// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/counters.h" #include #include "src/base/platform/platform.h" #include "src/builtins/builtins-definitions.h" #include "src/isolate.h" #include "src/log-inl.h" #include "src/log.h" namespace v8 { namespace internal { StatsTable::StatsTable(Counters* counters) : lookup_function_(nullptr), create_histogram_function_(nullptr), add_histogram_sample_function_(nullptr) {} void StatsTable::SetCounterFunction(CounterLookupCallback f) { lookup_function_ = f; } int* StatsCounterBase::FindLocationInStatsTable() const { return counters_->FindLocation(name_); } StatsCounterThreadSafe::StatsCounterThreadSafe(Counters* counters, const char* name) : StatsCounterBase(counters, name) {} void StatsCounterThreadSafe::Set(int Value) { if (ptr_) { base::LockGuard Guard(&mutex_); SetLoc(ptr_, Value); } } void StatsCounterThreadSafe::Increment() { if (ptr_) { base::LockGuard Guard(&mutex_); IncrementLoc(ptr_); } } void StatsCounterThreadSafe::Increment(int value) { if (ptr_) { base::LockGuard Guard(&mutex_); IncrementLoc(ptr_, value); } } void StatsCounterThreadSafe::Decrement() { if (ptr_) { base::LockGuard Guard(&mutex_); DecrementLoc(ptr_); } } void StatsCounterThreadSafe::Decrement(int value) { if (ptr_) { base::LockGuard Guard(&mutex_); DecrementLoc(ptr_, value); } } void Histogram::AddSample(int sample) { if (Enabled()) { counters_->AddHistogramSample(histogram_, sample); } } void* Histogram::CreateHistogram() const { return counters_->CreateHistogram(name_, min_, max_, num_buckets_); } void TimedHistogram::Start(base::ElapsedTimer* timer, Isolate* isolate) { if (Enabled()) timer->Start(); if (isolate) Logger::CallEventLogger(isolate, name(), Logger::START, true); } void TimedHistogram::Stop(base::ElapsedTimer* timer, Isolate* isolate) { if (Enabled()) { int64_t sample = resolution_ == HistogramTimerResolution::MICROSECOND ? timer->Elapsed().InMicroseconds() : timer->Elapsed().InMilliseconds(); timer->Stop(); AddSample(static_cast(sample)); } if (isolate != nullptr) { Logger::CallEventLogger(isolate, name(), Logger::END, true); } } void TimedHistogram::RecordAbandon(base::ElapsedTimer* timer, Isolate* isolate) { if (Enabled()) { DCHECK(timer->IsStarted()); timer->Stop(); int64_t sample = resolution_ == HistogramTimerResolution::MICROSECOND ? base::TimeDelta::Max().InMicroseconds() : base::TimeDelta::Max().InMilliseconds(); AddSample(static_cast(sample)); } if (isolate != nullptr) { Logger::CallEventLogger(isolate, name(), Logger::END, true); } } Counters::Counters(Isolate* isolate) : isolate_(isolate), stats_table_(this), // clang format off #define SC(name, caption) name##_(this, "c:" #caption), STATS_COUNTER_TS_LIST(SC) #undef SC // clang format on runtime_call_stats_() { static const struct { Histogram Counters::*member; const char* caption; int min; int max; int num_buckets; } kHistograms[] = { #define HR(name, caption, min, max, num_buckets) \ {&Counters::name##_, #caption, min, max, num_buckets}, HISTOGRAM_RANGE_LIST(HR) #undef HR }; for (const auto& histogram : kHistograms) { this->*histogram.member = Histogram(histogram.caption, histogram.min, histogram.max, histogram.num_buckets, this); } const int DefaultTimedHistogramNumBuckets = 50; static const struct { HistogramTimer Counters::*member; const char* caption; int max; HistogramTimerResolution res; } kHistogramTimers[] = { #define HT(name, caption, max, res) \ {&Counters::name##_, #caption, max, HistogramTimerResolution::res}, HISTOGRAM_TIMER_LIST(HT) #undef HT }; for (const auto& timer : kHistogramTimers) { this->*timer.member = HistogramTimer(timer.caption, 0, timer.max, timer.res, DefaultTimedHistogramNumBuckets, this); } static const struct { TimedHistogram Counters::*member; const char* caption; int max; HistogramTimerResolution res; } kTimedHistograms[] = { #define HT(name, caption, max, res) \ {&Counters::name##_, #caption, max, HistogramTimerResolution::res}, TIMED_HISTOGRAM_LIST(HT) #undef HT }; for (const auto& timer : kTimedHistograms) { this->*timer.member = TimedHistogram(timer.caption, 0, timer.max, timer.res, DefaultTimedHistogramNumBuckets, this); } static const struct { AggregatableHistogramTimer Counters::*member; const char* caption; } kAggregatableHistogramTimers[] = { #define AHT(name, caption) {&Counters::name##_, #caption}, AGGREGATABLE_HISTOGRAM_TIMER_LIST(AHT) #undef AHT }; for (const auto& aht : kAggregatableHistogramTimers) { this->*aht.member = AggregatableHistogramTimer( aht.caption, 0, 10000000, DefaultTimedHistogramNumBuckets, this); } static const struct { Histogram Counters::*member; const char* caption; } kHistogramPercentages[] = { #define HP(name, caption) {&Counters::name##_, #caption}, HISTOGRAM_PERCENTAGE_LIST(HP) #undef HP }; for (const auto& percentage : kHistogramPercentages) { this->*percentage.member = Histogram(percentage.caption, 0, 101, 100, this); } // Exponential histogram assigns bucket limits to points // p[1], p[2], ... p[n] such that p[i+1] / p[i] = constant. // The constant factor is equal to the n-th root of (high / low), // where the n is the number of buckets, the low is the lower limit, // the high is the upper limit. // For n = 50, low = 1000, high = 500000: the factor = 1.13. static const struct { Histogram Counters::*member; const char* caption; } kLegacyMemoryHistograms[] = { #define HM(name, caption) {&Counters::name##_, #caption}, HISTOGRAM_LEGACY_MEMORY_LIST(HM) #undef HM }; for (const auto& histogram : kLegacyMemoryHistograms) { this->*histogram.member = Histogram(histogram.caption, 1000, 500000, 50, this); } // clang-format off static const struct { StatsCounter Counters::*member; const char* caption; } kStatsCounters[] = { #define SC(name, caption) {&Counters::name##_, "c:" #caption}, STATS_COUNTER_LIST_1(SC) STATS_COUNTER_LIST_2(SC) #undef SC #define SC(name) \ {&Counters::count_of_##name##_, "c:" "V8.CountOf_" #name}, \ {&Counters::size_of_##name##_, "c:" "V8.SizeOf_" #name}, INSTANCE_TYPE_LIST(SC) #undef SC #define SC(name) \ {&Counters::count_of_CODE_TYPE_##name##_, \ "c:" "V8.CountOf_CODE_TYPE-" #name}, \ {&Counters::size_of_CODE_TYPE_##name##_, \ "c:" "V8.SizeOf_CODE_TYPE-" #name}, CODE_KIND_LIST(SC) #undef SC #define SC(name) \ {&Counters::count_of_FIXED_ARRAY_##name##_, \ "c:" "V8.CountOf_FIXED_ARRAY-" #name}, \ {&Counters::size_of_FIXED_ARRAY_##name##_, \ "c:" "V8.SizeOf_FIXED_ARRAY-" #name}, FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(SC) #undef SC }; // clang-format on for (const auto& counter : kStatsCounters) { this->*counter.member = StatsCounter(this, counter.caption); } } void Counters::ResetCounterFunction(CounterLookupCallback f) { stats_table_.SetCounterFunction(f); #define SC(name, caption) name##_.Reset(); STATS_COUNTER_LIST_1(SC) STATS_COUNTER_LIST_2(SC) #undef SC #define SC(name, caption) name##_.Reset(); STATS_COUNTER_TS_LIST(SC) #undef SC #define SC(name) \ count_of_##name##_.Reset(); \ size_of_##name##_.Reset(); INSTANCE_TYPE_LIST(SC) #undef SC #define SC(name) \ count_of_CODE_TYPE_##name##_.Reset(); \ size_of_CODE_TYPE_##name##_.Reset(); CODE_KIND_LIST(SC) #undef