target function and new target. __ Pop(a0, a1, a3); __ SmiUntag(a0); } static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); __ Daddu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(a2); } namespace { void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- a1 : constructor function // -- a3 : new target // -- cp : context // -- ra : return address // -- sp[...]: constructor arguments // ----------------------------------- // Enter a construct frame. { FrameScope scope(masm, StackFrame::CONSTRUCT); // Preserve the incoming parameters on the stack. __ SmiTag(a0); __ Push(cp, a0); __ SmiUntag(a0); // The receiver for the builtin/api call. __ PushRoot(Heap::kTheHoleValueRootIndex); // Set up pointer to last argument. __ Daddu(t2, fp, Operand(StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. Label loop, entry; __ mov(t3, a0); // ----------- S t a t e ------------- // -- a0: number of arguments (untagged) // -- a3: new target // -- t2: pointer to last argument // -- t3: counter // -- sp[0*kPointerSize]: the hole (receiver) // -- sp[1*kPointerSize]: number of arguments (tagged) // -- sp[2*kPointerSize]: context // ----------------------------------- __ jmp(&entry); __ bind(&loop); __ Dlsa(t0, t2, t3, kPointerSizeLog2); __ Ld(t1, MemOperand(t0)); __ push(t1); __ bind(&entry); __ Daddu(t3, t3, Operand(-1)); __ Branch(&loop, greater_equal, t3, Operand(zero_reg)); // Call the function. // a0: number of arguments (untagged) // a1: constructor function // a3: new target ParameterCount actual(a0); __ InvokeFunction(a1, a3, actual, CALL_FUNCTION); // Restore context from the frame. __ Ld(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); // Restore smi-tagged arguments count from the frame. __ Ld(a1, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); // Leave construct frame. } // Remove caller arguments from the stack and return. __ SmiScale(a4, a1, kPointerSizeLog2); __ Daddu(sp, sp, a4); __ Daddu(sp, sp, kPointerSize); __ Ret(); } } // namespace // The construct stub for ES5 constructor functions and ES6 class constructors. void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0: number of arguments (untagged) // -- a1: constructor function // -- a3: new target // -- cp: context // -- ra: return address // -- sp[...]: constructor arguments // ----------------------------------- // Enter a construct frame. { FrameScope scope(masm, StackFrame::CONSTRUCT); Label post_instantiation_deopt_entry, not_create_implicit_receiver; // Preserve the incoming parameters on the stack. __ SmiTag(a0); __ Push(cp, a0, a1); __ PushRoot(Heap::kTheHoleValueRootIndex); __ Push(a3); // ----------- S t a t e ------------- // -- sp[0*kPointerSize]: new target // -- sp[1*kPointerSize]: padding // -- a1 and sp[2*kPointerSize]: constructor function // -- sp[3*kPointerSize]: number of arguments (tagged) // -- sp[4*kPointerSize]: context // ----------------------------------- __ Ld(t2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ lwu(t2, FieldMemOperand(t2, SharedFunctionInfo::kFlagsOffset)); __ And(t2, t2, Operand(SharedFunctionInfo::IsDerivedConstructorBit::kMask)); __ Branch(¬_create_implicit_receiver, ne, t2, Operand(zero_reg)); // If not derived class constructor: Allocate the new receiver object. __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1, t2, t3); __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET); __ Branch(&post_instantiation_deopt_entry); // Else: use TheHoleValue as receiver for constructor call __ bind(¬_create_implicit_receiver); __ LoadRoot(v0, Heap::kTheHoleValueRootIndex); // ----------- S t a t e ------------- // -- v0: receiver // -- Slot 4 / sp[0*kPointerSize]: new target // -- Slot 3 / sp[1*kPointerSize]: padding // -- Slot 2 / sp[2*kPointerSize]: constructor function // -- Slot 1 / sp[3*kPointerSize]: number of arguments (tagged) // -- Slot 0 / sp[4*kPointerSize]: context // ----------------------------------- // Deoptimizer enters here. masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset( masm->pc_offset()); __ bind(&post_instantiation_deopt_entry); // Restore new target. __ Pop(a3); // Push the allocated receiver to the stack. We need two copies // because we may have to return the original one and the calling // conventions dictate that the called function pops the receiver. __ Push(v0, v0); // ----------- S t a t e ------------- // -- r3: new target // -- sp[0*kPointerSize]: implicit receiver // -- sp[1*kPointerSize]: implicit receiver // -- sp[2*kPointerSize]: padding // -- sp[3*kPointerSize]: constructor function // -- sp[4*kPointerSize]: number of arguments (tagged) // -- sp[5*kPointerSize]: context // ----------------------------------- // Restore constructor function and argument count. __ Ld(a1, MemOperand(fp, ConstructFrameConstants::kConstructorOffset)); __ Ld(a0, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); __ SmiUntag(a0); // Set up pointer to last argument. __ Daddu(t2, fp, Operand(StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. Label loop, entry; __ mov(t3, a0); // ----------- S t a t e ------------- // -- a0: number of arguments (untagged) // -- a3: new target // -- t2: pointer to last argument // -- t3: counter // -- sp[0*kPointerSize]: implicit receiver // -- sp[1*kPointerSize]: implicit receiver // -- sp[2*kPointerSize]: padding // -- a1 and sp[3*kPointerSize]: constructor function // -- sp[4*kPointerSize]: number of arguments (tagged) // -- sp[5*kPointerSize]: context // ----------------------------------- __ jmp(&entry); __ bind(&loop); __ Dlsa(t0, t2, t3, kPointerSizeLog2); __ Ld(t1, MemOperand(t0)); __ push(t1); __ bind(&entry); __ Daddu(t3, t3, Operand(-1)); __ Branch(&loop, greater_equal, t3, Operand(zero_reg)); // Call the function. ParameterCount actual(a0); __ InvokeFunction(a1, a3, actual, CALL_FUNCTION); // ----------- S t a t e ------------- // -- v0: constructor result // -- sp[0*kPointerSize]: implicit receiver // -- sp[1*kPointerSize]: padding // -- sp[2*kPointerSize]: constructor function // -- sp[3*kPointerSize]: number of arguments // -- sp[4*kPointerSize]: context // ----------------------------------- // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset( masm->pc_offset()); // Restore the context from the frame. __ Ld(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, do_throw, leave_frame; // If the result is undefined, we jump out to using the implicit receiver. __ JumpIfRoot(v0, Heap::kUndefinedValueRootIndex, &use_receiver); // Otherwise we do a smi check and fall through to check if the return value // is a valid receiver. // If the result is a smi, it is *not* an object in the ECMA sense. __ JumpIfSmi(v0, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. __ GetObjectType(v0, t2, t2); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ Branch(&leave_frame, greater_equal, t2, Operand(FIRST_JS_RECEIVER_TYPE)); __ Branch(&use_receiver); __ bind(&do_throw); __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ Ld(v0, MemOperand(sp, 0 * kPointerSize)); __ JumpIfRoot(v0, Heap::kTheHoleValueRootIndex, &do_throw); __ bind(&leave_frame); // Restore smi-tagged arguments count from the frame. __ Ld(a1, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); // Leave construct frame. } // Remove caller arguments from the stack and return. __ SmiScale(a4, a1, kPointerSizeLog2); __ Daddu(sp, sp, a4); __ Daddu(sp, sp, kPointerSize); __ Ret(); } void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { Generate_JSBuiltinsConstructStubHelper(masm); } static void GetSharedFunctionInfoBytecode(MacroAssembler* masm, Register sfi_data, Register scratch1) { Label done; __ GetObjectType(sfi_data, scratch1, scratch1); __ Branch(&done, ne, scratch1, Operand(INTERPRETER_DATA_TYPE)); __ Ld(sfi_data, FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset)); __ bind(&done); } // static void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- v0 : the value to pass to the generator // -- a1 : the JSGeneratorObject to resume // -- ra : return address // ----------------------------------- __ AssertGeneratorObject(a1); // Store input value into generator object. __ Sd(v0, FieldMemOperand(a1, JSGeneratorObject::kInputOrDebugPosOffset)); __ RecordWriteField(a1, JSGeneratorObject::kInputOrDebugPosOffset, v0, a3, kRAHasNotBeenSaved, kDontSaveFPRegs); // Load suspended function and context. __ Ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset)); __ Ld(cp, FieldMemOperand(a4, JSFunction::kContextOffset)); // Flood function if we are stepping. Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; Label stepping_prepared; ExternalReference debug_hook = ExternalReference::debug_hook_on_function_call_address(masm->isolate()); __ li(a5, debug_hook); __ Lb(a5, MemOperand(a5)); __ Branch(&prepare_step_in_if_stepping, ne, a5, Operand(zero_reg)); // Flood function if we need to continue stepping in the suspended generator. ExternalReference debug_suspended_generator = ExternalReference::debug_suspended_generator_address(masm->isolate()); __ li(a5, debug_suspended_generator); __ Ld(a5, MemOperand(a5)); __ Branch(&prepare_step_in_suspended_generator, eq, a1, Operand(a5)); __ bind(&stepping_prepared); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label stack_overflow; __ LoadRoot(kScratchReg, Heap::kRealStackLimitRootIndex); __ Branch(&stack_overflow, lo, sp, Operand(kScratchReg)); // Push receiver. __ Ld(a5, FieldMemOperand(a1, JSGeneratorObject::kReceiverOffset)); __ Push(a5); // ----------- S t a t e ------------- // -- a1 : the JSGeneratorObject to resume // -- a4 : generator function // -- cp : generator context // -- ra : return address // -- sp[0] : generator receiver // ----------------------------------- // Push holes for arguments to generator function. Since the parser forced // context allocation for any variables in generators, the actual argument // values have already been copied into the context and these dummy values // will never be used. __ Ld(a3, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset)); __ Lhu(a3, FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset)); __ Ld(t1, FieldMemOperand(a1, JSGeneratorObject::kParametersAndRegistersOffset)); { Label done_loop, loop; __ Move(t2, zero_reg); __ bind(&loop); __ Dsubu(a3, a3, Operand(1)); __ Branch(&done_loop, lt, a3, Operand(zero_reg)); __ Dlsa(kScratchReg, t1, t2, kPointerSizeLog2); __ Ld(kScratchReg, FieldMemOperand(kScratchReg, FixedArray::kHeaderSize)); __ Push(kScratchReg); __ Daddu(t2, t2, Operand(1)); __ Branch(&loop); __ bind(&done_loop); } // Underlying function needs to have bytecode available. if (FLAG_debug_code) { __ Ld(a3, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset)); __ Ld(a3, FieldMemOperand(a3, SharedFunctionInfo::kFunctionDataOffset)); GetSharedFunctionInfoBytecode(masm, a3, a0); __ GetObjectType(a3, a3, a3); __ Assert(eq, AbortReason::kMissingBytecodeArray, a3, Operand(BYTECODE_ARRAY_TYPE)); } // Resume (Ignition/TurboFan) generator object. { __ Ld(a0, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset)); __ Lhu(a0, FieldMemOperand( a0, SharedFunctionInfo::kFormalParameterCountOffset)); // We abuse new.target both to indicate that this is a resume call and to // pass in the generator object. In ordinary calls, new.target is always // undefined because generator functions are non-constructable. __ Move(a3, a1); __ Move(a1, a4); static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); __ Ld(a2, FieldMemOperand(a1, JSFunction::kCodeOffset)); __ Daddu(a2, a2, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(a2); } __ bind(&prepare_step_in_if_stepping); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(a1, a4); // Push hole as receiver since we do not use it for stepping. __ PushRoot(Heap::kTheHoleValueRootIndex); __ CallRuntime(Runtime::kDebugOnFunctionCall); __ Pop(a1); } __ Branch(USE_DELAY_SLOT, &stepping_prepared); __ Ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset)); __ bind(&prepare_step_in_suspended_generator); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(a1); __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); __ Pop(a1); } __ Branch(USE_DELAY_SLOT, &stepping_prepared); __ Ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset)); __ bind(&stack_overflow); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ break_(0xCC); // This should be unreachable. } } void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(a1); __ CallRuntime(Runtime::kThrowConstructedNonConstructable); } // Clobbers a2; preserves all other registers. static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc) { // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. Label okay; __ LoadRoot(a2, Heap::kRealStackLimitRootIndex); // Make a2 the space we have left. The stack might already be overflowed // here which will cause r2 to become negative. __ dsubu(a2, sp, a2); // Check if the arguments will overflow the stack. __ dsll(a7, argc, kPointerSizeLog2); __ Branch(&okay, gt, a2, Operand(a7)); // Signed comparison. // Out of stack space. __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&okay); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { // ----------- S t a t e ------------- // -- a0: new.target // -- a1: function // -- a2: receiver_pointer // -- a3: argc // -- s0: argv // ----------------------------------- ProfileEntryHookStub::MaybeCallEntryHook(masm); // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Setup the context (we need to use the caller context from the isolate). ExternalReference context_address = ExternalReference::Create( IsolateAddressId::kContextAddress, masm->isolate()); __ li(cp, context_address); __ Ld(cp, MemOperand(cp)); // Push the function and the receiver onto the stack. __ Push(a1, a2); // Check if we have enough stack space to push all arguments. // Clobbers a2. Generate_CheckStackOverflow(masm, a3); // Remember new.target. __ mov(a5, a0); // Copy arguments to the stack in a loop. // a3: argc // s0: argv, i.e. points to first arg Label loop, entry; __ Dlsa(a6, s0, a3, kPointerSizeLog2); __ b(&entry); __ nop(); // Branch delay slot nop. // a6 points past last arg. __ bind(&loop); __ Ld(a4, MemOperand(s0)); // Read next parameter. __ daddiu(s0, s0, kPointerSize); __ Ld(a4, MemOperand(a4)); // Dereference handle. __ push(a4); // Push parameter. __ bind(&entry); __ Branch(&loop, ne, s0, Operand(a6)); // Setup new.target and argc. __ mov(a0, a3); __ mov(a3, a5); // Initialize all JavaScript callee-saved registers, since they will be seen // by the garbage collector as part of handlers. __ LoadRoot(a4, Heap::kUndefinedValueRootIndex); __ mov(s1, a4); __ mov(s2, a4); __ mov(s3, a4); __ mov(s4, a4); __ mov(s5, a4); // s6 holds the root address. Do not clobber. // s7 is cp. Do not init. // Invoke the code. Handle builtin = is_construct ? BUILTIN_CODE(masm->isolate(), Construct) : masm->isolate()->builtins()->Call(); __ Call(builtin, RelocInfo::CODE_TARGET); // Leave internal frame. } __ Jump(ra); } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } static void ReplaceClosureCodeWithOptimizedCode( MacroAssembler* masm, Register optimized_code, Register closure, Register scratch1, Register scratch2, Register scratch3) { // Store code entry in the closure. __ Sd(optimized_code, FieldMemOperand(closure, JSFunction::kCodeOffset)); __ mov(scratch1, optimized_code); // Write barrier clobbers scratch1 below. __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2, kRAHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); } static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) { Register args_count = scratch; // Get the arguments + receiver count. __ Ld(args_count, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ Lw(t0, FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset)); // Leave the frame (also dropping the register file). __ LeaveFrame(StackFrame::INTERPRETED); // Drop receiver + arguments. __ Daddu(sp, sp, args_count); } // Tail-call |function_id| if |smi_entry| == |marker| static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm, Register smi_entry, OptimizationMarker marker, Runtime::FunctionId function_id) { Label no_match; __ Branch(&no_match, ne, smi_entry, Operand(Smi::FromEnum(marker))); GenerateTailCallToReturnedCode(masm, function_id); __ bind(&no_match); } static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm, Register feedback_vector, Register scratch1, Register scratch2, Register scratch3) { // ----------- S t a t e ------------- // -- a0 : argument count (preserved for callee if needed, and caller) // -- a3 : new target (preserved for callee if needed, and caller) // -- a1 : target function (preserved for callee if needed, and caller) // -- feedback vector (preserved for caller if needed) // ----------------------------------- DCHECK( !AreAliased(feedback_vector, a0, a1, a3, scratch1, scratch2, scratch3)); Label optimized_code_slot_is_weak_ref, fallthrough; Register closure = a1; Register optimized_code_entry = scratch1; __ Ld(optimized_code_entry, FieldMemOperand(feedback_vector, FeedbackVector::kOptimizedCodeOffset)); // Check if the code entry is a Smi. If yes, we interpret it as an // optimisation marker. Otherwise, interpret it as a weak reference to a code // object. __ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_weak_ref); { // Optimized code slot is a Smi optimization marker. // Fall through if no optimization trigger. __ Branch(&fallthrough, eq, optimized_code_entry, Operand(Smi::FromEnum(OptimizationMarker::kNone))); TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, OptimizationMarker::kLogFirstExecution, Runtime::kFunctionFirstExecution); TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, OptimizationMarker::kCompileOptimized, Runtime::kCompileOptimized_NotConcurrent); TailCallRuntimeIfMarkerEquals( masm, optimized_code_entry, OptimizationMarker::kCompileOptimizedConcurrent, Runtime::kCompileOptimized_Concurrent); { // Otherwise, the marker is InOptimizationQueue, so fall through hoping // that an interrupt will eventually update the slot with optimized code. if (FLAG_debug_code) { __ Assert( eq, AbortReason::kExpectedOptimizationSentinel, optimized_code_entry, Operand(Smi::FromEnum(OptimizationMarker::kInOptimizationQueue))); } __ jmp(&fallthrough); } } { // Optimized code slot is a weak reference. __ bind(&optimized_code_slot_is_weak_ref); __ LoadWeakValue(optimized_code_entry, optimized_code_entry, &fallthrough); // Check if the optimized code is marked for deopt. If it is, call the // runtime to clear it. Label found_deoptimized_code; __ Ld(a5, FieldMemOperand(optimized_code_entry, Code::kCodeDataContainerOffset)); __ Lw(a5, FieldMemOperand(a5, CodeDataContainer::kKindSpecificFlagsOffset)); __ And(a5, a5, Operand(1 << Code::kMarkedForDeoptimizationBit)); __ Branch(&found_deoptimized_code, ne, a5, Operand(zero_reg)); // Optimized code is good, get it into the closure and link the closure into // the optimized functions list, then tail call the optimized code. // The feedback vector is no longer used, so re-use it as a scratch // register. ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure, scratch2, scratch3, feedback_vector); static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); __ Daddu(a2, optimized_code_entry, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(a2); // Optimized code slot contains deoptimized code, evict it and re-enter the // losure's code. __ bind(&found_deoptimized_code); GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot); } // Fall-through if the optimized code cell is clear and there is no // optimization marker. __ bind(&fallthrough); } // Advance the current bytecode offset. This simulates what all bytecode // handlers do upon completion of the underlying operation. Will bail out to a // label if the bytecode (without prefix) is a return bytecode. static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm, Register bytecode_array, Register bytecode_offset, Register bytecode, Register scratch1, Register scratch2, Label* if_return) { Register bytecode_size_table = scratch1; DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table, bytecode)); __ li(bytecode_size_table, ExternalReference::bytecode_size_table_address()); // Check if the bytecode is a Wide or ExtraWide prefix bytecode. Label process_bytecode, extra_wide; STATIC_ASSERT(0 == static_cast(interpreter::Bytecode::kWide)); STATIC_ASSERT(1 == static_cast(interpreter::Bytecode::kExtraWide)); STATIC_ASSERT(2 == static_cast(interpreter::Bytecode::kDebugBreakWide)); STATIC_ASSERT(3 == static_cast(interpreter::Bytecode::kDebugBreakExtraWide)); __ Branch(&process_bytecode, hi, bytecode, Operand(3)); __ And(scratch2, bytecode, Operand(1)); __ Branch(&extra_wide, ne, scratch2, Operand(zero_reg)); // Load the next bytecode and update table to the wide scaled table. __ Daddu(bytecode_offset, bytecode_offset, Operand(1)); __ Daddu(scratch2, bytecode_array, bytecode_offset); __ Lbu(bytecode, MemOperand(scratch2)); __ Daddu(bytecode_size_table, bytecode_size_table, Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount)); __ jmp(&process_bytecode); __ bind(&extra_wide); // Load the next bytecode and update table to the extra wide scaled table. __ Daddu(bytecode_offset, bytecode_offset, Operand(1)); __ Daddu(scratch2, bytecode_array, bytecode_offset); __ Lbu(bytecode, MemOperand(scratch2)); __ Daddu(bytecode_size_table, bytecode_size_table, Operand(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount)); __ bind(&process_bytecode); // Bailout