// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_HEAP_MARK_COMPACT_H_ #define V8_HEAP_MARK_COMPACT_H_ #include #include "src/heap/concurrent-marking.h" #include "src/heap/marking.h" #include "src/heap/objects-visiting.h" #include "src/heap/spaces.h" #include "src/heap/sweeper.h" #include "src/heap/worklist.h" namespace v8 { namespace internal { // Forward declarations. class EvacuationJobTraits; class HeapObjectVisitor; class ItemParallelJob; class MigrationObserver; class RecordMigratedSlotVisitor; class UpdatingItem; class YoungGenerationMarkingVisitor; template class MarkingStateBase { public: V8_INLINE MarkBit MarkBitFrom(HeapObject* obj) { return MarkBitFrom(MemoryChunk::FromAddress(obj->address()), obj->address()); } V8_INLINE MarkBit MarkBitFrom(MemoryChunk* p, Address addr) { return static_cast(this)->bitmap(p)->MarkBitFromIndex( p->AddressToMarkbitIndex(addr)); } Marking::ObjectColor Color(HeapObject* obj) { return Marking::Color(MarkBitFrom(obj)); } V8_INLINE bool IsImpossible(HeapObject* obj) { return Marking::IsImpossible(MarkBitFrom(obj)); } V8_INLINE bool IsBlack(HeapObject* obj) { return Marking::IsBlack(MarkBitFrom(obj)); } V8_INLINE bool IsWhite(HeapObject* obj) { return Marking::IsWhite(MarkBitFrom(obj)); } V8_INLINE bool IsGrey(HeapObject* obj) { return Marking::IsGrey(MarkBitFrom(obj)); } V8_INLINE bool IsBlackOrGrey(HeapObject* obj) { return Marking::IsBlackOrGrey(MarkBitFrom(obj)); } V8_INLINE bool WhiteToGrey(HeapObject* obj) { return Marking::WhiteToGrey(MarkBitFrom(obj)); } V8_INLINE bool WhiteToBlack(HeapObject* obj) { return WhiteToGrey(obj) && GreyToBlack(obj); } V8_INLINE bool GreyToBlack(HeapObject* obj) { MemoryChunk* p = MemoryChunk::FromAddress(obj->address()); MarkBit markbit = MarkBitFrom(p, obj->address()); if (!Marking::GreyToBlack(markbit)) return false; static_cast(this)->IncrementLiveBytes(p, obj->Size()); return true; } void ClearLiveness(MemoryChunk* chunk) { static_cast(this)->bitmap(chunk)->Clear(); static_cast(this)->SetLiveBytes(chunk, 0); } }; class MarkBitCellIterator { public: MarkBitCellIterator(MemoryChunk* chunk, Bitmap* bitmap) : chunk_(chunk) { DCHECK(Bitmap::IsCellAligned( chunk_->AddressToMarkbitIndex(chunk_->area_start()))); DCHECK(Bitmap::IsCellAligned( chunk_->AddressToMarkbitIndex(chunk_->area_end()))); last_cell_index_ = Bitmap::IndexToCell(chunk_->AddressToMarkbitIndex(chunk_->area_end())); cell_base_ = chunk_->area_start(); cell_index_ = Bitmap::IndexToCell(chunk_->AddressToMarkbitIndex(cell_base_)); cells_ = bitmap->cells(); } inline bool Done() { return cell_index_ >= last_cell_index_; } inline bool HasNext() { return cell_index_ < last_cell_index_ - 1; } inline MarkBit::CellType* CurrentCell() { DCHECK_EQ(cell_index_, Bitmap::IndexToCell(Bitmap::CellAlignIndex( chunk_->AddressToMarkbitIndex(cell_base_)))); return &cells_[cell_index_]; } inline Address CurrentCellBase() { DCHECK_EQ(cell_index_, Bitmap::IndexToCell(Bitmap::CellAlignIndex( chunk_->AddressToMarkbitIndex(cell_base_)))); return cell_base_; } V8_WARN_UNUSED_RESULT inline bool Advance() { cell_base_ += Bitmap::kBitsPerCell * kPointerSize; return ++cell_index_ != last_cell_index_; } inline bool Advance(unsigned int new_cell_index) { if (new_cell_index != cell_index_) { DCHECK_GT(new_cell_index, cell_index_); DCHECK_LE(new_cell_index, last_cell_index_); unsigned int diff = new_cell_index - cell_index_; cell_index_ = new_cell_index; cell_base_ += diff * (Bitmap::kBitsPerCell * kPointerSize); return true; } return false; } // Return the next mark bit cell. If there is no next it returns 0; inline MarkBit::CellType PeekNext() { if (HasNext()) { return cells_[cell_index_ + 1]; } return 0; } private: MemoryChunk* chunk_; MarkBit::CellType* cells_; unsigned int