SC #define SC(name) \ count_of_FIXED_ARRAY_##name##_.Reset(); \ size_of_FIXED_ARRAY_##name##_.Reset(); FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(SC) #undef SC } void Counters::ResetCreateHistogramFunction(CreateHistogramCallback f) { stats_table_.SetCreateHistogramFunction(f); #define HR(name, caption, min, max, num_buckets) name##_.Reset(); HISTOGRAM_RANGE_LIST(HR) #undef HR #define HT(name, caption, max, res) name##_.Reset(); HISTOGRAM_TIMER_LIST(HT) #undef HT #define HT(name, caption, max, res) name##_.Reset(); TIMED_HISTOGRAM_LIST(HT) #undef HT #define AHT(name, caption) name##_.Reset(); AGGREGATABLE_HISTOGRAM_TIMER_LIST(AHT) #undef AHT #define HP(name, caption) name##_.Reset(); HISTOGRAM_PERCENTAGE_LIST(HP) #undef HP #define HM(name, caption) name##_.Reset(); HISTOGRAM_LEGACY_MEMORY_LIST(HM) #undef HM } base::TimeTicks (*RuntimeCallTimer::Now)() = &base::TimeTicks::HighResolutionNow; class RuntimeCallStatEntries { public: void Print(std::ostream& os) { if (total_call_count == 0) return; std::sort(entries.rbegin(), entries.rend()); os << std::setw(50) << "Runtime Function/C++ Builtin" << std::setw(12) << "Time" << std::setw(18) << "Count" << std::endl << std::string(88, '=') << std::endl; for (Entry& entry : entries) { entry.SetTotal(total_time, total_call_count); entry.Print(os); } os << std::string(88, '-') << std::endl; Entry("Total", total_time, total_call_count).Print(os); } // By default, the compiler will usually inline this, which results in a large // binary size increase: std::vector::push_back expands to a large amount of // instructions, and this function is invoked repeatedly by macros. V8_NOINLINE void Add(RuntimeCallCounter* counter) { if (counter->count() == 0) return; entries.push_back( Entry(counter->name(), counter->time(), counter->count())); total_time += counter->time(); total_call_count += counter->count(); } private: class Entry { public: Entry(const char* name, base::TimeDelta time, uint64_t count) : name_(name), time_(time.InMicroseconds()), count_(count), time_percent_(100), count_percent_(100) {} bool operator<(const Entry& other) const { if (time_ < other.time_) return true; if (time_ > other.time_) return false; return count_ < other.count_; } V8_NOINLINE void Print(std::ostream& os) { os.precision(2); os << std::fixed << std::setprecision(2); os << std::setw(50) << name_; os << std::setw(10) << static_cast(time_) / 1000 << "ms "; os << std::setw(6) << time_percent_ << "%"; os << std::setw(10) << count_ << " "; os << std::setw(6) << count_percent_ << "%"; os << std::endl; } V8_NOINLINE void SetTotal(base::TimeDelta total_time, uint64_t total_count) { if (total_time.InMicroseconds() == 0) { time_percent_ = 0; } else { time_percent_ = 100.0 * time_ / total_time.InMicroseconds(); } count_percent_ = 100.0 * count_ / total_count; } private: const char* name_; int64_t time_; uint64_t count_; double time_percent_; double count_percent_; }; uint64_t total_call_count = 0; base::TimeDelta total_time; std::vector entries; }; void RuntimeCallCounter::Reset() { count_ = 0; time_ = 0; } void RuntimeCallCounter::Dump(v8::tracing::TracedValue* value) { value->BeginArray(name_); value->AppendDouble(count_); value->AppendDouble(time_); value->EndArray(); } void RuntimeCallCounter::Add(RuntimeCallCounter* other) { count_ += other->count(); time_ += other->time().InMicroseconds(); } void RuntimeCallTimer::Snapshot() { base::TimeTicks now = Now(); // Pause only / topmost timer in the timer stack. Pause(now); // Commit all the timer's elapsed