to the return label if this is a return bytecode. #define JUMP_IF_EQUAL(NAME) \ __ Branch(if_return, eq, bytecode, \ Operand(static_cast(interpreter::Bytecode::k##NAME))); RETURN_BYTECODE_LIST(JUMP_IF_EQUAL) #undef JUMP_IF_EQUAL // Otherwise, load the size of the current bytecode and advance the offset. __ Dlsa(scratch2, bytecode_size_table, bytecode, 2); __ Lw(scratch2, MemOperand(scratch2)); __ Daddu(bytecode_offset, bytecode_offset, scratch2); } // Generate code for entering a JS function with the interpreter. // On entry to the function the receiver and arguments have been pushed on the // stack left to right. The actual argument count matches the formal parameter // count expected by the function. // // The live registers are: // o a1: the JS function object being called. // o a3: the incoming new target or generator object // o cp: our context // o fp: the caller's frame pointer // o sp: stack pointer // o ra: return address // // The function builds an interpreter frame. See InterpreterFrameConstants in // frames.h for its layout. void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { ProfileEntryHookStub::MaybeCallEntryHook(masm); Register closure = a1; Register feedback_vector = a2; // Load the feedback vector from the closure. __ Ld(feedback_vector, FieldMemOperand(closure, JSFunction::kFeedbackCellOffset)); __ Ld(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset)); // Read off the optimized code slot in the feedback vector, and if there // is optimized code or an optimization marker, call that instead. MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, a4, t3, a5); // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done below). FrameScope frame_scope(masm, StackFrame::MANUAL); __ PushStandardFrame(closure); // Get the bytecode array from the function object and load it into // kInterpreterBytecodeArrayRegister. __ Ld(a0, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset)); __ Ld(kInterpreterBytecodeArrayRegister, FieldMemOperand(a0, SharedFunctionInfo::kFunctionDataOffset)); GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, a4); // Increment invocation count for the function. __ Lw(a4, FieldMemOperand(feedback_vector, FeedbackVector::kInvocationCountOffset)); __ Addu(a4, a4, Operand(1)); __ Sw(a4, FieldMemOperand(feedback_vector, FeedbackVector::kInvocationCountOffset)); // Check function data field is actually a BytecodeArray object. if (FLAG_debug_code) { __ SmiTst(kInterpreterBytecodeArrayRegister, a4); __ Assert(ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, a4, Operand(zero_reg)); __ GetObjectType(kInterpreterBytecodeArrayRegister, a4, a4); __ Assert(eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, a4, Operand(BYTECODE_ARRAY_TYPE)); } // Reset code age. DCHECK_EQ(0, BytecodeArray::kNoAgeBytecodeAge); __ sb(zero_reg, FieldMemOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kBytecodeAgeOffset)); // Load initial bytecode offset. __ li(kInterpreterBytecodeOffsetRegister, Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); // Push bytecode array and Smi tagged bytecode array offset. __ SmiTag(a4, kInterpreterBytecodeOffsetRegister); __ Push(kInterpreterBytecodeArrayRegister, a4); // Allocate the local and temporary register file on the stack. { // Load frame size (word) from the BytecodeArray object. __ Lw(a4, FieldMemOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kFrameSizeOffset)); // Do a stack check to ensure we don't go over the limit. Label ok; __ Dsubu(a5, sp, Operand(a4)); __ LoadRoot(a2, Heap::kRealStackLimitRootIndex); __ Branch(&ok, hs, a5, Operand(a2)); __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&ok); // If ok, push undefined as the initial value for all register file entries. Label loop_header; Label loop_check; __ LoadRoot(a5, Heap::kUndefinedValueRootIndex); __ Branch(&loop_check); __ bind(&loop_header); // TODO(rmcilroy): Consider doing more than one push per loop iteration. __ push(a5); // Continue loop if not done. __ bind(&loop_check); __ Dsubu(a4, a4, Operand(kPointerSize)); __ Branch(&loop_header, ge, a4, Operand(zero_reg)); } // If the bytecode array has a valid incoming new target or generator object // register, initialize it with incoming value which was passed in r3. Label no_incoming_new_target_or_generator_register; __ Lw(a5, FieldMemOperand( kInterpreterBytecodeArrayRegister, BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset)); __ Branch(&no_incoming_new_target_or_generator_register, eq, a5, Operand(zero_reg)); __ Dlsa(a5, fp, a5, kPointerSizeLog2); __ Sd(a3, MemOperand(a5)); __ bind(&no_incoming_new_target_or_generator_register); // Load accumulator as undefined. __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex); // Load the dispatch table into a register and dispatch to the bytecode // handler at the current bytecode offset. Label do_dispatch; __ bind(&do_dispatch); __ li(kInterpreterDispatchTableRegister, ExternalReference::interpreter_dispatch_table_address(masm->isolate())); __ Daddu(a0, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister); __ Lbu(a7, MemOperand(a0)); __ Dlsa(kScratchReg, kInterpreterDispatchTableRegister, a7, kPointerSizeLog2); __ Ld(kJavaScriptCallCodeStartRegister, MemOperand(kScratchReg)); __ Call(kJavaScriptCallCodeStartRegister); masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset()); // Any returns to the entry trampoline are either due to the return bytecode // or the interpreter tail calling a builtin and then a dispatch. // Get bytecode array and bytecode offset from the stack frame. __ Ld(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ Ld(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Either return, or advance to the next bytecode and dispatch. Label do_return; __ Daddu(a1, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister); __ Lbu(a1, MemOperand(a1)); AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, a1, a2, a3, &do_return); __ jmp(&do_dispatch); __ bind(&do_return); // The return value is in v0. LeaveInterpreterFrame(masm, t0); __ Jump(ra); } static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args, Register scratch1, Register scratch2, Label* stack_overflow) { // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. __ LoadRoot(scratch1, Heap::kRealStackLimitRootIndex); // Make scratch1 the space we have left. The stack might already be overflowed // here which will cause scratch1 to become negative. __ dsubu(scratch1, sp, scratch1); // Check if the arguments will overflow the stack. __ dsll(scratch2, num_args, kPointerSizeLog2); // Signed comparison. __ Branch(stack_overflow, le, scratch1, Operand(scratch2)); } static void Generate_InterpreterPushArgs(MacroAssembler* masm, Register num_args, Register index, Register scratch, Register scratch2) { // Find the address of the last argument. __ mov(scratch2, num_args); __ dsll(scratch2, scratch2, kPointerSizeLog2); __ Dsubu(scratch2, index, Operand(scratch2)); // Push the arguments. Label loop_header, loop_check; __ Branch(&loop_check); __ bind(&loop_header); __ Ld(scratch, MemOperand(index)); __ Daddu(index, index, Operand(-kPointerSize)); __ push(scratch); __ bind(&loop_check); __ Branch(&loop_header, gt, index, Operand(scratch2)); } // static void Builtins::Generate_InterpreterPushArgsThenCallImpl( MacroAssembler* masm, ConvertReceiverMode receiver_mode, InterpreterPushArgsMode mode) { DCHECK(mode != InterpreterPushArgsMode::kArrayFunction); // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a2 : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // -- a1 : the target to call (can be any Object). // ----------------------------------- Label stack_overflow; __ Daddu(a3, a0, Operand(1)); // Add one for receiver. // Push "undefined" as the receiver arg if we need to. if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { __ PushRoot(Heap::kUndefinedValueRootIndex); __ Dsubu(a3, a3, Operand(1)); // Subtract one for receiver. } Generate_StackOverflowCheck(masm, a3, a4, t0, &stack_overflow); // This function modifies a2, t0 and a4. Generate_InterpreterPushArgs(masm, a3, a2, a4, t0); if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Pop(a2); // Pass the spread in a register __ Dsubu(a0, a0, Operand(1)); // Subtract one for spread } // Call the target. if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread), RelocInfo::CODE_TARGET); } else { __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny), RelocInfo::CODE_TARGET); } __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); // Unreachable code. __ break_(0xCC); } } // static void Builtins::Generate_InterpreterPushArgsThenConstructImpl( MacroAssembler* masm, InterpreterPushArgsMode mode) { // ----------- S t a t e ------------- // -- a0 : argument count (not including receiver) // -- a3 : new target // -- a1 : constructor to call // -- a2 : allocation site feedback if available, undefined otherwise. // -- a4 : address of the first argument // ----------------------------------- Label stack_overflow; // Push a slot for the receiver. __ push(zero_reg); Generate_StackOverflowCheck(masm, a0, a5, t0, &stack_overflow); // This function modifies t0, a4 and a5. Generate_InterpreterPushArgs(masm, a0, a4, a5, t0); if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Pop(a2); // Pass the spread in a register __ Dsubu(a0, a0, Operand(1)); // Subtract one for spread } else { __ AssertUndefinedOrAllocationSite(a2, t0); } if (mode == InterpreterPushArgsMode::kArrayFunction) { __ AssertFunction(a1); // Tail call to the function-specific construct stub (still in the caller // context at this point). __ Jump(BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl), RelocInfo::CODE_TARGET); } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { // Call the constructor with a0, a1, and a3 unmodified. __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread), RelocInfo::CODE_TARGET); } else { DCHECK_EQ(InterpreterPushArgsMode::kOther, mode); // Call the constructor with a0, a1, and a3 unmodified. __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); } __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); // Unreachable code. __ break_(0xCC); } } static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { // Set the return address to the correct point in the interpreter entry // trampoline. Label builtin_trampoline, trampoline_loaded; Smi* interpreter_entry_return_pc_offset( masm->isolate()->heap()->interpreter_entry_return_pc_offset()); DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero); // If the SFI function_data is an InterpreterData, get the trampoline stored // in it, otherwise get the trampoline from the builtins list. __ Ld(t0, MemOperand(fp, StandardFrameConstants::kFunctionOffset)); __ Ld(t0, FieldMemOperand(t0, JSFunction::kSharedFunctionInfoOffset)); __ Ld(t0, FieldMemOperand(t0, SharedFunctionInfo::kFunctionDataOffset)); __ GetObjectType(t0, kInterpreterDispatchTableRegister, kInterpreterDispatchTableRegister); __ Branch(&builtin_trampoline, ne, kInterpreterDispatchTableRegister, Operand(INTERPRETER_DATA_TYPE)); __ Ld(t0, FieldMemOperand(t0, InterpreterData::kInterpreterTrampolineOffset)); __ Branch(&trampoline_loaded); __ bind(&builtin_trampoline); __ li(t0, BUILTIN_CODE(masm->isolate(), InterpreterEntryTrampoline)); __ bind(&trampoline_loaded); __ Daddu(ra, t0, Operand(interpreter_entry_return_pc_offset->value() + Code::kHeaderSize - kHeapObjectTag)); // Initialize the dispatch table register. __ li(kInterpreterDispatchTableRegister, ExternalReference::interpreter_dispatch_table_address(masm->isolate())); // Get the bytecode array pointer from the frame. __ Ld(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); if (FLAG_debug_code) { // Check function data field is actually a BytecodeArray object. __ SmiTst(kInterpreterBytecodeArrayRegister, kScratchReg); __ Assert(ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, kScratchReg, Operand(zero_reg)); __ GetObjectType(kInterpreterBytecodeArrayRegister, a1, a1); __ Assert(eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, a1, Operand(BYTECODE_ARRAY_TYPE)); } // Get the target bytecode offset from the frame. __ SmiUntag(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); // Dispatch to the target bytecode. __ Daddu(a1, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister); __ Lbu(a7, MemOperand(a1)); __ Dlsa(a1, kInterpreterDispatchTableRegister, a7, kPointerSizeLog2); __ Ld(kJavaScriptCallCodeStartRegister, MemOperand(a1)); __ Jump(kJavaScriptCallCodeStartRegister); } void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) { // Advance the current bytecode offset stored within the given interpreter // stack frame. This simulates what all bytecode handlers do upon completion // of the underlying operation. __ Ld(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ Ld(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Load the current bytecode. __ Daddu(a1, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister); __ Lbu(a1, MemOperand(a1)); // Advance to the next bytecode. Label if_return; AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, a1, a2, a3, &if_return); // Convert new bytecode offset to a Smi and save in the stackframe. __ SmiTag(a2, kInterpreterBytecodeOffsetRegister); __ Sd(a2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); Generate_InterpreterEnterBytecode(masm); // We should never take the if_return path. __ bind(&if_return); __ Abort(AbortReason::kInvalidBytecodeAdvance); } void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) { Generate_InterpreterEnterBytecode(masm); } void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : argument count (preserved for callee) // -- a1 : new target (preserved for callee) // -- a3 : target function (preserved for callee) // ----------------------------------- Label failed; { FrameScope scope(masm, StackFrame::INTERNAL); // Push a copy of the target function and the new target. // Push function as parameter to the runtime call. __ Move(t2, a0); __ SmiTag(a0); __ Push(a0, a1, a3, a1); // Copy arguments from caller (stdlib, foreign, heap). Label args_done; for (int j = 0; j < 4; ++j) { Label over; if (j < 3) { __ Branch(&over, ne, t2, Operand(j)); } for (int i = j - 1; i >= 0; --i) { __ Ld(t2, MemOperand(fp, StandardFrameConstants::kCallerSPOffset + i * kPointerSize)); __ push(t2); } for (int i = 0; i < 3 - j; ++i) { __ PushRoot(Heap::kUndefinedValueRootIndex); } if (j < 3) { __ jmp(&args_done); __ bind(&over); } } __ bind(&args_done); // Call runtime, on success unwind frame, and parent frame. __ CallRuntime(Runtime::kInstantiateAsmJs, 4); // A smi 0 is returned on failure, an object on success. __ JumpIfSmi(v0, &failed); __ Drop(2); __ pop(t2); __ SmiUntag(t2); scope.GenerateLeaveFrame(); __ Daddu(t2, t2, Operand(1)); __ Dlsa(sp, sp, t2, kPointerSizeLog2); __ Ret(); __ bind(&failed); // Restore target function and new target. __ Pop(a0, a1, a3); __ SmiUntag(a0); } // On failure, tail call back to regular js by re-calling the function // which has be reset to the compile lazy builtin. static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); __ Ld(a2, FieldMemOperand(a1, JSFunction::kCodeOffset)); __ Daddu(a2, a2, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(a2); } namespace { void Generate_ContinueToBuiltinHelper(MacroAssembler* masm, bool java_script_builtin, bool with_result) { const RegisterConfiguration* config(RegisterConfiguration::Default()); int allocatable_register_count = config->num_allocatable_general_registers(); if (with_result) { // Overwrite the hole inserted by the deoptimizer with the return value from // the LAZY deopt point. __ Sd(v0, MemOperand( sp, config->num_allocatable_general_registers() * kPointerSize + BuiltinContinuationFrameConstants::kFixedFrameSize)); } for (int i = allocatable_register_count - 1; i >= 0; --i) { int code = config->GetAllocatableGeneralCode(i); __ Pop(Register::from_code(code)); if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) { __ SmiUntag(Register::from_code(code)); } } __ Ld(fp, MemOperand( sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); __ Pop(t0); __ Daddu(sp, sp, Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); __ Pop(ra); __ Daddu(t0, t0, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(t0); } } // namespace void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, false, false); } void Builtins::Generate_ContinueToCodeStubBuiltinWithResult( MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, false, true); } void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, true, false); } void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult( MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, true, true); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kNotifyDeoptimized); } DCHECK_EQ(kInterpreterAccumulatorRegister.code(), v0.code()); __ Ld(v0, MemOperand(sp, 0 * kPointerSize)); __ Ret(USE_DELAY_SLOT); // Safe to fill delay slot Addu will emit one instruction. __ Daddu(sp, sp, Operand(1 * kPointerSize)); // Remove state. } static void Generate_OnStackReplacementHelper(MacroAssembler* masm, bool has_handler_frame) { // Lookup the function in the JavaScript frame. if (has_handler_frame) { __ Ld(a0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ Ld(a0, MemOperand(a0, JavaScriptFrameConstants::kFunctionOffset)); } else { __ Ld(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); } { FrameScope scope(masm, StackFrame::INTERNAL); // Pass function as argument. __ push(a0); __ CallRuntime(Runtime::kCompileForOnStackReplacement); } // If the code object is null, just return to the caller. __ Ret(eq, v0, Operand(Smi::kZero)); // Drop any potential handler frame that is be sitting on top of the actual // JavaScript frame. This is the case then OSR is triggered from bytecode. if (has_handler_frame) { __ LeaveFrame(StackFrame::STUB); } // Load deoptimization data from the code object. // = [#deoptimization_data_offset] __ Ld(a1, MemOperand(v0, Code::kDeoptimizationDataOffset - kHeapObjectTag)); // Load the OSR entrypoint offset from the deoptimization data. // = [#header_size + #osr_pc_offset] __ SmiUntag(a1, MemOperand(a1, FixedArray::OffsetOfElementAt( DeoptimizationData::kOsrPcOffsetIndex) - kHeapObjectTag)); // Compute the target address = code_obj + header_size + osr_offset // = + #header_size + __ Daddu(v0, v0, a1); __ daddiu(ra, v0, Code::kHeaderSize - kHeapObjectTag); // And "return" to the OSR entry point of the function. __ Ret(); } void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { Generate_OnStackReplacementHelper(masm, false); } void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { Generate_OnStackReplacementHelper(masm, true); } // static void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : argc // -- sp[0] : argArray // -- sp[4] : thisArg // -- sp[8] : receiver // ----------------------------------- Register argc = a0; Register arg_array = a2; Register receiver = a1; Register this_arg = a5; Register undefined_value = a3; Register scratch = a4; __ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex); // 1. Load receiver into a1, argArray into a2 (if present), remove all // arguments from the stack (including the receiver), and push thisArg (if // present) instead. { // Claim (2 - argc) dummy arguments form the stack, to put the stack in a // consistent state for a simple pop operation. __ Dsubu(sp, sp, Operand(2 * kPointerSize)); __ Dlsa(sp, sp, argc, kPointerSizeLog2); __ mov(scratch, argc); __ Pop(this_arg, arg_array); // Overwrite argc __ Movz(arg_array, undefined_value, scratch); // if argc == 0 __ Movz(this_arg, undefined_value, scratch); // if argc == 0 __ Dsubu(scratch, scratch, Operand(1)); __ Movz(arg_array, undefined_value, scratch); // if argc == 1 __ Ld(receiver, MemOperand(sp)); __ Sd(this_arg, MemOperand(sp)); } // ----------- S t a t e ------------- // -- a2 : argArray // -- a1 : receiver // -- a3 : undefined root value // -- sp[0] : thisArg // ----------------------------------- // 2. We don't need to check explicitly for callable receiver here, // since that's the first thing the Call/CallWithArrayLike builtins // will do. // 3. Tail call with no arguments if argArray is null or undefined. Label no_arguments; __ JumpIfRoot(arg_array, Heap::kNullValueRootIndex, &no_arguments); __ Branch(&no_arguments, eq, arg_array, Operand(undefined_value)); // 4a. Apply the receiver to the given argArray. __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), RelocInfo::CODE_TARGET); // 4b. The argArray is either null or undefined, so we tail call without any // arguments to the receiver. __ bind(&no_arguments); { __ mov(a0, zero_reg); DCHECK(receiver == a1); __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } } // static void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { // 1. Make sure we have at least one argument. // a0: actual number of arguments { Label done; __ Branch(&done, ne, a0, Operand(zero_reg)); __ PushRoot(Heap::kUndefinedValueRootIndex); __ Daddu(a0, a0, Operand(1)); __ bind(&done); } // 2. Get the function to call (passed as receiver) from the stack. // a0: actual number of arguments __ Dlsa(kScratchReg, sp, a0, kPointerSizeLog2); __ Ld(a1, MemOperand(kScratchReg)); // 3. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. // a0: actual number of arguments // a1: function { Label loop; // Calculate the copy start address (destination). Copy end address is sp. __ Dlsa(a2, sp, a0, kPointerSizeLog2); __ bind(&loop); __ Ld(kScratchReg, MemOperand(a2, -kPointerSize)); __ Sd(kScratchReg, MemOperand(a2)); __ Dsubu(a2, a2, Operand(kPointerSize)); __ Branch(&loop, ne, a2, Operand(sp)); // Adjust the actual number of arguments and remove the top element // (which is a copy of the last argument). __ Dsubu(a0, a0, Operand(1)); __ Pop(); } // 4. Call the callable. __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : argc // -- sp[0] : argumentsList (if argc ==3) // -- sp[4] : thisArgument (if argc >=2) // -- sp[8] : target (if argc >=1) // -- sp[12] : receiver // ----------------------------------- Register argc = a0; Register arguments_list = a2; Register target = a1; Register this_argument = a5; Register undefined_value = a3; Register scratch = a4; __ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex); // 1. Load target into a1 (if present), argumentsList into a2 (if present), // remove all arguments from the stack (including the receiver), and push // thisArgument (if present) instead. { // Claim (3 - argc) dummy arguments form the stack, to put the stack in a // consistent state for a simple pop operation. __ Dsubu(sp, sp, Operand(3 * kPointerSize)); __ Dlsa(sp, sp, argc, kPointerSizeLog2); __ mov(scratch, argc); __ Pop(target, this_argument, arguments_list); __ Movz(arguments_list, undefined_value, scratch); // if argc == 0 __ Movz(this_argument, undefined_value, scratch); // if argc == 0 __ Movz(target, undefined_value, scratch); // if argc == 0 __ Dsubu(scratch, scratch, Operand(1)); __ Movz(arguments_list, undefined_value, scratch); // if argc == 1 __ Movz(this_argument, undefined_value, scratch); // if argc == 1 __ Dsubu(scratch, scratch, Operand(1)); __ Movz(arguments_list, undefined_value, scratch); // if argc == 2 __ Sd(this_argument, MemOperand(sp, 0)); // Overwrite receiver } // ----------- S t a t e ------------- // -- a2 : argumentsList // -- a1 : target // -- a3 : undefined root value // -- sp[0] : thisArgument // ----------------------------------- // 2. We don't need to check explicitly for callable target here, // since that's the first thing the Call/CallWithArrayLike builtins // will do. // 3. Apply the target to the given argumentsList. __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : argc // -- sp[0] : new.target (optional) (dummy value if argc <= 2) // -- sp[4] : argumentsList (dummy value if argc <= 1) // -- sp[8] : target (dummy value if argc == 0) // -- sp[12] : receiver // ----------------------------------- Register argc = a0; Register arguments_list = a2; Register target = a1; Register new_target = a3; Register undefined_value = a4; Register scratch = a5; __ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex); // 1. Load target into a1 (if present), argumentsList into a2 (if present), // new.target into a3 (if present, otherwise use target), remove all // arguments from the stack (including the receiver), and push thisArgument // (if present) instead. { // Claim (3 - argc) dummy arguments form the stack, to put the stack in a // consistent state for a simple pop operation. __ Dsubu(sp, sp, Operand(3 * kPointerSize)); __ Dlsa(sp, sp, argc, kPointerSizeLog2); __ mov(scratch, argc); __ Pop(target, arguments_list, new_target); __ Movz(arguments_list, undefined_value, scratch); // if argc == 0 __ Movz(new_target, undefined_value, scratch); // if argc == 0 __ Movz(target, undefined_value, scratch); // if argc == 0 __ Dsubu(scratch, scratch, Operand(1)); __ Movz(arguments_list, undefined_value, scratch); // if argc == 1 __ Movz(new_target, target, scratch); // if argc == 1 __ Dsubu(scratch, scratch, Operand(1)); __ Movz(new_target, target, scratch); // if argc == 2 __ Sd(undefined_value, MemOperand(sp, 0)); // Overwrite receiver } // ----------- S t a t e ------------- // -- a2 : argumentsList // -- a1 : target // -- a3 : new.target // -- sp[0] : receiver (undefined) // ----------------------------------- // 2. We don't need to check explicitly for constructor target here, // since that's the first thing the Construct/ConstructWithArrayLike // builtins will do. // 3. We don't need to check explicitly for constructor new.target here, // since that's the second thing the Construct/ConstructWithArrayLike // builtins will do. // 4. Construct the target with the given new.target and argumentsList. __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike), RelocInfo::CODE_TARGET); } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ SmiTag(a0); __ li(a4, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); __ MultiPush(a0.bit() | a1.bit() | a4.bit() | fp.bit() | ra.bit()); __ Push(Smi::kZero); // Padding. __ Daddu(fp, sp, Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp)); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- v0 : result being passed through // ----------------------------------- // Get the number of arguments passed (as a smi), tear down the frame and // then tear down the parameters. __ Ld(a1, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ mov(sp, fp); __ MultiPop(fp.bit() | ra.bit()); __ SmiScale(a4, a1, kPointerSizeLog2); __ Daddu(sp, sp, a4); // Adjust for the receiver. __ Daddu(sp, sp, Operand(kPointerSize)); } // static void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm, Handle code) { // ----------- S t a t e ------------- // -- a1 : target // -- a0 : number of parameters on the stack (not including the receiver) // -- a2 : arguments list (a FixedArray) // -- a4 : len (number of elements to push from args) // -- a3 : new.target (for [[Construct]]) // ----------------------------------- if (masm->emit_debug_code()) { // Allow a2 to be a FixedArray, or a FixedDoubleArray if a4 == 0. Label ok, fail; __ AssertNotSmi(a2); __ GetObjectType(a2, t8, t8); __ Branch(&ok, eq, t8, Operand(FIXED_ARRAY_TYPE)); __ Branch(&fail, ne, t8, Operand(FIXED_DOUBLE_ARRAY_TYPE)); __ Branch(&ok, eq, a4, Operand(zero_reg)); // Fall through. __ bind(&fail); __ Abort(AbortReason::kOperandIsNotAFixedArray); __ bind(&ok); } Register args = a2; Register len = a4; // Check for stack overflow. { // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label done; __ LoadRoot(a5, Heap::kRealStackLimitRootIndex); // Make ip the space we have left. The stack might already be overflowed // here which will cause ip to become negative. __ Dsubu(a5, sp, a5); // Check if the arguments will overflow the stack. __ dsll(kScratchReg, len, kPointerSizeLog2); __ Branch(&done, gt, a5, Operand(kScratchReg)); // Signed comparison. __ TailCallRuntime(Runtime::kThrowStackOverflow); __ bind(&done); } // Push arguments onto the stack (thisArgument is already on the stack). { Label done, push, loop; Register src = a6; Register scratch = len; __ daddiu(src, args, FixedArray::kHeaderSize - kHeapObjectTag); __ Branch(&done, eq, len, Operand(zero_reg), i::USE_DELAY_SLOT); __ Daddu(a0, a0, len); // The 'len' argument for Call() or Construct(). __ dsll(scratch, len, kPointerSizeLog2); __ Dsubu(scratch, sp, Operand(scratch)); __ LoadRoot(t1, Heap::kTheHoleValueRootIndex); __ bind(&loop); __ Ld(a5, MemOperand(src)); __ Branch(&push, ne, a5, Operand(t1)); __ LoadRoot(a5, Heap::kUndefinedValueRootIndex); __ bind(&push); __ daddiu(src, src, kPointerSize); __ Push(a5); __ Branch(&loop, ne, scratch, Operand(sp)); __ bind(&done); } // Tail-call to the actual Call or Construct builtin. __ Jump(code, RelocInfo::CODE_TARGET); } // static void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm, CallOrConstructMode mode, Handle code) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a3 : the new.target (for [[Construct]] calls) // -- a1 : the target to call (can be any Object) // -- a2 : start index (to support rest parameters) // ----------------------------------- // Check if new.target has a [[Construct]] internal method. if (mode == CallOrConstructMode::kConstruct) { Label new_target_constructor, new_target_not_constructor; __ JumpIfSmi(a3, &new_target_not_constructor); __ ld(t1, FieldMemOperand(a3, HeapObject::kMapOffset)); __ lbu(t1, FieldMemOperand(t1, Map::kBitFieldOffset)); __ And(t1, t1, Operand(Map::IsConstructorBit::kMask)); __ Branch(&new_target_constructor, ne, t1, Operand(zero_reg)); __ bind(&new_target_not_constructor); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ Push(a3); __ CallRuntime(Runtime::kThrowNotConstructor); } __ bind(&new_target_constructor); } // Check if we have an arguments adaptor frame below the function frame. Label arguments_adaptor, arguments_done; __ Ld(a6, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ Ld(a7, MemOperand(a6, CommonFrameConstants::kContextOrFrameTypeOffset)); __ Branch(&arguments_adaptor, eq, a7, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); { __ Ld(a7, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ Ld(a7, FieldMemOperand(a7, JSFunction::kSharedFunctionInfoOffset)); __ Lhu(a7, FieldMemOperand( a7, SharedFunctionInfo::kFormalParameterCountOffset)); __ mov(a6, fp); } __ Branch(&arguments_done); __ bind(&arguments_adaptor); { // Just get the length from the ArgumentsAdaptorFrame. __ SmiUntag(a7, MemOperand(a6, ArgumentsAdaptorFrameConstants::kLengthOffset)); } __ bind(&arguments_done); Label stack_done, stack_overflow; __ Subu(a7, a7, a2); __ Branch(&stack_done, le, a7, Operand(zero_reg)); { // Check for stack overflow. Generate_StackOverflowCheck(masm, a7, a4, a5, &stack_overflow); // Forward the arguments from the caller frame. { Label loop; __ Daddu(a0, a0, a7); __ bind(&loop); { __ Dlsa(kScratchReg, a6, a7, kPointerSizeLog2); __ Ld(kScratchReg, MemOperand(kScratchReg, 1 * kPointerSize)); __ push(kScratchReg); __ Subu(a7, a7, Operand(1)); __ Branch(&loop, ne, a7, Operand(zero_reg)); } } } __ Branch(&stack_done); __ bind(&stack_overflow); __ TailCallRuntime(Runtime::kThrowStackOverflow); __ bind(&stack_done); // Tail-call to the {code} handler. __ Jump(code, RelocInfo::CODE_TARGET); } // static void Builtins::Generate_CallFunction(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSFunction) // ----------------------------------- __ AssertFunction(a1); // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) // Check that function is not a "classConstructor". Label class_constructor; __ Ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ Lwu(a3, FieldMemOperand(a2, SharedFunctionInfo::kFlagsOffset)); __ And(kScratchReg, a3, Operand(SharedFunctionInfo::IsClassConstructorBit::kMask)); __ Branch(&class_constructor, ne, kScratchReg, Operand(zero_reg)); // Enter the context of the function; ToObject has to run in the function // context, and we also need to take the global proxy from the function // context in case of conversion. __ Ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); // We need to convert the receiver for non-native sloppy mode functions. Label