last_cell_index_; unsigned int cell_index_; Address cell_base_; }; enum LiveObjectIterationMode { kBlackObjects, kGreyObjects, kAllLiveObjects }; template class LiveObjectRange { public: class iterator { public: using value_type = std::pair; using pointer = const value_type*; using reference = const value_type&; using iterator_category = std::forward_iterator_tag; inline iterator(MemoryChunk* chunk, Bitmap* bitmap, Address start); inline iterator& operator++(); inline iterator operator++(int); bool operator==(iterator other) const { return current_object_ == other.current_object_; } bool operator!=(iterator other) const { return !(*this == other); } value_type operator*() { return std::make_pair(current_object_, current_size_); } private: inline void AdvanceToNextValidObject(); MemoryChunk* const chunk_; Map* const one_word_filler_map_; Map* const two_word_filler_map_; Map* const free_space_map_; MarkBitCellIterator it_; Address cell_base_; MarkBit::CellType current_cell_; HeapObject* current_object_; int current_size_; }; LiveObjectRange(MemoryChunk* chunk, Bitmap* bitmap) : chunk_(chunk), bitmap_(bitmap), start_(chunk_->area_start()), end_(chunk->area_end()) {} inline iterator begin(); inline iterator end(); private: MemoryChunk* const chunk_; Bitmap* bitmap_; Address start_; Address end_; }; class LiveObjectVisitor : AllStatic { public: enum IterationMode { kKeepMarking, kClearMarkbits, }; // Visits black objects on a MemoryChunk until the Visitor returns |false| for // an object. If IterationMode::kClearMarkbits is passed the markbits and // slots for visited objects are cleared for each successfully visited object. template static bool VisitBlackObjects(MemoryChunk* chunk, MarkingState* state, Visitor* visitor, IterationMode iteration_mode, HeapObject** failed_object); // Visits black objects on a MemoryChunk. The visitor is not allowed to fail // visitation for an object. template static void VisitBlackObjectsNoFail(MemoryChunk* chunk, MarkingState* state, Visitor* visitor, IterationMode iteration_mode); // Visits black objects on a MemoryChunk. The visitor is not allowed to fail // visitation for an object. template static void VisitGreyObjectsNoFail(MemoryChunk* chunk, MarkingState* state, Visitor* visitor, IterationMode iteration_mode); template static void RecomputeLiveBytes(MemoryChunk* chunk, MarkingState* state); }; enum PageEvacuationMode { NEW_TO_NEW, NEW_TO_OLD }; enum MarkingTreatmentMode { KEEP, CLEAR }; enum class RememberedSetUpdatingMode { ALL, OLD_TO_NEW_ONLY }; // Base class for minor and full MC collectors. class MarkCompactCollectorBase { public: virtual ~MarkCompactCollectorBase() {} virtual void SetUp() = 0; virtual void TearDown() = 0; virtual void CollectGarbage() = 0; inline Heap* heap() const { return heap_; } inline Isolate* isolate(); protected: static const int kMainThread = 0; explicit MarkCompactCollectorBase(Heap* heap) : heap_(heap), old_to_new_slots_(0) {} // Marking operations for objects reachable from roots. virtual void MarkLiveObjects() = 0; // Mark objects reachable (transitively) from objects in the marking // work list. virtual void ProcessMarkingWorklist() = 0; // Clear non-live references held in side data structures. virtual void ClearNonLiveReferences() = 0; virtual void EvacuatePrologue() = 0; virtual void EvacuateEpilogue() = 0; virtual void Evacuate() = 0; virtual void EvacuatePagesInParallel() = 0; virtual void UpdatePointersAfterEvacuation() = 0; virtual UpdatingItem* CreateToSpaceUpdatingItem(MemoryChunk* chunk, Address start, Address end) = 0; virtual UpdatingItem* CreateRememberedSetUpdatingItem( MemoryChunk* chunk, RememberedSetUpdatingMode updating_mode) = 0; template void