time to the counters. RuntimeCallTimer* timer = this; while (timer != nullptr) { timer->CommitTimeToCounter(); timer = timer->parent(); } Resume(now); } RuntimeCallStats::RuntimeCallStats() : in_use_(false) { static const char* const kNames[] = { #define CALL_BUILTIN_COUNTER(name) "GC_" #name, FOR_EACH_GC_COUNTER(CALL_BUILTIN_COUNTER) // #undef CALL_BUILTIN_COUNTER #define CALL_RUNTIME_COUNTER(name) #name, FOR_EACH_MANUAL_COUNTER(CALL_RUNTIME_COUNTER) // #undef CALL_RUNTIME_COUNTER #define CALL_RUNTIME_COUNTER(name, nargs, ressize) #name, FOR_EACH_INTRINSIC(CALL_RUNTIME_COUNTER) // #undef CALL_RUNTIME_COUNTER #define CALL_BUILTIN_COUNTER(name) #name, BUILTIN_LIST_C(CALL_BUILTIN_COUNTER) // #undef CALL_BUILTIN_COUNTER #define CALL_BUILTIN_COUNTER(name) "API_" #name, FOR_EACH_API_COUNTER(CALL_BUILTIN_COUNTER) // #undef CALL_BUILTIN_COUNTER #define CALL_BUILTIN_COUNTER(name) #name, FOR_EACH_HANDLER_COUNTER(CALL_BUILTIN_COUNTER) // #undef CALL_BUILTIN_COUNTER }; for (int i = 0; i < kNumberOfCounters; i++) { this->counters_[i] = RuntimeCallCounter(kNames[i]); } } void RuntimeCallStats::Enter(RuntimeCallTimer* timer, RuntimeCallCounterId counter_id) { DCHECK(IsCalledOnTheSameThread()); RuntimeCallCounter* counter = GetCounter(counter_id); DCHECK_NOT_NULL(counter->name()); timer->Start(counter, current_timer()); current_timer_.SetValue(timer); current_counter_.SetValue(counter); } void RuntimeCallStats::Leave(RuntimeCallTimer* timer) { DCHECK(IsCalledOnTheSameThread()); RuntimeCallTimer* stack_top = current_timer(); if (stack_top == nullptr) return; // Missing timer is a result of Reset(). CHECK(stack_top == timer); current_timer_.SetValue(timer->Stop()); RuntimeCallTimer* cur_timer = current_timer(); current_counter_.SetValue(cur_timer ? cur_timer->counter() : nullptr); } void RuntimeCallStats::Add(RuntimeCallStats* other) { for (int i = 0; i < kNumberOfCounters; i++) { GetCounter(i)->Add(other->GetCounter(i)); } } // static void RuntimeCallStats::CorrectCurrentCounterId( RuntimeCallCounterId counter_id) { DCHECK(IsCalledOnTheSameThread()); RuntimeCallTimer* timer = current_timer(); if (timer == nullptr) return; RuntimeCallCounter* counter = GetCounter(counter_id); timer->set_counter(counter); current_counter_.SetValue(counter); } bool RuntimeCallStats::IsCalledOnTheSameThread() { if (!thread_id_.Equals(ThreadId::Invalid())) return thread_id_.Equals(ThreadId::Current()); thread_id_ = ThreadId::Current(); return true; } void RuntimeCallStats::Print() { StdoutStream os; Print(os); } void RuntimeCallStats::Print(std::ostream& os) { RuntimeCallStatEntries entries; if (current_timer_.Value() != nullptr) { current_timer_.Value()->Snapshot(); } for (int i = 0; i < kNumberOfCounters; i++) { entries.Add(GetCounter(i)); } entries.Print(os); } void RuntimeCallStats::Reset() { if (V8_LIKELY(FLAG_runtime_stats == 0)) return; // In tracing, we only what to trace the time spent on top level trace events, // if runtime counter stack is not empty, we should clear the whole runtime // counter stack, and then reset counters so that we can dump counters into // top level trace events accurately. while (current_timer_.Value()) { current_timer_.SetValue(current_timer_.Value()->Stop()); } for (int i = 0; i < kNumberOfCounters; i++) { GetCounter(i)->Reset(); } in_use_ = true; } void RuntimeCallStats::Dump(v8::tracing::TracedValue* value) { for (int i = 0; i < kNumberOfCounters; i++) { if (GetCounter(i)->count() > 0) GetCounter(i)->Dump(value); } in_use_ = false; } } // namespace internal } // namespace v8