done_convert; __ Lwu(a3, FieldMemOperand(a2, SharedFunctionInfo::kFlagsOffset)); __ And(kScratchReg, a3, Operand(SharedFunctionInfo::IsNativeBit::kMask | SharedFunctionInfo::IsStrictBit::kMask)); __ Branch(&done_convert, ne, kScratchReg, Operand(zero_reg)); { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSFunction) // -- a2 : the shared function info. // -- cp : the function context. // ----------------------------------- if (mode == ConvertReceiverMode::kNullOrUndefined) { // Patch receiver to global proxy. __ LoadGlobalProxy(a3); } else { Label convert_to_object, convert_receiver; __ Dlsa(kScratchReg, sp, a0, kPointerSizeLog2); __ Ld(a3, MemOperand(kScratchReg)); __ JumpIfSmi(a3, &convert_to_object); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ GetObjectType(a3, a4, a4); __ Branch(&done_convert, hs, a4, Operand(FIRST_JS_RECEIVER_TYPE)); if (mode != ConvertReceiverMode::kNotNullOrUndefined) { Label convert_global_proxy; __ JumpIfRoot(a3, Heap::kUndefinedValueRootIndex, &convert_global_proxy); __ JumpIfNotRoot(a3, Heap::kNullValueRootIndex, &convert_to_object); __ bind(&convert_global_proxy); { // Patch receiver to global proxy. __ LoadGlobalProxy(a3); } __ Branch(&convert_receiver); } __ bind(&convert_to_object); { // Convert receiver using ToObject. // TODO(bmeurer): Inline the allocation here to avoid building the frame // in the fast case? (fall back to AllocateInNewSpace?) FrameScope scope(masm, StackFrame::INTERNAL); __ SmiTag(a0); __ Push(a0, a1); __ mov(a0, a3); __ Push(cp); __ Call(BUILTIN_CODE(masm->isolate(), ToObject), RelocInfo::CODE_TARGET); __ Pop(cp); __ mov(a3, v0); __ Pop(a0, a1); __ SmiUntag(a0); } __ Ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ bind(&convert_receiver); } __ Dlsa(kScratchReg, sp, a0, kPointerSizeLog2); __ Sd(a3, MemOperand(kScratchReg)); } __ bind(&done_convert); // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSFunction) // -- a2 : the shared function info. // -- cp : the function context. // ----------------------------------- __ Lhu(a2, FieldMemOperand(a2, SharedFunctionInfo::kFormalParameterCountOffset)); ParameterCount actual(a0); ParameterCount expected(a2); __ InvokeFunctionCode(a1, no_reg, expected, actual, JUMP_FUNCTION); // The function is a "classConstructor", need to raise an exception. __ bind(&class_constructor); { FrameScope frame(masm, StackFrame::INTERNAL); __ Push(a1); __ CallRuntime(Runtime::kThrowConstructorNonCallableError); } } // static void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSBoundFunction) // ----------------------------------- __ AssertBoundFunction(a1); // Patch the receiver to [[BoundThis]]. { __ Ld(kScratchReg, FieldMemOperand(a1, JSBoundFunction::kBoundThisOffset)); __ Dlsa(a4, sp, a0, kPointerSizeLog2); __ Sd(kScratchReg, MemOperand(a4)); } // Load [[BoundArguments]] into a2 and length of that into a4. __ Ld(a2, FieldMemOperand(a1, JSBoundFunction::kBoundArgumentsOffset)); __ SmiUntag(a4, FieldMemOperand(a2, FixedArray::kLengthOffset)); // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSBoundFunction) // -- a2 : the [[BoundArguments]] (implemented as FixedArray) // -- a4 : the number of [[BoundArguments]] // ----------------------------------- // Reserve stack space for the [[BoundArguments]]. { Label done; __ dsll(a5, a4, kPointerSizeLog2); __ Dsubu(sp, sp, Operand(a5)); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". __ LoadRoot(kScratchReg, Heap::kRealStackLimitRootIndex); __ Branch(&done, gt, sp, Operand(kScratchReg)); // Signed comparison. // Restore the stack pointer. __ Daddu(sp, sp, Operand(a5)); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); } __ bind(&done); } // Relocate arguments down the stack. { Label loop, done_loop; __ mov(a5, zero_reg); __ bind(&loop); __ Branch(&done_loop, gt, a5, Operand(a0)); __ Dlsa(a6, sp, a4, kPointerSizeLog2); __ Ld(kScratchReg, MemOperand(a6)); __ Dlsa(a6, sp, a5, kPointerSizeLog2); __ Sd(kScratchReg, MemOperand(a6)); __ Daddu(a4, a4, Operand(1)); __ Daddu(a5, a5, Operand(1)); __ Branch(&loop); __ bind(&done_loop); } // Copy [[BoundArguments]] to the stack (below the arguments). { Label loop, done_loop; __ SmiUntag(a4, FieldMemOperand(a2, FixedArray::kLengthOffset)); __ Daddu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ bind(&loop); __ Dsubu(a4, a4, Operand(1)); __ Branch(&done_loop, lt, a4, Operand(zero_reg)); __ Dlsa(a5, a2, a4, kPointerSizeLog2); __ Ld(kScratchReg, MemOperand(a5)); __ Dlsa(a5, sp, a0, kPointerSizeLog2); __ Sd(kScratchReg, MemOperand(a5)); __ Daddu(a0, a0, Operand(1)); __ Branch(&loop); __ bind(&done_loop); } // Call the [[BoundTargetFunction]] via the Call builtin. __ Ld(a1, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset)); __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the target to call (can be any Object). // ----------------------------------- Label non_callable, non_function, non_smi; __ JumpIfSmi(a1, &non_callable); __ bind(&non_smi); __ GetObjectType(a1, t1, t2); __ Jump(masm->isolate()->builtins()->CallFunction(mode), RelocInfo::CODE_TARGET, eq, t2, Operand(JS_FUNCTION_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction), RelocInfo::CODE_TARGET, eq, t2, Operand(JS_BOUND_FUNCTION_TYPE)); // Check if target has a [[Call]] internal method. __ Lbu(t1, FieldMemOperand(t1, Map::kBitFieldOffset)); __ And(t1, t1, Operand(Map::IsCallableBit::kMask)); __ Branch(&non_callable, eq, t1, Operand(zero_reg)); __ Branch(&non_function, ne, t2, Operand(JS_PROXY_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET); // 2. Call to something else, which might have a [[Call]] internal method (if // not we raise an exception). __ bind(&non_function); // Overwrite the original receiver with the (original) target. __ Dlsa(kScratchReg, sp, a0, kPointerSizeLog2); __ Sd(a1, MemOperand(kScratchReg)); // Let the "call_as_function_delegate" take care of the rest. __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, a1); __ Jump(masm->isolate()->builtins()->CallFunction( ConvertReceiverMode::kNotNullOrUndefined), RelocInfo::CODE_TARGET); // 3. Call to something that is not callable. __ bind(&non_callable); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(a1); __ CallRuntime(Runtime::kThrowCalledNonCallable); } } void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the constructor to call (checked to be a JSFunction) // -- a3 : the new target (checked to be a constructor) // ----------------------------------- __ AssertConstructor(a1); __ AssertFunction(a1); // Calling convention for function specific ConstructStubs require // a2 to contain either an AllocationSite or undefined. __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); Label call_generic_stub; // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric. __ Ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ lwu(a4, FieldMemOperand(a4, SharedFunctionInfo::kFlagsOffset)); __ And(a4, a4, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask)); __ Branch(&call_generic_stub, eq, a4, Operand(zero_reg)); __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub), RelocInfo::CODE_TARGET); __ bind(&call_generic_stub); __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSBoundFunction) // -- a3 : the new target (checked to be a constructor) // ----------------------------------- __ AssertConstructor(a1); __ AssertBoundFunction(a1); // Load [[BoundArguments]] into a2 and length of that into a4. __ Ld(a2, FieldMemOperand(a1, JSBoundFunction::kBoundArgumentsOffset)); __ SmiUntag(a4, FieldMemOperand(a2, FixedArray::kLengthOffset)); // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSBoundFunction) // -- a2 : the [[BoundArguments]] (implemented as FixedArray) // -- a3 : the new target (checked to be a constructor) // -- a4 : the number of [[BoundArguments]] // ----------------------------------- // Reserve stack space for the [[BoundArguments]]. { Label done; __ dsll(a5, a4, kPointerSizeLog2); __ Dsubu(sp, sp, Operand(a5)); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". __ LoadRoot(kScratchReg, Heap::kRealStackLimitRootIndex); __ Branch(&done, gt, sp, Operand(kScratchReg)); // Signed comparison. // Restore the stack pointer. __ Daddu(sp, sp, Operand(a5)); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); } __ bind(&done); } // Relocate arguments down the stack. { Label loop, done_loop; __ mov(a5, zero_reg); __ bind(&loop); __ Branch(&done_loop, ge, a5, Operand(a0)); __ Dlsa(a6, sp, a4, kPointerSizeLog2); __ Ld(kScratchReg, MemOperand(a6)); __ Dlsa(a6, sp, a5, kPointerSizeLog2); __ Sd(kScratchReg, MemOperand(a6)); __ Daddu(a4, a4, Operand(1)); __ Daddu(a5, a5, Operand(1)); __ Branch(&loop); __ bind(&done_loop); } // Copy [[BoundArguments]] to the stack (below the arguments). { Label loop, done_loop; __ SmiUntag(a4, FieldMemOperand(a2, FixedArray::kLengthOffset)); __ Daddu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ bind(&loop); __ Dsubu(a4, a4, Operand(1)); __ Branch(&done_loop, lt, a4, Operand(zero_reg)); __ Dlsa(a5, a2, a4, kPointerSizeLog2); __ Ld(kScratchReg, MemOperand(a5)); __ Dlsa(a5, sp, a0, kPointerSizeLog2); __ Sd(kScratchReg, MemOperand(a5)); __ Daddu(a0, a0, Operand(1)); __ Branch(&loop); __ bind(&done_loop); } // Patch new.target to [[BoundTargetFunction]] if new.target equals target. { Label skip_load; __ Branch(&skip_load, ne, a1, Operand(a3)); __ Ld(a3, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset)); __ bind(&skip_load); } // Construct the [[BoundTargetFunction]] via the Construct builtin. __ Ld(a1, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset)); __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Construct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the constructor to call (can be any Object) // -- a3 : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // ----------------------------------- // Check if target is a Smi. Label non_constructor, non_proxy; __ JumpIfSmi(a1, &non_constructor); // Check if target has a [[Construct]] internal method. __ ld(t1, FieldMemOperand(a1, HeapObject::kMapOffset)); __ Lbu(t3, FieldMemOperand(t1, Map::kBitFieldOffset)); __ And(t3, t3, Operand(Map::IsConstructorBit::kMask)); __ Branch(&non_constructor, eq, t3, Operand(zero_reg)); // Dispatch based on instance type. __ Lhu(t2, FieldMemOperand(t1, Map::kInstanceTypeOffset)); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction), RelocInfo::CODE_TARGET, eq, t2, Operand(JS_FUNCTION_TYPE)); // Only dispatch to bound functions after checking whether they are // constructors. __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction), RelocInfo::CODE_TARGET, eq, t2, Operand(JS_BOUND_FUNCTION_TYPE)); // Only dispatch to proxies after checking whether they are constructors. __ Branch(&non_proxy, ne, t2, Operand(JS_PROXY_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), RelocInfo::CODE_TARGET); // Called Construct on an exotic Object with a [[Construct]] internal method. __ bind(&non_proxy); { // Overwrite the original receiver with the (original) target. __ Dlsa(kScratchReg, sp, a0, kPointerSizeLog2); __ Sd(a1, MemOperand(kScratchReg)); // Let the "call_as_constructor_delegate" take care of the rest. __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, a1); __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET); } // Called Construct on an Object that doesn't have a [[Construct]] internal // method. __ bind(&non_constructor); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable), RelocInfo::CODE_TARGET); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // State setup as expected by MacroAssembler::InvokePrologue. // ----------- S t a t e ------------- // -- a0: actual arguments count // -- a1: function (passed through to callee) // -- a2: expected arguments count // -- a3: new target (passed through to callee) // ----------------------------------- Label invoke, dont_adapt_arguments, stack_overflow; Label enough, too_few; __ Branch(&dont_adapt_arguments, eq, a2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); // We use Uless as the number of argument should always be greater than 0. __ Branch(&too_few, Uless, a0, Operand(a2)); { // Enough parameters: actual >= expected. // a0: actual number of arguments as a smi // a1: function // a2: expected number of arguments // a3: new target (passed through to callee) __ bind(&enough); EnterArgumentsAdaptorFrame(masm); Generate_StackOverflowCheck(masm, a2, a5, kScratchReg, &stack_overflow); // Calculate copy start address into a0 and copy end address into a4. __ SmiScale(a0, a0, kPointerSizeLog2); __ Daddu(a0, fp, a0); // Adjust for return address and receiver. __ Daddu(a0, a0, Operand(2 * kPointerSize)); // Compute copy end address. __ dsll(a4, a2, kPointerSizeLog2); __ dsubu(a4, a0, a4); // Copy the arguments (including the receiver) to the new stack frame. // a0: copy start address // a1: function // a2: expected number of arguments // a3: new target (passed through to callee) // a4: copy end address Label copy; __ bind(©); __ Ld(a5, MemOperand(a0)); __ push(a5); __ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(a4)); __ daddiu(a0, a0, -kPointerSize); // In delay slot. __ jmp(&invoke); } { // Too few parameters: Actual < expected. __ bind(&too_few); EnterArgumentsAdaptorFrame(masm); Generate_StackOverflowCheck(masm, a2, a5, kScratchReg, &stack_overflow); // Calculate copy start address into a0 and copy end address into a7. // a0: actual number of arguments as a smi // a1: function // a2: expected number of arguments // a3: new target (passed through to callee) __ SmiScale(a0, a0, kPointerSizeLog2); __ Daddu(a0, fp, a0); // Adjust for return address and receiver. __ Daddu(a0, a0, Operand(2 * kPointerSize)); // Compute copy end address. Also adjust for return address. __ Daddu(a7, fp, kPointerSize); // Copy the arguments (including the receiver) to the new stack frame. // a0: copy start address // a1: function // a2: expected number of arguments // a3: new target (passed through to callee) // a7: copy end address Label copy; __ bind(©); __ Ld(a4, MemOperand(a0)); // Adjusted above for return addr and receiver. __ Dsubu(sp, sp, kPointerSize); __ Dsubu(a0, a0, kPointerSize); __ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(a7)); __ Sd(a4, MemOperand(sp)); // In the delay slot. // Fill the remaining expected arguments with undefined. // a1: function // a2: expected number of arguments // a3: new target (passed through to callee) __ LoadRoot(a5, Heap::kUndefinedValueRootIndex); __ dsll(a6, a2, kPointerSizeLog2); __ Dsubu(a4, fp, Operand(a6)); // Adjust for frame. __ Dsubu(a4, a4, Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp + kPointerSize)); Label fill; __ bind(&fill); __ Dsubu(sp, sp, kPointerSize); __ Branch(USE_DELAY_SLOT, &fill, ne, sp, Operand(a4)); __ Sd(a5, MemOperand(sp)); } // Call the entry point. __ bind(&invoke); __ mov(a0, a2); // a0 : expected number of arguments // a1 : function (passed through to callee) // a3: new target (passed through to callee) static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); __ Ld(a2, FieldMemOperand(a1, JSFunction::kCodeOffset)); __ Daddu(a2, a2, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Call(a2); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); // Exit frame and return. LeaveArgumentsAdaptorFrame(masm); __ Ret(); // ------------------------------------------- // Don't adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); __ Ld(a2, FieldMemOperand(a1, JSFunction::kCodeOffset)); __ Daddu(a2, a2, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(a2); __ bind(&stack_overflow); { FrameScope frame(masm, StackFrame::MANUAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ break_(0xCC); } } void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) { // The function index was put in t0 by the jump table trampoline. // Convert to Smi for the runtime call __ SmiTag(t0); { HardAbortScope hard_abort(masm); // Avoid calls to Abort. FrameScope scope(masm, StackFrame::WASM_COMPILE_LAZY); // Save all parameter registers (see wasm-linkage.cc). They might be // overwritten in the runtime call below. We don't have any callee-saved // registers in wasm, so no need to store anything else. constexpr RegList gp_regs = Register::ListOf(); constexpr RegList fp_regs = DoubleRegister::ListOf(); __ MultiPush(gp_regs); __ MultiPushFPU(fp_regs); // Pass instance and function index as an explicit arguments to the runtime // function. __ Push(kWasmInstanceRegister, t0); // Load the correct CEntry builtin from the instance object. __ Ld(a2, FieldMemOperand(kWasmInstanceRegister, WasmInstanceObject::kCEntryStubOffset)); // Initialize the JavaScript context with 0. CEntry will use it to // set the current context on the isolate. __ Move(kContextRegister, Smi::kZero); __ CallRuntimeWithCEntry(Runtime::kWasmCompileLazy, a2); // Restore registers. __ MultiPopFPU(fp_regs); __ MultiPop(gp_regs); } // Finally, jump to the entrypoint. __ Jump(v0); } void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size, SaveFPRegsMode save_doubles, ArgvMode argv_mode, bool builtin_exit_frame) { // Called from JavaScript; parameters are on stack as if calling JS function // a0: number of arguments including receiver // a1: pointer to builtin function // fp: frame pointer (restored after C call) // sp: stack pointer (restored as callee's sp after C call) // cp: current context (C callee-saved) // // If argv_mode == kArgvInRegister: // a2: pointer to the first argument ProfileEntryHookStub::MaybeCallEntryHook(masm); if (argv_mode == kArgvInRegister) { // Move argv into the correct register. __ mov(s1, a2); } else { // Compute the argv pointer in a callee-saved register. __ Dlsa(s1, sp, a0, kPointerSizeLog2); __ Dsubu(s1, s1, kPointerSize); } // Enter the exit frame that transitions from JavaScript to C++. FrameScope scope(masm, StackFrame::MANUAL); __ EnterExitFrame( save_doubles == kSaveFPRegs, 0, builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); // s0: number of arguments including receiver (C callee-saved) // s1: pointer to first argument (C callee-saved) // s2: pointer to builtin function (C callee-saved) // Prepare arguments for C routine. // a0 = argc __ mov(s0, a0); __ mov(s2, a1); // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We // also need to reserve the 4 argument slots on the stack. __ AssertStackIsAligned(); // a0 = argc, a1 = argv, a2 = isolate __ li(a2, ExternalReference::isolate_address(masm->isolate())); __ mov(a1, s1); // To let the GC traverse the return address of the exit frames, we need to // know where the return address is. The CEntry is unmovable, so // we can store the address on the stack to be able to find it again and // we never have to restore it, because it will not change. { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm); int kNumInstructionsToJump = 4; Label find_ra; // Adjust the value in ra to point to the correct return location, 2nd // instruction past the real call into C code (the jalr(t9)), and push it. // This is the return address of the exit frame. if (kArchVariant >= kMips64r6) { __ addiupc(ra, kNumInstructionsToJump + 1); } else { // This no-op-and-link sequence saves PC + 8 in ra register on pre-r6 MIPS __ nal(); // nal has branch delay slot. __ Daddu(ra, ra, kNumInstructionsToJump * kInstrSize); } __ bind(&find_ra); // This spot was reserved in EnterExitFrame. __ Sd(ra, MemOperand(sp)); // Stack space reservation moved to the branch delay slot below. // Stack is still aligned. // Call the C routine. __ mov(t9, s2); // Function pointer to t9 to conform to ABI for PIC. __ jalr(t9); // Set up sp in the delay slot. __ daddiu(sp, sp, -kCArgsSlotsSize); // Make sure the stored 'ra' points to this position. DCHECK_EQ(kNumInstructionsToJump, masm->InstructionsGeneratedSince(&find_ra)); } // Result returned in v0 or v1:v0 - do not destroy these registers! // Check result for exception sentinel. Label exception_returned; __ LoadRoot(a4, Heap::kExceptionRootIndex); __ Branch(&exception_returned, eq, a4, Operand(v0)); // Check that there is no pending exception, otherwise we // should have returned the exception sentinel. if (FLAG_debug_code) { Label okay; ExternalReference pending_exception_address = ExternalReference::Create( IsolateAddressId::kPendingExceptionAddress, masm->isolate()); __ li(a2, pending_exception_address); __ Ld(a2, MemOperand(a2)); __ LoadRoot(a4, Heap::kTheHoleValueRootIndex); // Cannot use check here as it attempts to generate call into runtime. __ Branch(&okay, eq, a4, Operand(a2)); __ stop("Unexpected pending exception"); __ bind(&okay); } // Exit C frame and return. // v0:v1: result // sp: stack pointer // fp: frame pointer Register argc = argv_mode == kArgvInRegister // We don't want to pop arguments so set argc to no_reg. ? no_reg // s0: still holds argc (callee-saved). : s0; __ LeaveExitFrame(save_doubles == kSaveFPRegs, argc, EMIT_RETURN); // Handling of exception. __ bind(&exception_returned); ExternalReference pending_handler_context_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerContextAddress, masm->isolate()); ExternalReference pending_handler_entrypoint_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate()); ExternalReference pending_handler_fp_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerFPAddress, masm->isolate()); ExternalReference pending_handler_sp_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerSPAddress, masm->isolate()); // Ask the runtime for help to determine the handler. This will set v0 to // contain