CreateAndExecuteEvacuationTasks( Collector* collector, ItemParallelJob* job, RecordMigratedSlotVisitor* record_visitor, MigrationObserver* migration_observer, const intptr_t live_bytes); // Returns whether this page should be moved according to heuristics. bool ShouldMovePage(Page* p, intptr_t live_bytes); int CollectToSpaceUpdatingItems(ItemParallelJob* job); template int CollectRememberedSetUpdatingItems(ItemParallelJob* job, IterateableSpace* space, RememberedSetUpdatingMode mode); int NumberOfParallelCompactionTasks(int pages); int NumberOfParallelPointerUpdateTasks(int pages, int slots); int NumberOfParallelToSpacePointerUpdateTasks(int pages); Heap* heap_; // Number of old to new slots. Should be computed during MarkLiveObjects. // -1 indicates that the value couldn't be computed. int old_to_new_slots_; }; class MinorMarkingState final : public MarkingStateBase { public: Bitmap* bitmap(const MemoryChunk* chunk) const { return chunk->young_generation_bitmap_; } void IncrementLiveBytes(MemoryChunk* chunk, intptr_t by) { chunk->young_generation_live_byte_count_ += by; } intptr_t live_bytes(MemoryChunk* chunk) const { return chunk->young_generation_live_byte_count_; } void SetLiveBytes(MemoryChunk* chunk, intptr_t value) { chunk->young_generation_live_byte_count_ = value; } }; class MinorNonAtomicMarkingState final : public MarkingStateBase { public: Bitmap* bitmap(const MemoryChunk* chunk) const { return chunk->young_generation_bitmap_; } void IncrementLiveBytes(MemoryChunk* chunk, intptr_t by) { chunk->young_generation_live_byte_count_ += by; } intptr_t live_bytes(MemoryChunk* chunk) const { return chunk->young_generation_live_byte_count_; } void SetLiveBytes(MemoryChunk* chunk, intptr_t value) { chunk->young_generation_live_byte_count_ = value; } }; // This marking state is used when concurrent marking is running. class IncrementalMarkingState final : public MarkingStateBase { public: Bitmap* bitmap(const MemoryChunk* chunk) const { return Bitmap::FromAddress(chunk->address() + MemoryChunk::kHeaderSize); } // Concurrent marking uses local live bytes. void IncrementLiveBytes(MemoryChunk* chunk, intptr_t by) { chunk->live_byte_count_ += by; } intptr_t live_bytes(MemoryChunk* chunk) const { return chunk->live_byte_count_; } void SetLiveBytes(MemoryChunk* chunk, intptr_t value) { chunk->live_byte_count_ = value; } }; class MajorAtomicMarkingState final : public MarkingStateBase { public: Bitmap* bitmap(const MemoryChunk* chunk) const { return Bitmap::FromAddress(chunk->address() + MemoryChunk::kHeaderSize); } void IncrementLiveBytes(MemoryChunk* chunk, intptr_t by) { chunk->live_byte_count_ += by; } intptr_t live_bytes(MemoryChunk* chunk) const { return chunk->live_byte_count_; } void SetLiveBytes(MemoryChunk* chunk, intptr_t value) { chunk->live_byte_count_ = value; } }; class MajorNonAtomicMarkingState final : public MarkingStateBase { public: Bitmap* bitmap(const MemoryChunk* chunk) const { return Bitmap::FromAddress(chunk->address() + MemoryChunk::kHeaderSize); } void IncrementLiveBytes(MemoryChunk* chunk, intptr_t by) { chunk->live_byte_count_ += by; } intptr_t live_bytes(MemoryChunk* chunk) const { return chunk->live_byte_count_; } void SetLiveBytes(MemoryChunk* chunk, intptr_t value) { chunk->live_byte_count_ = value; } }; struct Ephemeron { HeapObject* key; HeapObject* value; }; typedef Worklist EphemeronWorklist; // Weak objects encountered during marking. struct WeakObjects { Worklist transition_arrays; // Keep track of all EphemeronHashTables in the heap to process // them in the atomic pause. Worklist ephemeron_hash_tables; // Keep track of all ephemerons for concurrent marking tasks. Only store // ephemerons in these Worklists if both key and value are unreachable at the // moment. // // MarkCompactCollector::ProcessEphemeronsUntilFixpoint drains and fills these // worklists. // // current_ephemerons is used as draining worklist in the current fixpoint // iteration. EphemeronWorklist current_ephemerons; // Stores ephemerons to visit in the next fixpoint iteration. EphemeronWorklist next_ephemerons; // When draining the marking worklist new discovered ephemerons are pushed // into this worklist. EphemeronWorklist discovered_ephemerons; // TODO(marja): For old space, we only need the slot, not the host // object. Optimize this by adding a different storage for old space. Worklist, 64> weak_references; Worklist, 64> weak_objects_in_code; }; struct EphemeronMarking { std::vector newly_discovered; bool newly_discovered_overflowed; size_t newly_discovered_limit; }; // Collector for young and old generation. class MarkCompactCollector final : public MarkCompactCollectorBase { public: #ifdef V8_CONCURRENT_MARKING using MarkingState = IncrementalMarkingState; #else using MarkingState = MajorNonAtomicMarkingState; #endif // V8_CONCURRENT_MARKING using NonAtomicMarkingState = MajorNonAtomicMarkingState; // Wrapper for the shared and bailout worklists. class MarkingWorklist { public: using ConcurrentMarkingWorklist = Worklist; // The heap parameter is not used but needed to match the sequential case. explicit MarkingWorklist(Heap* heap) {} void Push(HeapObject* object) { bool success = shared_.Push(kMainThread, object); USE(success); DCHECK(success); } void PushBailout(HeapObject* object) { bool success = bailout_.Push(kMainThread, object); USE(success); DCHECK(success); } HeapObject* Pop() { HeapObject* result; #ifdef V8_CONCURRENT_MARKING if (bailout_.Pop(kMainThread, &result)) return result; #endif if (shared_.Pop(kMainThread, &result)) return result; #ifdef V8_CONCURRENT_MARKING // The expectation is that this work list is empty almost all the time // and we can thus avoid the emptiness checks by putting it last. if (on_hold_.Pop(kMainThread, &result)) return result; #endif return nullptr; } HeapObject* PopBailout() { HeapObject* result; #ifdef V8_CONCURRENT_MARKING if (bailout_.Pop(kMainThread, &result)) return result; #endif return nullptr; } void Clear() { bailout_.Clear(); shared_.Clear(); on_hold_.Clear(); } bool IsBailoutEmpty() { return bailout_.IsLocalEmpty(kMainThread); } bool IsEmpty() { return bailout_.IsLocalEmpty(kMainThread) && shared_.IsLocalEmpty(kMainThread) && on_hold_.IsLocalEmpty(kMainThread) && bailout_.IsGlobalPoolEmpty() && shared_.IsGlobalPoolEmpty() && on_hold_.IsGlobalPoolEmpty(); } int Size() { return static_cast(bailout_.LocalSize(kMainThread) + shared_.LocalSize(kMainThread) + on_hold_.LocalSize(kMainThread)); } // Calls the specified callback on each element of the deques and replaces // the element with the result of the callback. If the callback returns // nullptr then the element is removed from the deque. // The callback must accept HeapObject* and return HeapObject*. template void Update(Callback callback) { bailout_.Update(callback); shared_.Update(callback); on_hold_.Update(callback); } ConcurrentMarkingWorklist* shared() { return &shared_; } ConcurrentMarkingWorklist* bailout() { return &bailout_; } ConcurrentMarkingWorklist* on_hold() { return &on_hold_; } void Print() { PrintWorklist("shared", &shared_); PrintWorklist("bailout", &bailout_); PrintWorklist("on_hold", &on_hold_); } private: // Prints the stats about the global pool of the worklist. void PrintWorklist(const char* worklist_name, ConcurrentMarkingWorklist* worklist); // Worklist used for most objects. ConcurrentMarkingWorklist shared_; // Concurrent marking uses this worklist to bail out of concurrently // marking certain object types. These objects are handled later in a STW // pause after concurrent marking has finished. ConcurrentMarkingWorklist