the current pending exception, don't clobber it. ExternalReference find_handler = ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler); { FrameScope scope(masm, StackFrame::MANUAL); __ PrepareCallCFunction(3, 0, a0); __ mov(a0, zero_reg); __ mov(a1, zero_reg); __ li(a2, ExternalReference::isolate_address(masm->isolate())); __ CallCFunction(find_handler, 3); } // Retrieve the handler context, SP and FP. __ li(cp, pending_handler_context_address); __ Ld(cp, MemOperand(cp)); __ li(sp, pending_handler_sp_address); __ Ld(sp, MemOperand(sp)); __ li(fp, pending_handler_fp_address); __ Ld(fp, MemOperand(fp)); // If the handler is a JS frame, restore the context to the frame. Note that // the context will be set to (cp == 0) for non-JS frames. Label zero; __ Branch(&zero, eq, cp, Operand(zero_reg)); __ Sd(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ bind(&zero); // Reset the masking register. This is done independent of the underlying // feature flag {FLAG_branch_load_poisoning} to make the snapshot work with // both configurations. It is safe to always do this, because the underlying // register is caller-saved and can be arbitrarily clobbered. __ ResetSpeculationPoisonRegister(); // Compute the handler entry address and jump to it. __ li(t9, pending_handler_entrypoint_address); __ Ld(t9, MemOperand(t9)); __ Jump(t9); } void Builtins::Generate_DoubleToI(MacroAssembler* masm) { Label out_of_range, only_low, negate, done; Register result_reg = t0; Register scratch = GetRegisterThatIsNotOneOf(result_reg); Register scratch2 = GetRegisterThatIsNotOneOf(result_reg, scratch); Register scratch3 = GetRegisterThatIsNotOneOf(result_reg, scratch, scratch2); DoubleRegister double_scratch = kScratchDoubleReg; // Account for saved regs. const int kArgumentOffset = 4 * kPointerSize; __ Push(result_reg); __ Push(scratch, scratch2, scratch3); // Load double input. __ Ldc1(double_scratch, MemOperand(sp, kArgumentOffset)); // Clear cumulative exception flags and save the FCSR. __ cfc1(scratch2, FCSR); __ ctc1(zero_reg, FCSR); // Try a conversion to a signed integer. __ Trunc_w_d(double_scratch, double_scratch); // Move the converted value into the result register. __ mfc1(scratch3, double_scratch); // Retrieve and restore the FCSR. __ cfc1(scratch, FCSR); __ ctc1(scratch2, FCSR); // Check for overflow and NaNs. __ And( scratch, scratch, kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask); // If we had no exceptions then set result_reg and we are done. Label error; __ Branch(&error, ne, scratch, Operand(zero_reg)); __ Move(result_reg, scratch3); __ Branch(&done); __ bind(&error); // Load the double value and perform a manual truncation. Register input_high = scratch2; Register input_low = scratch3; __ Lw(input_low, MemOperand(sp, kArgumentOffset + Register::kMantissaOffset)); __ Lw(input_high, MemOperand(sp, kArgumentOffset + Register::kExponentOffset)); Label normal_exponent, restore_sign; // Extract the biased exponent in result. __ Ext(result_reg, input_high, HeapNumber::kExponentShift, HeapNumber::kExponentBits); // Check for Infinity and NaNs, which should return 0. __ Subu(scratch, result_reg, HeapNumber::kExponentMask); __ Movz(result_reg, zero_reg, scratch); __ Branch(&done, eq, scratch, Operand(zero_reg)); // Express exponent as delta to (number of mantissa bits + 31). __ Subu(result_reg, result_reg, Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31)); // If the delta is strictly positive, all bits would be shifted away, // which means that we can return 0. __ Branch(&normal_exponent, le, result_reg, Operand(zero_reg)); __ mov(result_reg, zero_reg); __ Branch(&done); __ bind(&normal_exponent); const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1; // Calculate shift. __ Addu(scratch, result_reg, Operand(kShiftBase + HeapNumber::kMantissaBits)); // Save the sign. Register sign = result_reg; result_reg = no_reg; __ And(sign, input_high, Operand(HeapNumber::kSignMask)); // On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need // to check for this specific case. Label high_shift_needed, high_shift_done; __ Branch(&high_shift_needed, lt, scratch, Operand(32)); __ mov(input_high, zero_reg); __ Branch(&high_shift_done); __ bind(&high_shift_needed); // Set the implicit 1 before the mantissa part in input_high. __ Or(input_high, input_high, Operand(1 << HeapNumber::kMantissaBitsInTopWord)); // Shift the mantissa bits to the correct position. // We don't need to clear non-mantissa bits as they will be shifted away. // If they weren't, it would mean that the answer is in the 32bit range. __ sllv(input_high, input_high, scratch); __ bind(&high_shift_done); // Replace the shifted bits with bits from the lower mantissa word. Label pos_shift, shift_done; __ li(kScratchReg, 32); __ subu(scratch, kScratchReg, scratch); __ Branch(&pos_shift, ge, scratch, Operand(zero_reg)); // Negate scratch. __ Subu(scratch, zero_reg, scratch); __ sllv(input_low, input_low, scratch); __ Branch(&shift_done); __ bind(&pos_shift); __ srlv(input_low, input_low, scratch); __ bind(&shift_done); __ Or(input_high, input_high, Operand(input_low)); // Restore sign if necessary. __ mov(scratch, sign); result_reg = sign; sign = no_reg; __ Subu(result_reg, zero_reg, input_high); __ Movz(result_reg, input_high, scratch); __ bind(&done); __ Sd(result_reg, MemOperand(sp, kArgumentOffset)); __ Pop(scratch, scratch2, scratch3); __ Pop(result_reg); __ Ret(); } void Builtins::Generate_MathPowInternal(MacroAssembler* masm) { const Register exponent = a2; const DoubleRegister double_base = f2; const DoubleRegister double_exponent = f4; const DoubleRegister double_result = f0; const DoubleRegister double_scratch = f6; const FPURegister single_scratch = f8; const Register scratch = t1; const Register scratch2 = a7; Label call_runtime, done, int_exponent; Label int_exponent_convert; // Detect integer exponents stored as double. __ EmitFPUTruncate(kRoundToMinusInf, scratch, double_exponent, kScratchReg, double_scratch, scratch2, kCheckForInexactConversion); // scratch2 == 0 means there was no conversion error. __ Branch(&int_exponent_convert, eq, scratch2, Operand(zero_reg)); __ push(ra); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(0, 2, scratch2); __ MovToFloatParameters(double_base, double_exponent); __ CallCFunction(ExternalReference::power_double_double_function(), 0, 2); } __ pop(ra); __ MovFromFloatResult(double_result); __ jmp(&done); __ bind(&int_exponent_convert); // Calculate power with integer exponent. __ bind(&int_exponent); // Get two copies of exponent in the registers scratch and exponent. // Exponent has previously been stored into scratch as untagged integer. __ mov(exponent, scratch); __ mov_d(double_scratch, double_base); // Back up base. __ Move(double_result, 1.0); // Get absolute value of exponent. Label positive_exponent, bail_out; __ Branch(&positive_exponent, ge, scratch, Operand(zero_reg)); __ Dsubu(scratch, zero_reg, scratch); // Check when Dsubu overflows and we get negative result // (happens only when input is MIN_INT). __ Branch(&bail_out, gt, zero_reg, Operand(scratch)); __ bind(&positive_exponent); __ Assert(ge, AbortReason::kUnexpectedNegativeValue, scratch, Operand(zero_reg)); Label while_true, no_carry, loop_end; __ bind(&while_true); __ And(scratch2, scratch, 1); __ Branch(&no_carry, eq, scratch2, Operand(zero_reg)); __ mul_d(double_result, double_result, double_scratch); __ bind(&no_carry); __ dsra(scratch, scratch, 1); __ Branch(&loop_end, eq, scratch, Operand(zero_reg)); __ mul_d(double_scratch, double_scratch, double_scratch); __ Branch(&while_true); __ bind(&loop_end); __ Branch(&done, ge, exponent, Operand(zero_reg)); __ Move(double_scratch, 1.0); __ div_d(double_result, double_scratch, double_result); // Test whether result is zero. Bail out to check for subnormal result. // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. __ CompareF64(EQ, double_result, kDoubleRegZero); __ BranchFalseShortF(&done); // double_exponent may not contain the exponent value if the input was a // smi. We set it with exponent value before bailing out. __ bind(&bail_out); __ mtc1(exponent, single_scratch); __ cvt_d_w(double_exponent, single_scratch); // Returning or bailing out. __ push(ra); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(0, 2, scratch); __ MovToFloatParameters(double_base, double_exponent); __ CallCFunction(ExternalReference::power_double_double_function(), 0, 2); } __ pop(ra); __ MovFromFloatResult(double_result); __ bind(&done); __ Ret(); } namespace { void GenerateInternalArrayConstructorCase(MacroAssembler* masm, ElementsKind kind) { __ Jump(CodeFactory::InternalArrayNoArgumentConstructor(masm->isolate(), kind) .code(), RelocInfo::CODE_TARGET, lo, a0, Operand(1)); __ Jump(BUILTIN_CODE(masm->isolate(), ArrayNArgumentsConstructor), RelocInfo::CODE_TARGET, hi, a0, Operand(1)); if (IsFastPackedElementsKind(kind)) { // We might need to create a holey array // look at the first argument. __ Ld(kScratchReg, MemOperand(sp, 0)); __ Jump(CodeFactory::InternalArraySingleArgumentConstructor( masm->isolate(), GetHoleyElementsKind(kind)) .code(), RelocInfo::CODE_TARGET, ne, kScratchReg, Operand(zero_reg)); } __ Jump( CodeFactory::InternalArraySingleArgumentConstructor(masm->isolate(), kind) .code(), RelocInfo::CODE_TARGET); } } // namespace void Builtins::Generate_InternalArrayConstructorImpl(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : argc // -- a1 : constructor // -- sp[0] : return address // -- sp[4] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ Ld(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a nullptr and a Smi. __ SmiTst(a3, kScratchReg); __ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction, kScratchReg, Operand(zero_reg)); __ GetObjectType(a3, a3, a4); __ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction, a4, Operand(MAP_TYPE)); } // Figure out the right elements kind. __ Ld(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); // Load the map's "bit field 2" into a3. We only need the first byte, // but the following bit field extraction takes care of that anyway. __ Lbu(a3, FieldMemOperand(a3, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. __ DecodeField(a3); if (FLAG_debug_code) { Label done; __ Branch(&done, eq, a3, Operand(PACKED_ELEMENTS)); __ Assert( eq, AbortReason::kInvalidElementsKindForInternalArrayOrInternalPackedArray, a3, Operand(HOLEY_ELEMENTS)); __ bind(&done); } Label fast_elements_case; __ Branch(&fast_elements_case, eq, a3, Operand(PACKED_ELEMENTS)); GenerateInternalArrayConstructorCase(masm, HOLEY_ELEMENTS); __ bind(&fast_elements_case); GenerateInternalArrayConstructorCase(masm, PACKED_ELEMENTS); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_MIPS64