bailout_; // Concurrent marking uses this worklist to bail out of marking objects // in new space's linear allocation area. Used to avoid black allocation // for new space. This allow the compiler to remove write barriers // for freshly allocatd objects. ConcurrentMarkingWorklist on_hold_; }; class RootMarkingVisitor; class CustomRootBodyMarkingVisitor; enum IterationMode { kKeepMarking, kClearMarkbits, }; MarkingState* marking_state() { return &marking_state_; } NonAtomicMarkingState* non_atomic_marking_state() { return &non_atomic_marking_state_; } void SetUp() override; void TearDown() override; // Performs a global garbage collection. void CollectGarbage() override; void CollectEvacuationCandidates(PagedSpace* space); void AddEvacuationCandidate(Page* p); // Prepares for GC by resetting relocation info in old and map spaces and // choosing spaces to compact. void Prepare(); // Stop concurrent marking (either by preempting it right away or waiting for // it to complete as requested by |stop_request|). void FinishConcurrentMarking(ConcurrentMarking::StopRequest stop_request); bool StartCompaction(); void AbortCompaction(); static inline bool IsOnEvacuationCandidate(Object* obj) { return Page::FromAddress(reinterpret_cast
(obj)) ->IsEvacuationCandidate(); } static inline bool IsOnEvacuationCandidate(MaybeObject* obj) { return Page::FromAddress(reinterpret_cast
(obj)) ->IsEvacuationCandidate(); } void RecordRelocSlot(Code* host, RelocInfo* rinfo, Object* target); V8_INLINE static void RecordSlot(HeapObject* object, Object** slot, HeapObject* target); V8_INLINE static void RecordSlot(HeapObject* object, HeapObjectReference** slot, HeapObject* target); void RecordLiveSlotsOnPage(Page* page); void UpdateSlots(SlotsBuffer* buffer); void UpdateSlotsRecordedIn(SlotsBuffer* buffer); void ClearMarkbits(); bool is_compacting() const { return compacting_; } // Ensures that sweeping is finished. // // Note: Can only be called safely from main thread. void EnsureSweepingCompleted(); // Checks if sweeping is in progress right now on any space. bool sweeping_in_progress() const { return sweeper_->sweeping_in_progress(); } void set_evacuation(bool evacuation) { evacuation_ = evacuation; } bool evacuation() const { return evacuation_; } MarkingWorklist* marking_worklist() { return &marking_worklist_; } WeakObjects* weak_objects() { return &weak_objects_; } void AddTransitionArray(TransitionArray* array) { weak_objects_.transition_arrays.Push(kMainThread, array); } void AddEphemeronHashTable(EphemeronHashTable* table) { weak_objects_.ephemeron_hash_tables.Push(kMainThread, table); } void AddEphemeron(HeapObject* key, HeapObject* value) { weak_objects_.discovered_ephemerons.Push(kMainThread, Ephemeron{key, value}); } void AddWeakReference(HeapObject* host, HeapObjectReference** slot) { weak_objects_.weak_references.Push(kMainThread, std::make_pair(host, slot)); } void AddWeakObjectInCode(HeapObject* object, Code* code) { weak_objects_.weak_objects_in_code.Push(kMainThread, std::make_pair(object, code)); } void AddNewlyDiscovered(HeapObject* object) { if (ephemeron_marking_.newly_discovered_overflowed) return; if (ephemeron_marking_.newly_discovered.size() < ephemeron_marking_.newly_discovered_limit) { ephemeron_marking_.newly_discovered.push_back(object); } else { ephemeron_marking_.newly_discovered_overflowed = true; } } void ResetNewlyDiscovered() { ephemeron_marking_.newly_discovered_overflowed = false; ephemeron_marking_.newly_discovered.clear(); } Sweeper* sweeper() { return sweeper_; } #ifdef DEBUG // Checks whether performing mark-compact collection. bool in_use() { return state_ > PREPARE_GC; } bool are_map_pointers_encoded() { return state_ == UPDATE_POINTERS; } #endif void VerifyMarking(); #ifdef VERIFY_HEAP void VerifyValidStoreAndSlotsBufferEntries(); void VerifyMarkbitsAreClean(); void VerifyMarkbitsAreDirty(PagedSpace* space); void VerifyMarkbitsAreClean(PagedSpace* space); void VerifyMarkbitsAreClean(NewSpace* space); #endif private: explicit MarkCompactCollector(Heap* heap); ~MarkCompactCollector(); bool WillBeDeoptimized(Code* code); void ComputeEvacuationHeuristics(size_t area_size, int* target_fragmentation_percent, size_t* max_evacuated_bytes); void RecordObjectStats(); // Finishes GC, performs heap verification if enabled. void Finish(); void MarkLiveObjects() override; // Marks the object black and adds it to the marking work list. // This is for non-incremental marking only. V8_INLINE void MarkObject(HeapObject* host, HeapObject* obj); // Marks the object black and adds it to the marking work list. // This is for non-incremental marking only. V8_INLINE void MarkRootObject(Root root, HeapObject* obj); // Used by wrapper tracing. V8_INLINE void MarkExternallyReferencedObject(HeapObject* obj); // Mark the heap roots and all objects reachable from them. void MarkRoots(RootVisitor* root_visitor, ObjectVisitor* custom_root_body_visitor); // Mark the string table specially. References to internalized strings from // the string table are weak. void MarkStringTable(ObjectVisitor* visitor); // Marks object reachable from harmony weak maps and wrapper tracing. void ProcessEphemeronMarking(); // If the call-site of the top optimized code was not prepared for // deoptimization, then treat embedded pointers in the code as strong as // otherwise they can die and try to deoptimize the underlying code. void ProcessTopOptimizedFrame(ObjectVisitor* visitor); // Collects a list of dependent code from maps embedded in optimize code. DependentCode* DependentCodeListFromNonLiveMaps(); // Drains the main thread marking work list. Will mark all pending objects // if no concurrent threads are running. void ProcessMarkingWorklist() override; enum class MarkingWorklistProcessingMode { kDefault, kTrackNewlyDiscoveredObjects }; template void ProcessMarkingWorklistInternal(); // Implements ephemeron semantics: Marks value if key is already reachable. // Returns true if value was actually marked. bool VisitEphemeron(HeapObject* key, HeapObject* value); // Marks ephemerons and drains marking worklist iteratively // until a fixpoint is reached. void ProcessEphemeronsUntilFixpoint(); // Drains ephemeron and marking worklists. Single iteration of the // fixpoint iteration. bool ProcessEphemerons(); // Mark ephemerons and drain marking worklist with a linear algorithm. // Only used if fixpoint iteration doesn't finish within a few iterations. void ProcessEphemeronsLinear(); // Perform Wrapper Tracing if in use. void PerformWrapperTracing(); // Callback function for telling whether the object *p is an unmarked // heap object. static bool IsUnmarkedHeapObject(Heap* heap, Object** p); // Clear non-live references in weak cells, transition and descriptor arrays, // and deoptimize dependent code of non-live maps. void ClearNonLiveReferences() override; void MarkDependentCodeForDeoptimization(); // Checks if the given weak cell is a simple transition from the parent map // of the given dead target. If so it clears the transition and trims // the descriptor array of the parent if needed. void ClearPotentialSimpleMapTransition(Map* dead_target); void ClearPotentialSimpleMapTransition(Map* map, Map* dead_target); // Compact every array in the global list of transition arrays and // trim the corresponding descriptor array if a transition target is non-live. void ClearFullMapTransitions(); bool CompactTransitionArray(Map* map, TransitionArray* transitions, DescriptorArray* descriptors); void TrimDescriptorArray(Map* map, DescriptorArray* descriptors); void TrimEnumCache(Map* map, DescriptorArray* descriptors); // After all reachable objects have been marked those weak map entries // with an unreachable key are removed from all encountered weak maps. // The linked list of all encountered weak maps is destroyed. void ClearWeakCollections(); // Goes through the list of encountered weak references and clears those with // dead values. If the value is a dead map and the parent map transitions to // the dead map via weak cell, then this function also clears the map // transition. void ClearWeakReferences(); void AbortWeakObjects(); // Starts sweeping of spaces by contributing on the main thread and setting // up other pages for sweeping. Does not start sweeper tasks. void StartSweepSpaces(); void StartSweepSpace(PagedSpace* space); void EvacuatePrologue() override; void EvacuateEpilogue() override; void Evacuate() override; void EvacuatePagesInParallel() override; void UpdatePointersAfterEvacuation() override; UpdatingItem* CreateToSpaceUpdatingItem(MemoryChunk* chunk, Address start, Address end) override; UpdatingItem* CreateRememberedSetUpdatingItem( MemoryChunk* chunk, RememberedSetUpdatingMode updating_mode) override; int CollectNewSpaceArrayBufferTrackerItems(ItemParallelJob* job); int CollectOldSpaceArrayBufferTrackerItems(ItemParallelJob* job); void ReleaseEvacuationCandidates(); void PostProcessEvacuationCandidates(); void ReportAbortedEvacuationCandidate(HeapObject* failed_object, Page* page); void ClearMarkbitsInPagedSpace(PagedSpace* space); void ClearMarkbitsInNewSpace(NewSpace* space); static const int kEphemeronChunkSize = 8 * KB; int NumberOfParallelEphemeronVisitingTasks(size_t elements); base::Mutex mutex_; base::Semaphore page_parallel_job_semaphore_; #ifdef DEBUG enum CollectorState { IDLE, PREPARE_GC, MARK_LIVE_OBJECTS, SWEEP_SPACES, ENCODE_FORWARDING_ADDRESSES, UPDATE_POINTERS, RELOCATE_OBJECTS }; // The current stage of the collector. CollectorState state_; #endif bool was_marked_incrementally_; bool evacuation_; // True if we are collecting slots to perform evacuation from evacuation // candidates. bool compacting_; bool black_allocation_; bool have_code_to_deoptimize_; MarkingWorklist marking_worklist_; WeakObjects weak_objects_; EphemeronMarking ephemeron_marking_; // Candidates for pages that should be evacuated. std::vector evacuation_candidates_; // Pages that are actually processed during evacuation. std::vector old_space_evacuation_pages_; std::vector new_space_evacuation_pages_; std::vector> aborted_evacuation_candidates_; Sweeper* sweeper_; MarkingState marking_state_; NonAtomicMarkingState non_atomic_marking_state_; friend class EphemeronHashTableMarkingTask; friend class FullEvacuator; friend class Heap; friend class RecordMigratedSlotVisitor; }; template class MarkingVisitor final : public HeapVisitor< int, MarkingVisitor> { public: typedef HeapVisitor< int, MarkingVisitor> Parent; V8_INLINE MarkingVisitor(MarkCompactCollector* collector, MarkingState* marking_state); V8_INLINE bool ShouldVisitMapPointer() { return false; } V8_INLINE int VisitAllocationSite(Map* map, AllocationSite* object); V8_INLINE int VisitBytecodeArray(Map* map, BytecodeArray* object); V8_INLINE int VisitCodeDataContainer(Map* map, CodeDataContainer* object); V8_INLINE int VisitEphemeronHashTable(Map* map, EphemeronHashTable* object); V8_INLINE int VisitFixedArray(Map* map, FixedArray* object); V8_INLINE int VisitJSApiObject(Map* map, JSObject* object); V8_INLINE int VisitJSFunction(Map* map, JSFunction* object); V8_INLINE int VisitMap(Map* map, Map* object); V8_INLINE int VisitNativeContext(Map* map, Context* object); V8_INLINE int VisitTransitionArray(Map* map, TransitionArray* object); // ObjectVisitor implementation. V8_INLINE void VisitPointer(HeapObject* host, Object** p) final; V8_INLINE void VisitPointer(HeapObject* host, MaybeObject** p) final; V8_INLINE void VisitPointers(HeapObject* host, Object** start, Object** end) final; V8_INLINE void VisitPointers(HeapObject* host, MaybeObject** start, MaybeObject** end) final; V8_INLINE void VisitEmbeddedPointer(Code* host, RelocInfo* rinfo) final; V8_INLINE void VisitCodeTarget(Code* host, RelocInfo* rinfo) final; private: // Granularity in which FixedArrays are scanned if |fixed_array_mode| // is true. static const int kProgressBarScanningChunk = 32 * 1024; V8_INLINE int VisitFixedArrayIncremental(Map* map, FixedArray* object); V8_INLINE void MarkMapContents(Map* map); // Marks the object black without pushing it on the marking work list. Returns // true if the object needed marking and false otherwise. V8_INLINE bool MarkObjectWithoutPush(HeapObject* host, HeapObject* object); // Marks the object grey and pushes it on the marking work list. V8_INLINE void MarkObject(HeapObject* host, HeapObject* obj); MarkingState* marking_state() { return marking_state_; } MarkCompactCollector::MarkingWorklist* marking_worklist() const { return collector_->marking_worklist(); } Heap* const heap_; MarkCompactCollector* const collector_; MarkingState* const marking_state_; }; class EvacuationScope { public: explicit EvacuationScope(MarkCompactCollector* collector) : collector_(collector) { collector_->set_evacuation(true); } ~EvacuationScope() { collector_->set_evacuation(false); } private: MarkCompactCollector* collector_; }; #ifdef ENABLE_MINOR_MC // Collector for young-generation only. class MinorMarkCompactCollector final : public MarkCompactCollectorBase { public: using MarkingState = MinorMarkingState; using NonAtomicMarkingState = MinorNonAtomicMarkingState; explicit MinorMarkCompactCollector(Heap* heap); ~MinorMarkCompactCollector(); MarkingState* marking_state() { return &marking_state_; } NonAtomicMarkingState* non_atomic_marking_state() { return &non_atomic_marking_state_; } void SetUp() override; void TearDown() override; void CollectGarbage() override; void MakeIterable(Page* page, MarkingTreatmentMode marking_mode, FreeSpaceTreatmentMode free_space_mode); void CleanupSweepToIteratePages(); private: using MarkingWorklist = Worklist; class RootMarkingVisitor; static const int kNumMarkers = 8; static const int kMainMarker = 0; inline MarkingWorklist* worklist() { return worklist_; } inline YoungGenerationMarkingVisitor* main_marking_visitor() { return main_marking_visitor_; } void MarkLiveObjects() override; void MarkRootSetInParallel(RootMarkingVisitor* root_visitor); V8_INLINE void MarkRootObject(HeapObject* obj); void ProcessMarkingWorklist() override; void ClearNonLiveReferences() override; void EvacuatePrologue() override; void EvacuateEpilogue() override; void Evacuate() override; void EvacuatePagesInParallel() override; void UpdatePointersAfterEvacuation() override; UpdatingItem* CreateToSpaceUpdatingItem(MemoryChunk* chunk, Address start, Address end) override; UpdatingItem* CreateRememberedSetUpdatingItem( MemoryChunk* chunk, RememberedSetUpdatingMode updating_mode) override; int CollectNewSpaceArrayBufferTrackerItems(ItemParallelJob* job); int NumberOfParallelMarkingTasks(int pages); MarkingWorklist* worklist_; YoungGenerationMarkingVisitor* main_marking_visitor_; base::Semaphore page_parallel_job_semaphore_; std::vector new_space_evacuation_pages_; std::vector sweep_to_iterate_pages_; MarkingState marking_state_; NonAtomicMarkingState non_atomic_marking_state_; friend class YoungGenerationMarkingTask; friend class YoungGenerationMarkingVisitor; }; #endif // ENABLE_MINOR_MC } // namespace internal } // namespace v8 #endif // V8_HEAP_MARK_COMPACT_H_